Cl Plus Specification v1.3.2 (2015-03)

Technical Specification

Cl Plus Specification.
Content Security Extensions to the Common Interface.

\

A
+

|

2 Cl Plus Specification v1.3.2 (2015-03)

Cl Plus LLP
Pannell House
Park Street
Guildford
Surrey
GU1 4HN
UK

A company registered in England and Wales
Registered Number: OC341596

Copyright Notification

All rights reserved. Reproduction in whole or in part is prohibited without the
written consent of the copyright owners.

© 2008, 2009, 2011, 2015 Cl Plus LLP

3 Cl Plus Specification v1.3.2 (2015-03)

Contents

FOT@WOTA ...ttt ettt et et s bt et e e bt e a e e bt e bt em e e bt eme et e ss e et e sbe et enseeneeneenne 14
1 S0P ettt ettt ettt ettt ettt et e e be e et e e e tee e tb e e e bee ettt et bae e tte e tbae e baeeatbeeaabaeatbeeanbeeetaeeasseeataeennreaans 15
2 RETEICIICESeeeetieiie ittt ettt e h e s at e st et et e e bt e sbte s bt e saeeemteebe e beesneesateenne 15
2.1 INOTIMALIVE TETRTEIICES ...ttt ettt ettt st h e ebe bt ea et et et b e e bt bt e bt et et ena e b e s b e ebeebe et enee 15
3 Definitions, Symbols and abbreVIiations...........c.cccverieeieeriienienieesieereereereesseeseesseeseeseesseesseesssesssennns 17
3.1 I) 51113 o) 1 ORI 17
3.2 7181070 £ OSSPSR 18
33 FN o] o) (AT 21 5) 1SRRI 18
34 USE OF WOTAS ...ttt ettt ettt e b et e e e e e s bt e s bt e e bt et e embeemeeeaeeebeebeenseenbeenteemeesaeenae 20
4 System OVerview (INFOIMATIVE)eouieiiiiiieieeiieteer ettt ettt ettt et esbeesatesateeeeebeens 20
4.1 IIEFOAUCLION «.uentetiteee ettt ettt h bt bt ea e st e s e st e bt e bt eb e ebeea b e st et et e s bt ebeebeeneeneeneen 20
42 Content Control SyStem COMPONENLS.cvervierierireiieriereerteerseeseessesssesseesseessesssesssesssesseesseesseessesssssssessaessens 21
4.2.1 HOSE ettt e b bbbttt et h e bt s ae bt a e et eat e eat e bt e be e en 21
422 CICAM etttk bttt ettt h e bbbt e st et et e bt eb e eb e e bt e bt ea b et et e st ebe e bt ent et eneen 22
423 3 T2 T4 B 5 T RSOSSN 22
43 IMplementation OULHNEooiiiiiieeet ettt ettt et et e e eeee s s eesseeseeesae e st eneeeneeeseanseensenn 22
4.4 DeViCe AUNENTICATION . .eetiitietieie ettt ettt e st e et et e e seesaeessee bt emeeemteemeeeneeeseenseenseenseeneesneesns 23
4.5 Key Exchange and Content ENCIYPHONcc.eiiiiiiii ettt ettt ee e s ees 23
4.6 ENhanced MIMLIoi ittt ettt ettt e at et e et et e eateeeaeeeeesneesae e et enteeneeenseeneenneennean 23
4.7 CI PIUS EXEEIISIONS ...ttt ettt ettt et et e st e e et e e e et e et e esee e s e et e et e emteemeesmeesmeesaeeneeenseeneeeneenseanseensean 24
4.7.1 CL PIUS 1.3 EXEENSIONS ..uteutintititintietteiietete sttt sttt eit et este st et st bt ebtestest et et e sbeebeebeesten s e tebesbeebesbeeneeneeneen 24
5 Content Control OVerview (NOTMALIVE)cvveerueerrerrerreaereereeseesressessseesseesseesseesssesssesssesssesssessssessses 24
5.1 End t0 ENA ATCRILECIUIEoutitiiiitiitieeiet ettt sttt et b e sttt eae e enaen 24
5.2 General INterface BERaVIOULc.cooiiiiiieiee ettt sttt e sa ettt e e st e eseesneenneas 25
53) G5 5 6 TS5 (] 1) 2SR 26
531 Keys on the Credentials LaYETcocieiieierieiieieeeieesit ettt ettt siae s e et e saeeeeeneeeneeeneesseenseenseas 28
532 Keys on the Authentication Layer.........ccoeciriiiiiiieiiee ettt et e e sneeeees 28
533 LG 0] T4 N T N O I /< USRS 29
534 Keys on the Content Control LAYET.........cccuiiiiiiiiieiieie ettt st sae et et e s e s esseeneas 29
5.4 MOQUIE DEPIOYIMENLevivietieiieiiieteeteetesee st esteereeteetaesseesseesseesseessessaesseessaesseesseasseassesssesssesseessenssesssessseses 29
54.1 Deployment In Basic SEIvICe MOGC........ccuiiiiiieiieiieie ettt ebeevesaeseae e e saeeseessesssessaesssesseessens 30
54.2 Deployment in Registered Service MOAE.coueiuieriieriieiieiieieeeeeieeteereeve e seeesaeesseesbeesseesaessaesseessens 32
543 Generic Error REPOTTING.cc.ciiiiiieiiciiciectteettete et ete et e st e steeste et e essessaeesaessaesseesseessasssesssesssesseesseensennsenns 32
5.5 Introduction to Revocation (INOIMAtIVE)c.ecvieiiiieiiirieeieeie ettt et eveeseeaesaeseaesaeesseessesssesssesseessaensens 32
5.5.1 HOSE REVOCALION ...tttk e a ettt s b et b e eb e st et et et e besbeebeeneeneenee 32
552 ReVOCAtION GIramUIATILYcceeeuieiiieiieieee ettt ettt et et e st e s st eseee et e et enteeneeeneesneenseennean 33
553 Revocation Signalling Data..........cc.eiiieiieiieie ettt sttt et e e te et e eneeene e seenean 33
554 TranSmiSSION TIMEOUL.......cuieiiieietieti ettt ettt ettt et e et eete et e et enteentesaeesseesseesaee st enseenseeneesneenseensenn 34
5.55 SOCRL and SOCWL DoWnload PIOCESSceruveiiiiieiieriieniieiieie ettt eeee e eees 34
5.5.6 LT3V o N TS, 0 (U 36
5.6 (De)ScrambIing Of COMEENL.....c..ueeriieiiieeiieiiieete et esteerteeeteesteestteestbeessaeesbeessseessseensseessseessseessseensseessseensses 38
5.6.1 Transport Stream Level SCTambIing..........cc.coviiiriiiiiieiiieciieeieece ettt sreesbe e sbeesebeesbeeenaee s 38
5.6.1.1 PES LeVel SCTambBIING.........coociiiiiiieiieciie ettt eiee et e et e ette st e eteesteestaeentaeesaeesseessseensseessseenses 39
5.6.2 Scrambler/Descrambler Definitioncocoviiriiriiiiiiieiieeeee et 39
5.6.2.1 SCIAMDIING TULESeeiiiieeiie ettt e et e et e et e s beeasbeeesteeesseesnsaeasseesssaeasseesnsseeseesnseeenseennn 39
5.6.2.2 Transport Stream Scrambling With DEScoooiiiiiiiiii et 41
5.6.2.3 Transport Stream Scrambling With AEScoiiiiiiiiiiieeeeee e 41
5.7 Copy Control EXertion 0n COMEENLccuecuirtiriririireeietertete ettt ettt sttt sttt ettt et et sbesbeeaeeseenaen 44
5.7.1 L8] 2 1S3 54V o) o TS 44
5.7.2 Ass0ciating URI With COMEENTcc.evuiririiiieiiiiiciceieeicetet sttt sttt et et et eaaennens 44
5.7.3 URI transfer — Head-End t0 CICAMccuiiiiiieiieiee ettt sttt et eenee s e nseensean 44
5.7.4 URI transfer — CICAM t0 HOSE....c.eoiuieiieieeiecie ettt st sae e e ente e e eneesneenseensens 44
5.7.5 URI REfIESh PrOtOCOL ... ittt sttt et et et st sbe e b ebeas 45

© 2008, 2009, 2011, 2015 Cl Plus LLP

4 Cl Plus Specification v1.3.2 (2015-03)

5.7.5.1 URI Version Negotiation Protocolcoouiiiiiiiiiiiieiieeee et 48
5.7.52 Format of the URI MESSAZEc.eeiuiiitieiieiieieete ettt ettt et et st sbee e e nae e e e eae 48
5.7.53 Coding And Semantics Of FIeldScooiiiiiiiiiiieieeee e e 49
5.8 MOAES OFf OPCIALIONe.eveeieiieiieiieteeteste st e st et eaeeeesetesseesseesseesseessesssesseesseesseanseassesssenssesaensennsenssesssesnsenses 53
5.8.1 Host Operation with MUltiple CICAMSc.eiiieiieriieiieie ettt saeseaesseesseenseesseessesssensaensens 53
5.8.2 Single CICAM with Multiple CA SYStemM SUPPOIT......cccuerierieriiereeieiieriereesieeseereeseesseesseesseesessessnesees 54
5.8.2.1 INEFOAUCLION ...ttt b et b et b et b e bt e bt et e et st st sbeebe et eneen 54
5822 CICAM DeViICe COITIICAIESevervireiiuieiietinientesteeit ettt sttt ettt et ettt sttt be et et et e sae b bt ebeeneeneen 54
5.8.2.3 COK RETTESN ..ottt ettt b et be ettt a e bbbt et eneen 54
5.8.2.4 HOSE TEVOCATION. ...ttt ettt b et e bttt e a e e a et e b e et e e beenteeneesaeesaeenseenaeenteeneeens 54
5.9 AUtheNtiCAtION OVETVIEW ...ttt ittt ettt ettt et et e s bt e sh e e sb e e beembeeaeeeseeebeeebee bt enbeenbeemeesaeenae 54
5.10 Content License EXCRANGEScoouiiiiiiiieieeeeee ettt et sttt a ettt et e et e seeenbeenneas 56
5.10.1 RECOTd Start PrOtOCOLottt sttt e bttt ettt e eaeeeaeenbeeneean 56
5.10.2 Content License Exchange on RECOTd.c.ooiiiiiiiiiiiiiie e 56
5.10.3 Content License Exchange on Checkoo.oiiiiiiiiiiiiii e 56
5.10.4 Content License Exchange on Playbackccveiiieiiiiiiiiiiiieiie et s 57
5.10.5 Content License and TimeShiftingcoeiiriiiieiiieiiee ettt be e aesaaesseeseeseense e 57
5.10.6 RECOTA StOP PrOtOCOLeviieiieeiiiieiieieeeee ettt ettt e et e s saesseesseessaesseesseessenssenssesaensens 57
5.11 Parental COMLIOL......coueiuieiiiieieeet ettt h bbbt et b e b s bt bt ebe e bt et et et st e et e bt ene et eneen 57
5.11.1 CICAM PIN Capabilitiesccuverureriierrieirieteetestiesteesteesessestesseesseesseesseessesssesssesseessesssesssesssesssesseesseessesssenns 58
S5.11.1.1 NO CICAM PIN CaPabilities.....ccueervieriierieiierieriiesiiesieetestestesseesseesseessesssessaessesssesssesssesssessessseessesssenss 58
5.11.1.2 CICAM PIN Capabilities for CA Services ONlYccceerieririeiieiieiierie et e 58
5.11.1.3 CICAM PIN Capabilities for CA and FTA ServiCes.......cceererruerierierieiierie e eie st 58
5.11.1.4 CICAM PIN Capabilities for CA Services Only (cached PIN)ccccoeiiiiiiiininieieeeeeeee e 59
5.11.1.5 CICAM PIN Capabilities for CA and FTA Services (cached PIN).......cccoocieiiriiiniiiiieeeee e 59
5.11.2 CICAM PIN COAC....euiiuieiieieteeit ettt ettt te ettt ettt et et e e st e et e e st et e eseeneens e sesbesse et e eseansensensansesseesesseeneensensan 59
5.11.3 HOSE PIN COA@ ..ttt ettt bbbt ettt st b e bbbt et et et et bt bt et et enee 62
5.11.4 Notification that @ PIN iS TEQUITEAeeovieriiiiieiiiieriecteie ettt ste et e e esaesteesseesseesseessesssesnnenes 63
5.11.5 Transfer of Parental Rating to CICAMccoiiiiiiiiiiiieiceeeeeee ettt s seeesaeesseesbeesseessessaessaensees 63
5.11.6 PIN COAE CACHING ...ccvvieviieiiieiieeiieiieieeie ettt ettt e st e et eeta et e e seesseesbesssesssesseessaesseenseassenssesssesannsens 63
5.12 Recording and PIaAYDACKcccveviiiiiiiicieieeee ettt ettt et esae e e saaesaeesseenseenbeesbeeseenraenrean 63
5.12.1 PIaYDACK SESSIONuiiiiiiiieiiieieeiiett ettt ettt et et et e e b e eseeeseeste e saesseesseessesssesssesseesseesseansesssenssenseensannsens 65
5.13 SRIM DICLIVETY ...ttt ettt ettt ettt ettt e e et e et em b e eneeeeeesseess e e st enseemeeeseanseenseenseensesmaesneesaeenseenseenseans 66
5.13.1 Data file transfer ProtOCOLo.iiiuiiiieiee ettt see bttt et e et e e e ene e reenean 66
5.13.1.1 Initialisation and MESSAZE OVETVIEWcecuieuieiieeieriietieteeieeeesteseeestee et eeeenteeneesneesseesseenseesesnsesneesnes 66
5.13.2 Data transfer CONAIIONSeeoueeiieierieitie ettt ettt et et et eete et e sseesae e st e et eneeeneeeseesseenseenseenseeneesneenns 68
6 Authentication MECRANISINScccviiiiiiiiiiii ittt et e et e e st e e te e e s ve e eaee e ereeeeneesaseeenns 69
6.1 CICAM Binding and REZISIIAtIONcveiuieriieiieiiiieiieseesteeteeseeeteeteesteeseessesssessaesseesseesseessesssesssesseesseesses 69
6.1.1 Verification of Certificates & DH Key EXChange...........cccoecvieiiriiiieniienieeiecie e sveenees 69
6.1.2 Verification of AUthentiCation Kec.occuiiiiiiiiiiiiieiieie ettt st sae e e beseaeseaessaesseerees 69
6.1.3 Report Back t0 SErviCe OPEIAOTcc.eccvieiiiieiieiieiteerteeteeeteetteeteesteesbeesseeseseaessaesseesseesseessesssesssesssessessses 70
6.1.4 CC SYSLEIM OPCIALIONeeeeiiertieteete et eeeeetteetteteeteeateeseesseesseeaseeseeneeeneeeseeaseanseenseeseensesneesneesseesseenseenseans 70
6.2 AUthentication ProtOCOL..........ooiiiiiieie ettt ettt e e st e bt e e e teete e ens 72
6.2.1 Initialisation and MeSSAZE OVEIVIEWc.ecuerierierierieeieeteeeeeteesteeteeaeetesseesseesseesseeseenseeneeeseesseenseensens 72
6.2.2 Authentication CONAItIONSecuiruiiriertieitiete ettt ettt et e esee st ee et e te e teensesseesseesseesseenseenseeneeens 74
6.2.3 Authentication Key COMPULAtIONSccueeiiiriiiiiieieiieitierte ettt ettt et eteseeseeeseeesseeneeeeeeneeens 78
6.2.3.1 Diffie Hellman Parameterscoviiuieriieiieiieie ettt ettt seeesaeeseeesseeeeeneeens 82
6.2.3.2 Calculate DH Public Keys (DHPH and DHPM)coociiiiiiiiiiiiccieeeieeceeeee st 82
6.2.3.3 Calculate DH Keys (DHSK).....ccuiiiiiiiieiieeiitertteete et e st ste e vt sveeseaeesaeessseessseessseesssessssessnseessseens 82
6.2.34 Calculate Authentication Key (AKH and AKM)cooouiiiiiiiiiiniieiieeeiee sttt svee e sveeevee s 83
6.3 POWETr-UpP Re-AUNENTICATION .e.vvieiiiieiieiiieeiieeieeeiee st eetee st e eaeesbeeeteessteeesseesstaeesseesnsaeenseesnsaeenseessseesnseennns 83
7 Secure Authenticated Channel............cooieiiiiiiee ettt 84
7.1 SAC OPETALION ...ttt ettt ettt bt bt ettt st e bt sbe bt e st e st ea b e naeebesbeebeebtest et e st e abesueeueeneennen 85
7.1.1 SAC TNIHAIISATIONeieieieiieeiietieit et ete et e st e st et et et eestesseesseenseensesnsesseesseenseenseenseenseaneenseenseensesnsesnsesnsennes 85
7.1.2 SAC (1€)KEYING CONAILIONScveutiniitertiitieiteit ettt ettt ettt sttt ettt b e sbe bt bt et ebe st e besaeeaeeneennen 86
7.1.3 SAC KEY COMPULALION ...ttt ettt ettt sttt et et ettt st sbe et et e b e ne e b e sbesbeeat et enbesteebesbeebeennennen 88
7.1.4 SAC error codes and (1€) SEt SAC STALE ...ecvvieriierieeiieerieerieerteesteesteesteeereesaeesaseesseessseessseessseessseensees 88
7.2 FOrmat Of the SAC IMESSAZEccuuveeiiieiieeiieeitteeiteetee et e et e st e ebeessbeeesbeessteeasseesnsaeasseessseeanseessseeesseesnseesnseesnns 89
7.2.1 COMSLANES ...ttt ettt ettt ettt et ea e bttt et et e st e st e e bt e sb e e bt emb e emteea e e eb e e bt en bt enbeembesbbesbeenbeenbe e bt enteenteeae 90

© 2008, 2009, 2011, 2015 Cl Plus LLP

5 Cl Plus Specification v1.3.2 (2015-03)

7.2.2 Coding and Semantics Of FICIAS.......ccccuiiiiiiiiiiiiiieciie et et ettt e e e et eeaeeetaeeaneenes 90
73 TransMitting SAC MESSAZESeeuvieuiireiertiertiete et et ete et et e bt et eeteetee s bt este et e esteeseesaeesbeesaeeteenseenseeseesseanseensean 92
7.3.1 MeESSAZE AULNENTICATION ...ttt ettt ettt et et et et et e seee s bt e sbeebe e bt emteeneeeneeeneenseensean 92
7.3.2 MESSAZE ENCTYPLIONviviieiiieeieeiieiteie ettt e e e et e et eete et e et e enseesbessaessaesseesseenseenseanseessenssensannsenn 92
7.4 RECEIVING SAC MESSALZESvveuvieneieeieeiieetientieteeteetestesseesseeseasseasseasaeaseesseesseassesssesssesssesssesssenseessesssesssessennsens 93
7.4.1 IMESSAZE COUNTET STALE ...eeuvvieiiteiieeiie ettt ettt ettt ettt ettt e sttt esateesabeesateesabeessteesabeesaseesabaesaseesabeesaseesaseennseess 93
7.4.2 MESSAZE DICCTYPLIONeevvieeiieeieetieiiete et eteeteseestee st eseeaeeseeessessaesseenseenseessesssesseesseesssenseenseassesssenssensaensen 93
7.4.3 MESSAZE VETIFICATION ...evvieeiieeieiieiieie et eie et et e st e e esteeae et e e seeeta e saenseesseensesssesseesseesseenseanseasseessenssensaensens 94
7.5 SAC Integration iNt0 CL PIUSc.ecciiiieiiieiieit ettt ettt ettt e st et et e esbeensessaessaessnesseenseansenns 94
8 Content Key CalCulationseoiiiiiiiiiiieeie ettt sttt ettt esbeesate et ebeebeenaeenneas 95
8.1 Content Control Key refresh ProtoCol...........oouiiiiiiiiieiieee ettt 95
8.1.1 Initialization and MESSAZE OVEIVIEWc..eeuiiiiiiieitieiiete ettt ette et et ce bt et eebesseesseeseeenbe e bt enteeseeeseenseenseenseas 95
8.1.2 Content Control Key re-Keying CONAItIONSceervierueriiiriieiienieriieieeeeetesteeseesseesessesaessaesseesseessesssenns 97
8.1.3 Content KEY LITELIME.eiviiieiieiiiesiecte ettt testestesteesteesseesaesseeesaessaenseesseensasnsesssesssesseesseensennsenns 98
8.14 Content Control Key Computation (CCK)........covuiiiiiriiiiieiieiiesterie ettt eteesve e saessaesseesseesseenseens 98
8.1.5 Content Key for DES-56-ECB SCIamDbICT..........ccccecieiiiriieiieiiesieie et eeesitesieeseessessesaessaesseesseeseenseens 99
8.1.6 Content Key and IV for AES-128-CBC SCrambIer.cccoovverieriieniieiieieeieneesieeie e seeseesveesseesseenneens 99
9 PKI and Certificate DEtails.........coeuieieiieieieieeese ettt ettt sttt enee e 100
9.1 IEEOAUCTION ..ttt ettt ettt s et e st e et e e et et eaeees e e bt e teenteemeeemeesseesneesneenseanseeneeans 100
9.2 Certificate Management ATCRIECTUIE.........o.eiiuieiieieie ettt e aeeneeeee e ene 100
93 Certificate FOTMAL.......oceiitiitieiee ettt ettt ettt et e et e e et e enteeneesseesneesneeseeneeeneeans 101
9.3.1 VETSIOM .ttt ettt ettt ettt bt bt e bt e st e st et et eb e eb e e bt ea e ea e e e et e s bt eh e eb e ehees b en b et e e bt ekt e bt eh e es e et en b e nhe e bt ebeenteneeneen 102
932 SEIIAIINUIMIDET ...ttt ettt b e bbbt et e e st e b e s bt eb e bt entes b et ebesaeebeeneestentens 102
933 SIIALUIEvveveeteeteesteesteeeteeetesseesseesseesseesseasseasseassesssesseesseessasssasssesssesseesseesseasseessesssanssenseesseensenssesssesseesses 102
934 ISSUCT .. uttttetteutentet et st et es e ea et et e s bt eh e ebees e e st et et e eb e eb e eb e ea e es s et ea b e s bt eh e eb e eh e es b et et e eb e ekt e bt eh e es e et e b e nhe bt bt enteneeneen 102
9.3.5 VALIAILY ©oeeveiieitiete ettt ettt et e st e s te e bt e bt esbeesseese e s e esbeesbeesbeessesseesseenseenbeesbeesseeseenseenbaenbeenaennnennes 103
9.3.6 0 o] 11 USSR PR P 103
9.3.7 SUDJECTPUDIICKEYINTO ...ttt ettt ettt et eee s see 104
9.3.8 issuerUniquelD and subjectUniquelD..........ccoociiiuiiiiiiiiieeee et 104
9.3.9 3313113 1011 1SR 105
9.3.9.1 SUbJECt KeY TACNEITIET. .. .eotieiiieiieeeieee ettt ettt ettt et st e st e sneesaeeseeeeeeneeens 105
9.39.2 AUthOrity Key IAENtITIETeiieiiiieiieieie ettt ettt et e et e e s e s enneen 105
9.393 K@Y USAZE ettt ettt et s bt e et sa e et e e st e e bt e sab et ebeesbeeeaeeeane 105
9394 BaSIC COMSLIAINES ...ttt sttt ettt ettt ettt ettt ettt b e bttt este st e e s bt ek e sbeeseest et e besbeebeebeeneeneenean 105
9.3.9.5 SCrambIEr CAPADIIITIEScvieviieiieiieeiiertieste et et se ettt e teebeesaeeteesteeseesbeesseessesssesssesseesseesseenseessenns 106
9.3.9.6 CIPIUS IOttt b et h st e et et sb e bt bt e st en s et e besbeebeeneeneeneens 106
9.3.9.7 CICAM Brand 1dNTHIEToeuiiuieuieiieieiesteet ettt eb et et b e b eneeneens 106
9.3.10 SIGNATUTCAIZOTIEIIM L...viiiiiiiiiii ettt ettt te e bt e b e e b e eseeesbeesaesbeesbaessaessesssessnesens 107
9.3.11 SIGNATUTEVAIUEC ..ottt ettt et e et eesbeesbe e b e sseesse e beesbeesseesseessanseenseessaensenssessnessnessns 107
9.4 Certificate VerTfICAtIONoiuieiiieiieie ettt ettt et et ettt et e e et e et e e bt enteenseensesmeesmeesneenseanseeneeans 107
94.1 Verification of the brand Certificateoooiiriiiiiiiiee e e 107
94.2 Verification of the deviCe CEItifICAtEc.uiiiiiieiieie ettt eee 107
943 Verification of the service operator Certificateooouiriirierieiiee e 108
10 HOSt SETVICE SHUNMINEooviiiiiiiitieieieetee sttt ettt ettt et bt e e bt sat et sbe et e sbesaeentens 108
10.1 CI Plus Protected Service Signallilgccoeierieiiieiiiiieiie ittt ettt teebee b esessaesseesaeesseesseesseensenns 108
10.1.1 CI ProteCtion DIESCIIPLOTviivviiiieieiertiesiieteeteetteettesteeteesseessesssesssesseesseesseesseassessseessesseeseesseesesssesssessnesses 109
10.1.1.1 CI ProteCtion DESCTIPLOTcccuveeiiieiieeieieeiteestteesie ettt estteesteeessaeesteeessaeesseessseensaeenssesssessssesnsseenssesnsees 109
10.1.1.2 Private Data SPeCifier DESCIIPLOT ...ccuiiiiiieiieiiieeieeciteeteeeiee et e steeeteesebeeebeesnbeeaaeesntaesnseesnseesseennns 110
10.2 TTUSEEA RECEPTION ...c..eeiiiiiiiitititcsieet ettt ettt sb bbbt ettt et et bt sbeebeennennens 110
10.3 CI Plus Protection Service MOME........cuieiiriiiriieiieiieieeiesteste st et et ete et e sseessee e enteensesnsesseesneesseenseenseensenns 110
10.4 SETVICE SHUNIINEcueeitiiitiiteieeet ettt ettt ettt bt bttt et s et b e s bt ebeeat et et e saesbesbeeneennens 111
10.4.1 Service SHUNNING IN-ACTIVEcouiiuiiiiiiiiiiiieer ettt sttt ettt et 113
10.4.2 Service SHUNMING ACEIVE ..c.veuiiiiiiieiieititeterteeteet ettt sttt ettt et sttt st ebe st et e besae bbbt eseennenee 113
11 Command INEEITACEcoouiieieieiieee ettt ettt ettt e e s et et e teeseeneeeseeneennens 113
11.1 Application INfOrmMAatiON TESOUICEcccveeriieeiieitieeieeeteeeieeeteeesteesbeeebeesebeeesseessbeessseessseessseessseessseesseeeseens 113
11.1.1 Application Information VEISION 3cociiiiiieiiiiiieeiie ettt eere et eesiaeesaaeesaaeetaeessreesaeesnseesnas 113
11.1.2 REQUESE CICAM RESEL.....c.ueieiiiiiieeiieeiieeite ettt eite et e e tte et eeteeeseteetae e tbeesseeessaensaeenssaensseenssesnsseenssesnsnes 113
11.1.2.1 request cicam TSt APDUcc.oiiiiiiiiiiiiiiiee ettt 113

© 2008, 2009, 2011, 2015 Cl Plus LLP

6 Cl Plus Specification v1.3.2 (2015-03)

11.1.2.2 Reset request using the TIR Dit........cccuiiiiiiiiiiiiieciie ettt et e st sbe e eaeesnaeeaneenes 114
11.1.3 Data rate on the PCIMCIA DUS.ccuiiiiiiiiieiet ettt ettt b et s 114
11.1.3.1 data rate N0 APDU ..ottt ettt sttt 114
11.2 Host Language and COUNIY TESOUICTEceerrierieerieeierrestestesseesseesseasseessessaessaessesssesssesssesssesssesseesseessesssenns 114
11.2.1 Host Language and Country reSource APDUSc.cocuirierienieiiieie ettt ses 115
11.2.1.1 Host country enq APDUcoouiiiiii ettt ettt ettt e saaeeaees 115
11.2.1.2 HOSt COUNLTY APDU ..ot ettt et ettt ettt e abe ettt e s abe e baeesaneeaees 115
11.2.1.3 Host_language enq APDUccooiiiiiiiiiiieeieiieeee ettt ettt e ssa e teessesssesssessaessaesseenseensenns 115
11.2.14 Host _1anguage APDUc.oooiiiieiieit ettt sttt et et e ssaessaesseeseensesssesssesssesseesseenseensenns 116
11.3 Content CONLIOL TESOUICTEeetietieiieiie ettt te ittt ettt et e st e bt e bt e bt et e eaeeebeeebe e bt enbeemeeemeesaeesaeesaeenseeneeeneeans 116
11.3.1 Content Control 1eS0UICE APDUScoouiiiiiiiiiee ettt s 116
11.3.1.1 CC_OPEN_TEQ APDU ..ottt ettt et ettt et et e 117
11.3.1.2 CC_OPeN_CINE APDU ...ttt ettt b et ettt et st b e nae et e ene 117
11.3.1.3 CC_data T€GQ APDU ...ttt ettt b ettt ettt st shee et e e et ene 118
11.3.14 CC_data O APDU ..ottt ettt ettt ettt st sbee et et e eae 118
11.3.1.5 CC_SYNC T€Q APDU .ottt ettt ettt et ettt et e e bt e abe e bt e sabeeaeas 119
11.3.1.6 CC_SYNC CNT APDU ..ottt ettt sttt ettt e s saeesae st e et e ensaenseensesssessaesseenseensenns 119
11.3.1.7 CC_SAC _data T€Q APDUoiiiiiiiiee ettt ettt b e s e et e s raesaaesaeeseenne e 120
11.3.1.8 cC_SaC_data CNFAPDUc.ooiiiieiiet ettt ettt et e e e esbessbessaesaeesaeenseensenns 121
11.3.1.9 €C_SAC_SYNC_T€Q APDUoiiiiiiiii et ettt et e ae et ettt e ettt esabeeaes 121
11.3.1.10 CC_SAC _SYNC CNT APDUiiiiiiiiiiieit ettt ettt te e e esbesstessaesaaesseenseensenns 122
11.3.2 Content Control Resource PIN APDUScooiiiiiiiiiieeeeee ettt 122
11.3.2.1 cC_PIN capabilities APDUS.......coouiiiiiiieietietee ettt ettt ettt ettt e s aeeseeeneeeneeens 122
11.3.2.2 CC_PIN _CIMA APDU ..ottt ettt e st e st e b et e besseeseeseeneeseseesesseeneeneensensans 123
11.3.2.3 oo o DA (<) 0 A 0N D L USSP 124
11.3.2.4 CC_PIN _€VENt APDU ..ottt ettt ettt et sbt et e bt e saeeeaees 125
11.3.2.5 CC_PIN playback APDUccccocieriieiieiieieeieeteeeete ettt e e eaeesbessaessaessa e beessaessesssesssessnesssenseensenns 125
11.3.2.6 CC_PIN MMI _1€Q APDUL ... ittt ettt ettt et ettt et ettt et e et et e et e e abeennneennseeneas 126
11.33 Content Control PIOtOCOISeiuiiuiiiiieieteest ettt ettt st eb e esteeens 126
11.3.3.1 Host Capability EVAIUAtION.cccoviriiiiieiicieeieseeie ettt ettt e ste e beesbeessessaessaessaesseenseensenns 126
11.3.3.2 AULNEIITICALION ...ttt et b bt bt es et e e bt b e sbeebt e st et e e st ebe e bt ebeeneeneen 126
11.33.3 Authentication Key VETTfICAtIONccuvervieciirieiiesieesiieit ettt ere e seeesseesseesseessesssesseessaensees 127
11334 CC KEY CALCUIALION ...ttt ettt e se ettt et e e s e st e bt e teenseensesneesseesneenseenneans 127
11.33.5 SAC KEY CAICULATION ..ottt ettt et e st et et et e entessaesneesneesseenneenseenneens 128
11.3.3.6 URI transmission and acknowled@ementccooiieiiiiiiiinienieeeeee e 128
11.3.3.7 URI VErsion NEZOTATIONeeueireieiietieieeteeieeetesteesttete e e eaeesteessee st enseenaeeneesseesseenseenseeneeensesseenseensens 129
11.34 Content License EXCRANGEooiiiiiiiiii ettt ettt et ees 129
11.34.1 CICAM to Host License Exchange Protocol..........ccceeiiiiiiiiiieiiee e 129
11.3.4.2 Playback License EXChange ProtOCOL........c.cccuiiiiiiiiiieiiieiieieeeesiteie ettt esaesna e s 130
11.34.3 License Check EXChange ProtoCO]ccuiiiieiiiiiieiiiiiicie ettt saeesaeesseenne e 131
11344 ReCOTd Start PTOtOCO]couiiiiiiiiiiiiii ittt st s eae e 132
11.3.4.5 Change Operating Mode ProtOCOLcccviiieriieiiieieeie ettt ettt e ste e teebeesbesesesraesaaesseesseensenns 133
11.3.4.6 RECOTA StOP PIOtOCOL......uiiiiiiiiiiiiiiieit ettt sttt et eaa e et e s be e beesbeesbesssessaesseesseenseensenns 133
11.3.5 SRM file transmission and acknowledZementcecuieiiriirierieiee et 134
11.4 SPecific APPLICATION SUPPOIT.....cvieeieiieeiieitieite et ettt et e et et et et e tesateseeesse e seenseeneeeneeeneeseenseenseenseeneesneesns 134
11.4.1 APPLCAION LIfE-CYCLE ...ttt sttt ettt e et eene et e b e e e enaeeneeens 135
11.4.2 DAt TIANSTET.....c.eeeieeie ettt ettt ettt et et e st e ss e e sae e st e st et e e st e ese et e enteenteenaeeneeens 135
12 CI Plus Application Level MIMI..........coociiiiiiiiiieiieiieeieeie ettt sttt e s sae e snseenneenseennees 136
12.1 N TeTe) o T ST URRUPRUPRRRUPRROt 136
12.2 APPLCAION MMI PrOfIlE ...coeviiiiiiiiieciie ettt ettt et e et e st eesaaeeenbeeenseesnbaesnsaesnseeenseens 137
12.2.1 APPIICAION DOMAIN ..c..tiiiiiieiii ettt ettt e et e et estteetae e tbeestaeessseesseesssaesseessseensseenssesnsns 137
12.2.2 SEE OF CLASSESveenteeniieite ettt ettt ettt et ettt e h e b e b et e st eebesbee s bt e s bt e bt emateateebeeebeenbeenbeenbean 137
12.2.3 St OF FRATUIES ...ttt ettt sttt e et et e e e st e s st et e en s e en s e ensesesesseesseeseenseenseenseeneeseanseensenn 138
12.2.3.1 CI PIus ENgine Profilecoeouiiiiiiiiiiieniineicnee ettt sttt 138
12.23.2 NOE TEQUITEA FEALUIES ...ttt ettt sttt et be st sbe bt enee 138
12233 SHIEAIM ODJECLS ...ttt ettt ettt ettt ettt b et eb et et e bbbt bt eet et et e be st e e b sbeeaeeaeennenee 138
12234 RTGIaphics / SUDLILIESc..ocueriiriiiiiiieiieieereeeriee ettt ettt ettt st eneen 139
1224 GEtENGINESUPPOTL ...c..eoviitititiiteeteetee ettt sttt et ettt a e bbbt et et et e st e besaeebeeaeenaensens 139
12.3 Content Data ENCOMINGccviiiiiiiiieiiieie ettt ete et ettt e et e estteeteeeseaeestaesseessseasseensseenseesnsseensnennes 139
12.3.1 CONLENE TADLEeeitieiieiiee ettt b et et eb e e bt et e bt et eateeetesaaesaeenae 139

© 2008, 2009, 2011, 2015 Cl Plus LLP

7 Cl Plus Specification v1.3.2 (2015-03)

12.3.2 Stream "MEMOTY" TOTMALS.....ccciiiiiieiiieite ettt eee et e e rreeteeeteeebeeesabeeteeeseeesseeeseesnsseenssesnsseensnennes 139
12.3.3 L OIS gl 1 010 USSRt 139
1234 ENZINE EVENLS ..ottt ettt et ettt s h e s bt ettt e a e e bt e e bt et e et e enbeenaeseeenae 140
12.3.5 Protocol Mapping and External CONNECHIONc.eccuirierierieiieieeiesieseesieesie e eeeeeeesseesseenseeseessesenenes 140
12.3.6 RESIACTIE PLOGIAIMNScvviiiiiieiieiieiieie ettt ettt e e et e e sbessaesaeesseenseenseesseesseessesaenseensesnsesnnenees 140
12.3.6.1 ReQUEStMPEGIDIECOUETecuieiieiieit ettt sttt et e ssaessaessa e seenseensesssesssessaesseenseensenns 141
12.4 Engine Graphics MOGELc.oeiiiiiiiiiiiieiieieie ettt sttt ettt et e et e s taessa e te e s e esseessessnesseesseenseansennsenns 141
12.4.1 LineArt and Dynamic LINCATTcoecvieieiieiierieeie ettt et e et st saesseeaeenseesaeesaesseeseenseessesnsessnenens 141
12.4.2 PING BIEIMAPS ...eevieiiieiieeieeiieeit ettt et steste st e steebeestessaeessesseesseenseessesssessaesseanseenseessesssensaenseensenssesssesssenses 141
12.43 IMPEG SHLLS ..ttt ettt e ettt et et et e s et et e eseeaeem e e s e beeseeteeaeeseenee s e beeaeeteeneeneennenean 142
12.44 L OIS gl 1 010 USSRt 142
12.4.5 High definition graphics MOdel.coouiiiiiiiiiii e e 142
12.4.5.1 DISCOVETY ettt ettt et ettt ettt s b et e bt et e e ae e sa e e eh e e b e et e e m b e eeeeeseesbee bt enbeemteeneeeaeenseenbeenbean 142
12.5 EN@INE TOXI. ottt ettt ettt ettt e st e a e e sa e e e bt e bt e bt eaeeeaeeeb e et e em bt en b e enteeaeesheesaeeenee bt enteeneeene 142
12.5.1 DoWnloadable FONLS.........ooiiiiiieieeieee ettt sttt ettt et b e bbb et e 142
12.5.1.1 OPENTYPE FOMNLS ettt ettt et ettt et e ettt e bt e et e e abe e bteesabeebneesaneennees 142
12.5.1.2 PIESEIIEALION ...ttt ettt st b e bt bt ea e et e e st b s bt bt e st et et e st e b bt ebe et enten 143
12.5.1.3 DEfENSIVE RESPONSE.icuiiiiiiieieiiieiieit et et et et et ete et e steesaeesseebeessesssesseesseesseessesssesssesssesseesseenseensenns 143
12.6 CI APPLCAtION Life CYCIE ..ovviiiiiiiiiiiieiietieeteeie ettt st et te e et e e e e staessa e seesseessesssesssesssesseenseensenssenns 143
12.6.1 APPHCAION LIfe CYCLE .. ueiiiiiiiiiiieiieiecie ettt ettt e steesae e beesseesseesseesaessaesaenseessessnenens 143
12.6.1.1 Launching and Terminating the CI Plus AppliCationc.ccceevvieviiriiinienienienieeie e sae e ennees 144
12.6.2 Interaction with DVB Common Interface Module...........cooiiiieiiiiiiieieeeeee e 144
12.6.2.1 MHEG Broadcast PrOfileooooiiiiieiiiiiee ettt sttt et as 144
12.6.2.2 MHP Broadcast PrOfile.........couiiiiiieieeeeee ettt an 145
12.6.2.3 File Request and ACKNOWIEAZEocoueeiiiiiiieiieeet ettt 145
12.6.2.4 o el A o) LTRSS 145
12.6.3 HOSt RESOUICE MOMEL ...ttt bbbt ettt st be st eae e eneen 145
12.6.3.1 IMEMOTY RESOUICEeouviieiiiieiiieiie ettt ettt ettt ettt e et e ettt e eaeebee e taeetbeesaeentaeessbeensseesaseensseenaseenes 145
12.6.3.2 Link Recursion BEhaviOUTcceiiiiiiiriieieeee ettt st 145
12.6.3.3 Timer Count and GIANULATILYcoovieriiecieiiesieseesieeteseesee st esaeeaessaesseesseesseeseessesssesssesseesseeseensenns 145
12.6.3.4 APPLICALION STACKINGeevvieiiiieiieiieciietieie et te st ste b et e ettestaesbe e beesseesaessaessaesseenseesseessesssenssensaensens 145
12.7 INAME IMAPPING ...vvieeveeireeiieiieeteeieeteeteettesteeteesseesseassessaesseesseesseasseasseassessesseessesssesssesssesssesseessesssesssssssesseensens 145
12.7.1 Names Within the HOSEoouiiiiiiii ettt ettt et ae e seeesseesaeeeeeneeens 145
12.7.2 NAME SPACE MAPPIINEG ...eeveiieiieieieiteeee ettt et et et e eeteeteesaee st ee st e et eaeeeneesseeaseanseenseensesneesneesseenneenseenseans 146
12.7.3 MHEG-5 ODjJeCt RETEIENCESeeiieiieiiieiiieiiieie ettt ettt sttt et e ee et e st et e beenseenaesneesns 146
12.7.4 Mapping Rules for Groupldentifier and ContentReferenceccooeeevievierienieiieeceeeeee e 146
12.7.4.1 (O T3 11 1741 USSR 146
12.7.4.2 Structure Of file TEEIENICESoouiieuiiiieiiee ettt ettt et e st e s e neeeeeeneeens 146
12.7.4.3 CACKING. ...ttt ettt et e et e e bt et e et e e b e esbeesaesseesseesseesseesseessesseesseenseessesssesssesseesseenseensenns 146
12.8 VOD EXEETISIONS ...cuveeuteeiteriteteente et et ettt ettesttesbeesbeesbe et e eatesbteebeeebe et e et e eateeabesbbesbeesbee bt enaeemteeatesbtesbeenbeenbeenbean 147
12.8.1 RESIACTIE PIOGIAIMNSvviiviiiviieiieiieieeie ettt ettt e et e et e e vt ebe e e esbeessesssessaesseesseesseesseesseassessaenseessenssessnesses 147
12.8.1.1 TSt INPUL IMASKc.viiiiiiiciiecie ettt ettt st e te e b e e b e esseeseesseesseesbaesseessesssesseeseenseensanns 147
12.8.1.2 SUPPIessS MHEG GIaphiCscccviviieriieriieiieieiieiteseesteesteeseesseessesseesseesseessesssesssesssesssesseesseessesssenns 147
12.9 MHEG-5 Authoring Rules & GUIAEIINESooiiiiiiiiieiieiieeeeeeee ettt eeas 148
13 CI Plus Man-Machine Interface RESOUICE.........cccviieeuiieiiiieiiiccieccee ettt e 149
13.1 LOW LeVEL MM ...ttt ettt s et e e et e ae e s st e se e st et e enteeneesmeesneenneenseanseenseans 149
13.2 High LeVel MIMI.... .ottt ettt ettt et ettt e st et e e st e st e st e s esseeseeseeseassensansansesseeseeneensensansan 150
13.3 MMI RESOUICES ASSOCIATION....u.eeutieutieiieeiteitiertte ettt et sttt e st et et ea e eateseeesbeesbeesaee bt embeentesateebeenbeenbeenseas 150
13.4 (O (07N 1Y [111 B OO OO OO PSURRPRURUSTRI 150
14 Other CI EXIENSIONS.eetiitieieitietieiesiteieste et tete et eitete e st ete et ese e teeseenseeseestanseeseeneesseensessesseansesseeneasens 151
14.1 Low Speed Communication Resource VErsion 3ccccceviriririninieienienieninienieeieeieeeete st eseennenens 151
14.1.1 comms_CMA MOQIFICALION ...oviiiriiriiiiiiieieer ettt ettt et se et naen 151
14.1.2 commS_TEPLY MOITICATION ...cuviiiiiiiiiieiieiee ettt een 152
14.1.3 CICAM FIOW CONLIOL ...ttt ettt e e st e st e te e st e s e eneeeseesseenseenseenseensesnsesnnenns 152
14.1.4 HOSE FIOW CONEIOL.......eiiiiieieeiieiieie ettt ettt et ettt e s st e seenseenseeneeesee st eenseensesnsesnnenns 155
14.1.5 Requirement fOr BUFTETScciviiiiiiiiiiiii ettt st 156
14.1.6 Disconnection BERavVIOUTcc.oiiiiiiiiiiiie ettt 156
14.1.7 DAt TTANSTRT ...ttt ettt et ettt b e bt bt e e e nae 156
14.2 Low Speed Communication TP EXIENSIONeeeuiiiiiieriiieiieeiieesie et este et eiteeieeeaeesieeeaeestaeeseesnseeenseeenes 157

© 2008, 2009, 2011, 2015 Cl Plus LLP

14.2.1
14.2.1.1
14.2.1.2
14.2.1.3
142.14
14.2.2
14.3
14.3.1
14.3.2
1433
14.3.3.1
143.3.2
14.3.4
14.3.4.1
14.3.4.2
14343
14.3.4.4
14.3.4.5
14.3.4.6
14.3.5
14.3.5.1
14.3.5.2
14.3.5.3
143.5.4
14.3.5.5
14.4
14.4.1
14.4.2
14.4.3
14.44
14.5
14.5.1
14.5.2
14.5.3
14.6
14.6.1
14.6.2
14.6.2.1
14.6.2.2
14.6.2.3
14.6.2.4
14.6.3
14.6.4
14.6.5
14.6.6
14.7
14.7.1
14.7.2
14.7.3
14.7.4
14.7.4.1
14.7.4.2
14.7.4.3
14.7.4.4
14.7.5
14.7.5.1
14.7.5.2
14.7.5.3
14.7.5.4
14.7.5.5

8 Cl Plus Specification v1.3.2 (2015-03)

Comms Cmd MOdIfICAtIONc.eiitieiiiiieie ettt ettt et et nae 158
Comms Cmd TP d@SCIIPLOTe.eieiieii ettt ettt ettt et et sbeesbeeseeeneeeneeens 159
Comms Cmd HOStNAME deSCIIPLOTuiiuiiitietieiieieeiie ettt ettt et e bt ettt st saeesaeeee e ens 159
Maximum Number of Concurrent CONNECLIONScouereririeririeieieienentenie ettt eseenees 160
Set Params DENAVIOULccuiiciiiiiriieiieieeie ettt ettt et e st et e seesbeessesssesssesssesseenseenseensenns 160

Low-Speed Communications Resource Types Modificationccccceveververieniienieeieeiesiesieeie e 161

CAM Upgrade Resource and Software DOWnloadcceiierieniieiiieiiieieeieseeeee e 161

IIEEOAUCTION ...ttt bbbt ettt b e bbbt et et et e sa e b sbe bt e eneen 161

o018 Te3 1) SRR 161

CAM UPGLAQE PIOCESS.....c.ueeiueeiieitietieit ettt ettt ettt ettt s e e b ettt et e ae e e bt e st e et e e bt enbeentesaeeseeenee 162
DLAYEA PIOCESS ...euvientieiteiie et ettt ettt ettt et eh et et et et e e et e s bt e saeesbe e bt enteeateebeenbeenbean 163
IMMEAIATE PrOCESS ... ceuveeuiieiieitie ittt sttt ettt et e a e b et et et e eebesaeesbeeneeeeeenneens 164

CAM UPELade ProtOCO]coueiiieieieieet ettt ettt e b ettt e e seee e 165
DElayed MOAE........eoiieiiee ettt ettt ettt et a e bttt et eae e b et nbean 165
IMMEAIATE TOAE ...ttt ettt et e a et e b e e bt et e eetesatesbeeneeeteeneeens 166
UPGrade INEITUPLION ...c.veeeieiiieeieeiieiieieeie et etesteste st esteeaeesaeesteesaessaenseesseensesssesssesssesssesseenseensennsenns 167
Reset IMPIEMENTALIONccviiieiiieiieie et eieeti et et e ieetestte st e sseeseesaeessessaesseesseensasssesnsesssessnesseenseensenns 168
HOSE OPETALIONeouvieiiieiiieiieeiiesiterte ettt e et e et e bt e e ebeeebessaesseesseesseessesssesssesseesseessaessesssesssesssesseenseensenns 168
UPErade CanCellatiOnc.eecuieuieriieriieieeteetesee st esteeteeaeeteesteesteesbeesseessessaessaesseenseenseessenssesssensaensens 168

CAM_UDPZIade RESOUICEccuvevieiieiieiieie et eite et estteteesseeebesssessaessaesseesseesseassessseessessseseessaensesssesssesssesses 168
CAM_Upgrade ReSOUICE APDUSc.cccuiiiieiieiieiieie ettt steessee e eseessesssessaesseesseensesnsenes 168
cam_firmware upgrade APDU ..o e 169
cam_firmware upgrade reply APDUooooiiiiiiie ettt 169
cam_firmware upgrade progress APDUc.ooiiiiiiiiieieeeee e e 170
cam_firmware upgrade complete APDU.........occiiiiiiiiiiiiie e 170

APPLication MIMI RESOUICTEeetieiieiieieeiieet ettt ettt ettt sttt e bttt et e et esaeeseeesaeesbe e bt eneeeneeeneeeseenseensenn 170

File Naming CONVENTIONccvervieriieierteitertesteeteeteetesseesseesseesesssesssesssesseesseessesssesssesssesseessesssesssesssesses 171

FILEREQUESE.vteeteeeie ettt ettt ettt et e e et eeateete et e e s saesbeesbessaesseesseenseenseessesssenseensaensanssenssessnenses 171

FIIEACKNOWICAZEveevvieeieeieeieeieee ettt ettt et e b e st e s teesaeesseesseesseessessaensaensenssesssesenenens 172

APPADOTTREGUESE. ... eeviieeiieeieeieeteeie ettt ettt e te e e e b e esbessaesseesseesseesseesseesseaseensaenseessenssessnenees 173

ApPlication MIMI RESOUITE V2cviiiieiiieieiiieiieiieesteesteeteeseeeeeesteesteessaessesssesssesssessaesseesseesseessesssesssesssesseensens 173

FIIEBREQUESE V2..c.niiiiiieiiieieeeeteettett ettt ettt et e et e e tt e b e e s beesbeesbessaessaesseenseenseesseessensaensaensaessenssessnensns 173

FIIEACKNOWIEAZE V2 ...ttt ettt et e s et et e ettt e eneeesee st ebeenseenaesneesns 174

ReqUEStTYPE DISCOVEIY V2 ...ttt ettt ettt ettt e st e s st e sae e st eneeeneeeseeeseeseeseenseeneesnnesns 176

DVB HOSt CONEIOL TESOUICE.......c..eeutieitieiieeiieeiieeiie sttt ettt et e et e st et e bt e teensesseesneesseesaeesseenseenseenseeneenseenseensenn 177

DVB HOSt CONLIOl VETSION 2eiiieiieiiieiiiesiieit ettt ettt et sseesee e et eneeeneeeneesseeseeseenseenaesnnesne 177

DVB Host Control Version 2 APDUS.........coiiiiiiieiieieeiesieee ettt sttt ettt et et eeseeneesneeses 177
tune broadcast 18 APDU ..ottt ettt ettt neenean 177
TUNE TEPLY APDU Lottt ettt et e st e st eeeabeesabeessbeesnbaeenaeesabaeenseesnsneeneenans 178
ASK TE1EASE APDUc.iiiiiiiiiieciieieee ettt ettt st te e be b e e st e e te e et e e be e b e esbeerbeereesaeenaeeseenraans 178
ask 1elease IePLY APDUccoociiiiiiiiiiieie ettt sttt ettt sttt este e be e b e esbeessessaesaaesaeenseenseans 179

PMT MANAEMENL.....cccuvieiieeiiieiiieeiteenieeeteeestte ettt esteeeteeesreesaeessseeseeessseesseesseensseessseensseesssesssseenssesnsees 179

DIESCTIPIOTS 1.vveeeitieeiieeeiie et e et te ettt ettt et e ett e e bt e et e eseteestte e sbeensteensbeensaeensseenseeensaeensaeensseensseensseesseennsesnses 179

HOSt TUNINE PIOtOCOL ...ttt ettt ettt ettt se e s et e ae e eeneeeneeesee s eeseenseenaesneesns 180

Host CONLIO] TEIEASE TEQUESES -...uveeutieiteeiieitieitierie ettt ettt et et et eee st esseeseeesteeneeeneeeseesseeseeseenseeneesneesns 182

OPEIALOT PTOTILE ... ettt ettt ettt et e st e st e et et e enteeneesseesneesseeseanseeneeans 183

53130 T4 o1 T TSP 183

OPEratiONAl OVEIVIEWeueeiieiieitiertieitt et teeete et e st e e en et eateeaeeeaeesseessee st e st eneeeneeeseeeseeaseenseenseenseeneesnnesnes 183

Host Operator Profile Handlingccceoiiriniriiinieicicceneeen ettt 185

Operator Profile RESOUICE EXChaNGEccviiviieiiiiiiiieiiierie ettt ae et eessreeaaeesaseeenes 185
INEALISALION ...ttt ettt st et e et st b e b e bt et e et sbte s bt e bee et et et eae 185
MOVING DEEWEETI PIOTIIESveieiiieiiiieeiiecieeetee ettt ettt e et e st e ebeesabeeesbeesnbaesnaeeensaeensnesnsneesnennns 187
ENtitlement CRANGEcccuviiiiieiiieiecie ettt et e sete et e e tae e teeessaeestaeesbeensseesaseesseensseennees 188
TUNING ANA SCANMINIEeeeviiiiiieiie ettt et ree e e ae e tee e tae e taeessaeentaeesseensseessseesseensseennes 190

OPErator Profile RESOUICEcccuiieiiiiiieeiie ettt e e e tae e saae et e e ssbeessaeesnsaeseas 192
Operator Profile Resource APDUS........ccociviiiriiieiiieniiene ittt sttt et enens 192
operator_status req APDU ..ot 193
operator_Status APDUcccoiiiiiiiii ettt e 193
operator Nit 1€G APDU.....cc.iiiiiiiiiiii ettt sttt ettt st 196
0perator NIt APDU . ..ottt sttt et sttt en 197

© 2008, 2009, 2011, 2015 Cl Plus LLP

9 Cl Plus Specification v1.3.2 (2015-03)

14.7.5.6 operator info 180 APDUooiiiiiii et ettt 197
14.7.5.7 0perator N0 APDU ..ottt ettt et b ettt ettt saee et et e ene 198
14.7.5.8 operator_search Start APDUc..ooiiiiiiiiieeee et sttt 201
14.7.5.9 operator_search_cancel APDU............ooiiiiiiiiieiieieeie ettt ettt saessaenseenseense e 202
14.7.5.10 operator_search_status APDUcccoooiiiiiiieeiceceee ettt be e s eeesseeseeseenne e 203
14.7.5.11 0PErator tUNE APDUiiiiiiiiiiiii ettt ettt ettt et ettt e et ettt e sabeeaees 203
14.7.5.12 operator tune Status APDUc.c.oiiiiiiiiiiece et et et 204
14.7.5.13 operator_entitlement ack APDUccoociiiiiiiiiieiieie ettt ees 206
14.7.5.14 OPErator_EXit APDUcciiiiiiieciieieet ettt sttt ettt e st et e e b e enbeenbesnaessaesseenseenneens 206
Annex A (normative): Random NUMDETr GENEIALOT...........ccccviiiruiiiiiieeiieeetie e erteeeveeesereesreeeseveeeveeesaseanns 207
A.1 Random Number Generator Definitioncceeieiiiriieiiieiieriierie ettt 207
Annex B (normative): Device ID ProtoColcvecieriiiiiiiiciieieeieeie et re s 209
Bl Device ID SPECIIICATION.ccuieuieiirtieieteeitete ettt ettt ettt et et sbe et et e st e sbeeneeeesneeneenees 209
Annex C (normative): Checksum AIZOTItRMScooiiiiiiiiii e 210
C.1 CheckSum AIZOTITRIMSocuiiuiiiieiieieit ettt ettt ettt et et e st et e ene e eesaeeneeeeas 210
Annex D (normative): SD and HD capabilitiesc.cccvervirciieciieriieniieiieseesee e esieesieesneeneereesseesseesenesenas 211
D.1 SD and HD DefiNItiOnS......cc.cevterirritiieeiteeteesiteeiie ettt ettt et e sttesateeateeateeteesbeesseesnsesaseenseenseesseenseas 211
Annex E (normative): Clarification of DVB-CI USE CaS€S.......cc.cccuiieeririrrieeiiieciiee e eereeeveeeiveeeveeeseneens 212
LS B R 1 1§ ST) o USRS 212
E.1.1 SPECTTICALION ...ttt b et a st et s bt bt e bt eaees s et et e s bt eb e e bt eaeeat et et sbeebeebeenteneens 212
E.1.2 REQUITEIMCIL. ...ttt ettt ettt ettt e a e et e et e et e eateemteemeesaeesaeesaee st enseeneeeneeeneanseenseensenn 212
S O N o\l A 34 W] 1= OSSOSO 212
E2.1 N 0 TEoA N (o7 15 o) o SRR PRRRS 212
E2.2 REQUITEIMENLtieivieiiieiiecieetece ettt ettt et e e et eesae st esaeesseesseesseasseessesssensaesseensaassesssesssesssesseenseensenssenns 212
E.3 CA _PMT Clear to Scrambled / Scrambled t0 ClEar............cccuevieriiiiiiiieieerieesee e ere e esne e 212
E.3.1 SPECITICALION ..e.tieivieeie ettt ettt et e st e st e et e e b e eeeeesbe et e e seesbeesseessasssessaesseesseesseesseessaassessaensaensanssenssesssesnns 212
E3.2 RECOMMENAALION ...ttt ettt ettt et e bt e bt et e te s e eesseeseeesaee st enseeneeeneesneenseeseensenn 213
E.4 PMT Update and New CA PMTc.ooiiiiiiiiiieiteeeeee ettt st 213
E4.1 I 0 TSToA N 17 15 o) o SRS 213
E4.2 RECOMMENAALION ...ttt ettt et e et e bt et e te s e eesaeesmeesaeeseenseeneeeneeeneeseeseensenn 213
E.5 Spontaneous MIMIccciiiiiiiiiiiieiii ettt ette et e et e e st e et eessbaesstaeensaessseeessseesnseeessaeanseeensseenns 213
E.5.1 SPECITICALION ...ttt ettt ettt te st e bt e st e e b e eeeeeas e et e e se e seesseessessaessaesaeesseesseesseessanssessaensaessaessenssesssenses 213
E.5.2 RESOIIIION ...ttt ettt b e bt ekt h e eh e st et e e sb ekt s bt eb e e bt ene e b et e ebesaeebeeneeneennens 213
E.6 Transport Stream to CICAMcooiiiiiiiiiiiiieeeet ettt ettt st 214
E.6.1 I 0 TSToA N 17 15 o) o LSRR 214
E.6.2 R0 10510 & USSP 214
| 4 03 51 (S) o) OO SO USSP 214
E.7.1 SPECITICALION ..e.vtieivieiie ettt ettt ettt e bt e st e e b e eeeeeabeete e se e beesseessessaesseesaeesseesseesseessaassessaensanssenssenssesssennns 214
E.7.2 RECOMMENAALION ...ttt ettt ettt st sbte s bt e sae et en bt eatesbeesbeenbeenbeenbeas 214
E.8 Operation on a Shared BUSccoiviiiiiiiiiiiiccieceeecte ettt ve e te e s tr e s reseveesbeesvaesenesenas 214
E.8.1 BaCKGIOUN. ...ttt ettt et ettt b e bbbt ettt na e bbbt enten 214
E.8.2 RECOMMENAALION ...ttt ettt et e e st e st et e e s seentesneesseesseesseeseenseensesneenneansaenseensenn 215
E.9 Maximum APDU SQZ€.......ccoiiiiiiiiieiteeeee ettt sttt et ettt 215
E. 10 HOSt CONLIOL TESOUITE ... eeutieeieueestieieeteeiteteeteete et et eteseeentesteesteseeseense st eneesesseensaeseeneenseeneensesneensennes 215
E 10T SPECIICALION ..ottt ettt sttt b ettt b s bt e bt be et e et e b sbeebeeaeesnenee 215
E.10.2 RECOMMENAAIONeoutiiiieiiieie ettt ettt e sete st e st eteenteeaeees e e st eenseenseenseensesseesseenseenseenseenseeneensaeseensens 215
E.TT CA-PMT REPLY.cuuiioeiieiteiteteteste sttt ettt ettt et ettt estaesatessseenseesseeseesseesssesnseanseenseenseenees 215
E.11.1 SPECTTICALION 1..teeutieeiieeite ettt ettt ettt ettt e sttt e st e e s tae e sttt e eabeesebeessseesaseeeaseesaseeanseesssaeanseesnseeanseesnsaeanseesnsseenseennse 215

© 2008, 2009, 2011, 2015 Cl Plus LLP

10 Cl Plus Specification v1.3.2 (2015-03)

E.11.2 JREIeT) 10101y 0 Le P 1 o) o WU PPN 215
E.12 CC and CP RESOUICTEccuvveeeiiiieiieeceieeee ettt e e e ettt e e e e e e e aae e e e e e e e s eaaaaaeeeeeesssssasaaeeeeesssnannnes 216
L D B o T Uo7 o o USSP 216
E.12.2 RECOMMENAATIONoouvviieiiiiieeeeie e et ea e e e e e e et e e e e et e e e eaeeeeeeaaeeeeenareeeeteeeeennneeeeenneens 216
E.13 Physical REQUITEIMENLS.ccuviiieiieiiieieeieeieesteesteetesveesteeseeteeseaessseesseesseesseesseesssesssessseessesssessssesses 216
E.13.1 D717 I8 1<) w ¢ 1ol RPN 216
E.13.2 COoMMEANG INEETTACE ...ooeiiiiiieiiiiiiee ettt e et e e e e e et e e e e e e e eeasbaaeeeeeeesesaaneeeeeessenrnnees 216
E.14 Low-Speed Communication comms reply ObJECt........ccueeiiiiiiiieniiiiiiie ettt 216
E.14.1 N 0 TSoa N (e 13 o) o SRR 216
E.14.2 RECOMMENAATION ...t e e e et e e e e ae e e e et e e e eaeeeeeeaaeeeeerareeeeaneeeannreeeeenneees 216
E.15 High-Level MMI Text ObJect COING........cccverierieeiieiieiiesiiesieseesreeseeseesseessaessnesssesssesssessseesssesses 216
S T T BN o T 1 o721 o o WO SRRSO 216
E.15.2 JREEIeT0) 1010 1=) 0 Le P 1 o) o WU ORI 217
E.16 DVB Host Control TUnNe ODJECtcccuiiuiiiieiieiieeie ettt ettt ettt et naee e 217
E 16,1 SPECITICALION 1eutiiiieiieitiectieie ettt ettt ettt et e et e st e steesaeesbeesseesseessessaesseesseessesssesssesssenseenseasseasseessasssensannsens 217
E.16.2 | ETeT0) 00V 4 =3 0T F2 15 o)+ PR 217
E.17 Conditional ACCESS SUPPOIL ..cvvereiireiiirieieeriieseesteereereeseeseesseessaesssessseeseesseesseesssssssessseesseessessssessees 217
E 17,1 SPECITICALION 1.utiiiiciieitiecteeie ettt ettt et et et e st e saeesaeeaeesseesseessesseesseesseessesssesssesssesseenseasseasseassansaensannsens 217
S 0 = (1S A AT 18130113 oL USSP 217
| B T O (@7 N\ B 2T 113131115, 1L SRS 218
E.18 Resource Version Handling...........cociiiiiiiiiiiiieeee ettt ettt et 218
L T B oot § o7 1 (o) s TP USSP 218
E.18.2 REQUITCIMCNL. ...vieuiiiiietieitieteeieeeteeeteeteestteteesteesseessesseesseesseesseasseasseassessesseesseassesssesssesssesseenseasseesseassensesnsennses 218
E.19 Open SeSSiON REQUEST........ccviiiiiiiiieiiieie et esteste et er e bt estaeseaesebessseesseeseesseesssesssessseesseessessssessss 218
L K BN o T N o724 o ' USSP 218
E.19.2 SPecCifiCation COTTECLIONeeuieiieeieetietiete et et eite st te st e et et et e et e et e et e e bt e et enteeseesseesseesaeenseeneeenseeneesneenseenneas 218
E.19.3 JREEIT0) 0100 1=) 0 La F: 1 o) o WU 219
E.20 CA PMT PrOVISION cocoieeiiieeieeeee e 219
E.20.1 BaCKZIOUNG......oiciiiiiiiieciieie ettt ettt sttt te e be et e e aseetaesseesbeesseesseesbessaesseeseenseesseesseesseesaasaensens 219
E.20.2 SPECIICALION 1..utiiviiieciieitieie ettt ettt ettt et e et e et esteeseeesaeesbeesseesseessesseesseessaesseessessaesssesseenseesseesseassenseesaensens 219
E.20.3 HoOSt RECOMMENAALION.uuviiiiiiiiiiiiiiiiiec ettt eeee e e e e e e eeeeataeeeeeeeeseataaeeeeeeseenaaneeeeeessenrnnees 219
E.21 CICAM evaluation 0f CA deSCIIPLOIS ...cvievvieriieriieereeriereeieesteeseeesereesseeseesseesseessnesssesssesssesssessssessnes 219
E.21.1 I 0 1EToA N 17 15 o) o TSRS 219
E.21.2 CICAM REQUITCIMEL.e.etetieieeieeie et eieestceete et et eeteesaesseesseessee st enseaneeeneeeseeaseanseenseensesnsesseesneenseenseenseenseans 220
E.22 CA Support session closing BERavIOUTcocueiiiiiiiiiiiiiiiteeeteeetee et 220
E.22.1 SPECIHICALION 1.uviiiiiiiiiectieie ettt ettt et et esteeseeesaeesaeesseesseessesseesseesseessaessessaesseesseenseesseesseessanseasaensens 220
E.22.2 HOSE REQUITEIMENTeeiiiiiiiieiiieeiie ettt ette ettt e tte et e et eesteeesaaesstaeessaeenseeessaeensaeenssesnsaeenssessseenssesnnes 220
E.22.3 CICAM REQUITEIMENL.cectiiiiieeiieeiieeiteeriteeteeesteeeteeetaeeteesssreenseeesaesseeesssesnseeesssesnseeesssesnsesenssesssseenssesnsees 220
E.23 Ca PME COMMEANGSocvviiiiiiiiiieiie e e ettt et e st eereeebeesbeesbeetaestaessbessseesseesseesssesssesssessseessessseessesns 220
I T BN o T Uo7 o ' USSP 220
E.23.2 CICAM REQUITEIMENL. ...c..cuiuiiieiiiititintenieeteeit ettt sttt ettt ettt sbe bt et eat et e st e b e sbeebe e bt estent et e benbesbesaeenaenne 220
E.24 Open SeSsion RESPONSEcc.eeiuiiiiiiiiiiieitetteeiteeieete ettt ettt e seaesatessseesseeteesseessaesssesnseenseenseenseessees 221
E.24.1 SPECTTICALION ..veeueie ettt ettt ettt et ettt e eet e sttt e st e e s tae e st beeesbeesabeesaseesaseeanseesnsaeasseesnsaeanseesnseeanseesnsaeanseesnseesnseennse 221
E.24.2 CICAM REQUITEIMENL. ...ccectiieitieeiieeiieeiieestteeteeesteeeteeesseeeseeesseeseeessesssseesssesnsseesssesssseesssesssseesssesnsseesssesnsees 221
E.25 Character COING.......ccvviiiieiiieiiieiiieiiieere et et esttesttesteeeveesbeesteessaesssessseesseesseessessssesssesssessseessesssessssensees 221
E.25.1 SPECIICALION ..ottt ettt st h ettt b sb e bt bt et e et e b sbe ettt esa e 221
E.252 HOSt REQUITEIMENL ...ttt ettt et ettt b e sb e e bttt et et et bt sbe st eseene 221
E.25.3 HOSt RECOMMENAALION.ciiieiiiiiiiiieeieeieee ettt e ettt e e e e e e et a et e e e eesenaaaaeeeeeesesneaaeeeeessessnsseeeeessnsnns 221
Annex F (normative) Error Code Definition and Handlingccccoeevveiieiiieniienienienie e 222
) B % &) o oY [T OO 222

© 2008, 2009, 2011, 2015 Cl Plus LLP

1 Cl Plus Specification v1.3.2 (2015-03)

Annex G (normative): PCMCIA OPtimiZAtIONSeeeeveeeiveeeiieeiieeeeieeesreeesteeesseesseeessseesssesessseesssseesseanns 225
Gl BUITET S1ZE ..ottt sttt e a et a et e bt e st et e sb e et e b enee e 225
G2 INEEITUPE MOA@ ... eiiiiieieeiie ettt ettt ettt e st e st e et e et e e teesseessaesssesssaasseesseessaesssesssesssensseessenns 225
G.3 CI Plus Compatibility IdentifiCation............ccooeeriiriiiiiiie ettt et et 226
G.3.1 CI PIUS TA@NTITICATION ...ttt ettt ettt et e ae e et e et e bt em b e emeeeseesaeesaeenbeeneeeneeeneeans 227
G.3.2 Additional CI Plus Feature Identificationc.ccoeviiiriiiiiininenienee ettt 227
G.3.2.1 Operator Profile Resource (Bit 0 — 0X00000001).......cccceruieriiriieeieiieriertierie e reseeesse e ereeseeaeseneses 228
Annex H (normative): Credential SPeCIfiCationc.cccverciirciieciieriierieree e ete et esieeseeseeeresreereesseessnesenas 229
H.1 Parameters EXchanged in APDUSccccveviiiiieiiisiisie ettt et ereereeie e taesseessaessseenseessaesseessnas 229
Annex I (normative): Use OF PKCSHLcoviiiiiiiiccee ettt ettt ettt e e b e e eaeessbeeesanaeens 230
.1 RSA Signatures under PKOSH] ..ottt s 230
Annex J (normative): Tag Length FOrmatcocooiiiiiiiii e 231
J.1 Tag Length FOIMALccooiiiiiiiieiie ettt sttt ettt ettt e st eeateebeebeebeenseesaeas 231
Annex K (normative): Electrical SpecifiCation..........ccueviiriiiiiieiiieiieiiesieee ettt 232
K1 Electrical SPeCIfiCatION......ccviiiiiieiiiiieeieeieesieesteereeveebeesbeesteeseaesebessseesseesseesseesssesssessseessesssessssessees 232
K.1.1 General INFOrMALION.oouiiiiiiee ettt ettt et e et e st e st e e et e entesntesseesneesseeseeneeeneeans 232
K.1.2 CONNECLOT LLAYOUL ..ottt ettt ettt bt ettt e bt e sttt s bt e sttt s bt e sabeeebeesabeeeneenane 232
K.1.3 CONTIGUIAION PINS ..c.etiiiiiii ettt ettt ettt et e st e e bt et e enteeneesaeesmeesneeseeneeeneeans 234
K.1.3.1 Card DEteCtioN PiNS.ouiiiiiiieiiei ettt ettt ettt et ettt e bt b et e nte e eneeens 234
K.1.3.2 Voltage Sense Ping And SOCKEt K@Yoiuiiiiiiiiiiii et 235
K.1.33 Function Of VPPT And VPP2 ..ot 235
K.1.4 POWer SUPPLY SPECITICAtIONSveeviieiiieiieiiieeieetieieete e ete st et e st eteeaeesseeaaestaessaeseesseessesssesssesssesseenseensenssenns 236
K.1.4.1 SV DC SUPPLY SPECITICALIONveeveeiieiieiieiieeieetteetteste et et e etesaeseesteesse e bt esseesseessesseenseesseenseessesssessnessns 236
K.1.4.2 Host Supply Power Up Timing DIa@ramccveviirieeieniieniieiieieneeseeseesseeseesesssesssesseesseessesssesssesnes 237
K.1.4.3 Host Supply Power Down Timing DIQGIAIMc.cecvieierieriieniieiieieseeseeseesseeseesesseesseesseesseessesssessnesees 237
K.1.5 Signal Level SPECIfICAtIONSc.eccvieiieiiiieiieiierie ettt ettt et este e b e e besaestaesteesseesseessesssesseessseseesseessesssesssenses 238
K.1.5.1 Pull Up/Pull Down And Capacitive Load REqUITEMENLScccceevuerierierienieie et 238
K.1.5.2 DC Specification For Signals With SV SUppLycccoeiiriiiieieee e 239
K.1.6 Common Interface Signal DESCIIPLION.cc.iiruieiiieiieieeie ettt ettt et ee sttt et tesee e sneesseenseaeeeneeens 239
K.1.6.1 Common Interface CPU Related Signalscoccoiiiiieiiiiiieeeeee e e 239
K.1.6.2 MPEG Transport Stream Related Signalscoooveiiiiiiriiiieieeee e e 241
K.1.6.3 MPEG Clock Timing COnSiderations.cceceerueerierieeiestieseesteeiestesseeseeesseeseeeesseesseesseeseensesnsesneesnes 242
K.1.7 TIMING SPECITICALIONSvevviieieiieii ettt ettt ettt e et eete st esteestee st e bt esseessessaessaesseesseessesssesssesssesseesseensenssenns 243
K.1.7.1 Common Interface Attribute Memory Read Diagram............ccceecvevieiieriieniieiieieeieeieenieeie e eve e 243
K.1.7.2 Common Interface Attribute Memory Write DIagrami...........ccceevverveerieriienieeriieieeieeieesreesseeseeseenesenesnns 244
K.1.7.3 Common Interface I/O Read TImiNg........c..ccueeviiiieiieiiieiieieeiesteseesee e esaeeseeseeesaesseesseesseessesssesssessnesens 245
K.1.7.4 Common Interface I/O WIIte TIMING.......c.cccuieviirierieriieiieteeieeeesee st e e eteeaeesaeesaesseesseesseessesssesssessnesens 246
K.1.7.5 Common Interface MPEG Signal TimiNg........c.cccverieriieriieiiieieiteieeseesteesteeneeseeeseesseesseesseesesssesssessnesens 247
Annex L (normative): RESOUICE SUMIMATYcccuiiiiiiriieiieeiieieeieeiteitesite et ettt ste et e st e e aesteebeeseeseennees 248
LT RESOUICE ISttt ettt ettt ettt sttt e bt e s bt s e st eateemneebeennees 248
L.2 RESOUICE SUMIMATIYutiiiiiieiiiieeiieeieeesiee ettt eeteeeteeesteeeteeessseeessseessseeassasessseessssesssseessssesssesassseensseenns 248
Annex M (normative): MHP Application Message FOrmatcooceiieieiinienieneceeeeeee e 254
M.1 Background (INfOrMAtiVE)cccceeririiiiiiiieiiesieeie ettt et e s e saeeteeteesteessaesssesnseenseenseeneennnes 254
M.1.1 Embedded CAS Environment (INfOTMAtiVe)ccveeriiiiieeiiieeiieesiieesteeeieeesteeieeeeeeeereesavesiaeeseeesneneenaneenes 254
M.1.2 CI CAS Environment (INTOTMATIVE)cccuiieiiieiiieiieeiieeiie ettt este et e eseee et e esereeteeseeeenteessaesssaeesseesnssesnsnesnns 254
M.1.3 Use of SAS for MHP Support (INfOrmative)cecuieiciieeiiiiiieeie ettt esbeesveesbeeensee s 256
M.1.4 Key Decisions (INTOTMATIVE)c.eiiiieeiieiiieeiieesiieeiee st et e st e et e st e eaeesebeeesseessbeessseessseessseesnsaesnseesnseesnseens 257
M.2 Message FOrmat (NOTIMALIVE)ccueeieriiieieieetieierieei ettt ettt ettt et e teeee et e s teeneeeeeneeeesneeneenees 257
M.2.1 SesS10N EStADIISIMENLooiiiiieiieiicie ettt sttt et et e et eeneesse e seenseenseennesnnenns 257
M.2.2 SESSION OPETALION ... vttt sttt ettt et ettt sttt eateet et et e saesbesbeebeest et et e s bt sbesbeebeeat et enbenaeebesbeeneennens 257

© 2008, 2009, 2011, 2015 Cl Plus LLP

12 Cl Plus Specification v1.3.2 (2015-03)

M.3 MESSAZE COMPOIEINLS ..e.eveieerreeerieeireeeteeesteesseeasseeesseeassseessseeassssesssesassssesssesssssessssessssssessseesssssesseenns 261
M.3.1 1Y (035 1C) O OO PUPURUSRUPORPRN 261
M.3.2 TIINIC ettt ettt ettt et s at e s bt e a et e e et e ae e bbbt et eeb e eab e sat e saeeshe e bt et e eane e 262
M.3.3 DIUTALION 1.ttt bbb bt bt e et et et b e e bt e bt eb e e st et e st e sb e e b e s bt eb e e bt ea e et e st e b e sbeebe e bt entennens 262
M.3.4 SEIINE «vevvetteteeete ettt et e et et et e et e et e esbeseeesaeesseesseesseesseess e s s enseenseenseesbeesaeeRae R e enseenseenteeRseens et aenseenseenseenseeneennes 262
M.3.5 LSTIINE. 1 tetiete ettt ettt et e et e e et e ekt et e e st e e st e e s s e esaeeseeeR e e st e st e enseans e eRt et e et e e st e enseenseenbeenneenteeseeseenseensean 263
M.3.6 LLOCAIOT ...ttt ettt et et ettt h e bttt et sab e st saeeshee bt et eane e 263
M.3.7 PN COAE .ttt ettt ettt et e bt et e et et e eh e e eheeehe e bt et e e bt enteenee bt enbeenrean 265
M.3.8 Parental Control LeVel..... ..ottt ettt st st e s ettt et eat e e bt e ebeenbeennean 265
M.3.9 PLOPEITIES ...ttt h ettt ettt et et e e b et e et e ea e e et e ee e e eh e e sheeehe e bt en bt enteenteeneeebeenbeennean 266
M4 MESSAEZE TYPES .uveeueiniieieett ettt ettt h e a e et e e e bt e bt e bt e sb e e satesateeateebe e bt e ehteeateeabeenbeenbeebeenneas 266
M.4.1 ATR Gt REQUESE MESSAZE ... eeeuvieuiieeiiieiiieeieesitte et e st e st e st e st e sebeesabeesabeesabeesabeesabeesaseesaseesabeesaseesaseesnseess 266
M.4.2 ATR Get RESPONSE MESSAZE ...cuveeeiieeiiieiiiieeieesitteeite st e st e st e st e st e sabeesebeesabeessbeesabeesabeesaseesabeesaseesnbeesnseess 266
M.4.3 Cancel REGUESE IMESSAZE .. .ecvveveeiieiieieeiieeiieeteeieeteeteestesstesseesseesseesseasseessessaessaesseessenssesnsesssesssesseesseenseesenns 267
M.4.4 CanCel RESPONSE IMESSAZEvvevverreenrieiieieeetienteeieeteeteeaessaesseesseesseenseasseessesssessaesseensesssesssesssesssesseessesssesssenns 267
M.4.5 Capabilitics REQUEST IMESSAZEcvvevieeiieiieiieiieiieteeteetestesteesteesseeseasseessessaessaesseenseessesssesssesssesseesseensennsenns 267
M.4.6 Capabilitics RESPONSE IMESSAZEeeuveeueieuiietietietiete ettt ettt e st ettt ettt e et e st ebe et e enteeneesseesmeesneenseaneeeneeans 268
M.4.7 HiStory Get REQUESE IMESSAZEeeuveeutieuiieiieeiie ittt ettt et ettt e st et et et eete e st e saeesaeesaee bt eneeeneeeneeeneeeseenseensean 268
M.4.8 History Get ReSPONSE IMESSAZEeeuvieuiieiieiiieitieitieitt ettt ettt e et et et e et enteeseesaeesaeesaee st eneeeneeeneeeneeeseenseensenn 268
M.4.9 HiStory Set REQUESt IMESSAZEveuveeiieiiieieeiieitie sttt ettt ettt e it ettt e e st esaeesaeesaeesbeenteemeeeneeeneeeseenseensenn 269
M.4.10 HiStory Set RESPONSE IMESSAZEccuveeueetieiieiieieeiieeiee st e st et et et etee st e bt e teenteeseesseeseeesseenseeneeenseeneeeseenseennens 269
M.4.11 Notification Enable/Disable REqQUESt MESSAZEccviruiiriieriiiiieieeieniiesieesieetesveseeeseeesseesseesseesseessessaesseesens 269
M.4.12 Parental Level Get REQUEST IMESSAZE........ccuvevieiieieiieiierieerteeteeteettesteesteeseessesssessaesseesseesseesseessesssesssesseenses 269
M.4.13 Parental Level Get RESPONSE MESSAZEcvvevieririieiieiiieitiesieeteeteettesteesteesseessesssesssesseesseesseessesssesssessessseenses 270
M.4.14 Parental Level Set REQUEST MESSAZEveevieiieiieieiieiieiteesie et eteeteesteesteebeessesssessaesseesseesseessesssesssesseesseensens 270
M.4.15 Parental Level Set RESPONSE IMESSAZEcvvevieririierieriieriiesieeteeteestesseesseesseessesssesssesseesseessessseessesssessessseessens 270
M.4.16 Pin Check ReQUESE MESSAZEcvieuvieiietieiieiieteeiesitesteesteeteessessaeeseesseeseeseessesssesssesseesseenseesseesseessesssensennses 270
M.4.17 Pin Check ReSPONSE IMESSAZE.......cueeruietietieiieieeiieeite ettt ettt et e st e st e e bt e teeateeeteseeesseesaeenseeneeenseeneeeneenseenneas 271
M.4.18 Pin Get REQUESE MESSAZE .. .eeuieueieuiietietietieie ettt sttt ettt et e et e et e bt et e teeseesseeseeesseesee et enseeneeeneenseennean 271
M.4.19 Pin Get ReSPONSE IMESSAZEeoueieuiirtietietieteeteeiieetee st e et et e et et e st e et e e bt e et enteeseesseesseesseeseenteenseeneeeseanseennenn 271
M.4.20 Pin Set REQUESE IMESSAZEeeuveeuiieuiietietietieie et ette st st ettt et e et et e st e et eteemteestesseeseeesaeeseenteenseeneeeneenseennenn 272
M.4.21 Pin Set RESPONSE MESSAZEeeeieuiieuietietieteeteeitesitesteeste ettt et e et essee st e teenteeneesneesseesseeseenseenseenseeseesseennens 272
M.4.22 Private Data ReqUESt MESSAZE......cueeuietieiietieieeiieeiie ettt ettt et e et e st et e et e e eseeseeesseesseenseenseenseeneeeseenseennenn 272
M.4.23 Private Data RESPONSE MESSAZEcccuveeiiiiiieeiieeiieeiteerte ettt eriteetteeseaeeteeessaeentaeesaaeenseeesseenssesssseensseesssesnsees 272
M.4.24 Product Get REQUESt IMESSAZEecviiuierrieitieiieteeteiteseeesteesteeseesteeseesseeseesseessesssesssesseesseesseesseesseessesssesseesses 273
M.4.25 Product Get RESPONSE MESSAZEccuvertierrieiiereereiteitesteesteeseeseestesseesseeseessesssesssesssesseesseesseesseessessssssesssens 273
M.4.26 Product Info Get REQUESE IMIESSAZE......ccuverrieiiereeiieiieiieeiteerteeteeteestesteesseeseessesssesssesseesseesseessessseassesseesseessens 273
M.4.27 Product Info Get RESPONSE MESSALEeecvrevirrieiieiieiiiesiierieeteeteeseesteesseeseessesssesseesssesseesseessesssesssesssesseessens 274
M.4.28 Purchase Cancel REQUEST MESSAZEcccuvieuieeiieiiieeiieeiie ettt erite ettt esiaeeteeestaeesteeeseaeesaeeeseesaeenssesnsseensseenses 274
M.4.29 Purchase Cancel ReSPONSE MESSAZE.cecueeuieieeiieiiieiiiesieerie et et ette st et et eteeeeeseeesseesseeeeenteeneeeneeeseenseennens 274
M.4.30 Purchase Set ReqUESt IMIESSAZEcuuerueertietieiieieeieeieestte st et ettt e et e et e bt e et enteestesseesseesseenseenseenseeneesneesseennenn 275
M.4.31 Purchase Set ReSPONSE IMESSAZE.ccuueruieriieiieieeiiesiiesieesteerte et et ettestee bt eteenteeneesseesseesseenseenseenseeneaeseasseenens 275
M.4.32 Recharge REQUESE MESSAZEeevieuieeiietietieie et eie sttt ettt ettt e et e et e bt e e enteeseesseesseesseenseenseenseeneeeneenseennenn 275
M.4.33 Recharge ReSPONSE IMESSAZEoouvieuieiietieiieteeiie st et ettt ettt et e st et e et eateestesseesseesseenseenseenseeneeeseenseennenn 275
M.4.34 S10t GEt REQUESE IMIESSAZE ...eevvievvieviiieieriieteeteeteereseesteesteeteesseesseessesseesseesseessasssesssesssesseesseesseesseessesseessennses 276
M.4.35 S1ot GEt RESPONSE MESSAZEecuvieeviieietieiietieeteetestesteesteeteesseesseeseasseeseesseessesssesseesssesseesseesseesseessesssessensses 276
M.4.36 SmartCard Get REQUESt MESSAZEeevviiiiiieeiieeiieeiieerite ettt eiteetteestaeeteeeseaeesteeessaeessaeesseeseeensseensseesssesnses 276
M.4.37 SmartCard Get RESPONSE MESSAZEccvvieruieeiieiiiieeitieeiieesireertte ettt eseaeesteeessreesseeessseesseessseensseesssesssseesssesnsees 277
M.4.38 SmartCard Set REQUESE IMESSAZEcvveerrieiieeiieeiieeeiteerteesireestreeteeeseaeeteeestaeessaeessseensaeessseensseenssesssseesssesnsees 277
M.4.39 SmartCard Set RESPONSE MESSAZEccurieriieeiieerieeeitieerte ettt estreestreestaestreessreesseeessseesseessseessseesssesssseesssesnsees 277
M.4.40 Wallet Get REQUESE IMESSAZEceveuirieriiriieiieitetenieete sttt ettt et sttt ettt be bt ettt et et st besbe bt st esnenee 278
M.4.41 Wallet Get RESPONSE MESSAZE......c..ervirririiriiriiiiieiertintesie ettt ettt sttt ettt et be bbbttt st e besae bt et esn e 278
IMLLS EVEIIE TYPES ettt ettt ettt ettt ettt st e ettt e et e e bt e e s ate e s bt e e eabeesabeeesteesnbeeeenbeesabeesnseeeeabeeennseens 278
M.5.1 ACCESS EVENE IMESSAZE...c.uveeiuiieeiieiiieetiesteeeteesteeeteesbeessbeesteeenseessseeasseessseeassaesssaeasseesnseeanseesnseesnseesnseennseens 278
M.5.2 CTEdit EVENT IMESSAZE ...e.vveeuvieiiiieiiieeiieeiieeeiteestteestteetteeateeteeessseeseeensseensseassesnseeanssessseanssesnssesnseesnsseenseennes 279
M.5.3 MESSAZE EVENE IMESSAZEeeovvieeiieiiiieeiieeiieeieesteeeteesbeesateeseteessseessseeasseessseeasseesssaeassessnsaeanseesnseessseesnseennseens 279
M.5.4 Pin ReqUESt EVENE IMESSAZEeeevieiiiieeiieiiieeieectieeteesteeeteesteesteesebeessseessbeeesseessseessseesssaeanseesnseesnseesnseennseens 279
M.5.5 Pin RequUest RESPONSE IMESSAZEvvierieiiiieeiieiiieeieesieeeteesteeeteeseteeeaeessbeeesseessbeessseessseessseesnseesnseesnseesnseens 280
M.5.6 Private Data EVENt IMESSAZEcccueeiiieeiieiiieeiteestie et e steesteesteesteesebeeesseessseessseessseeasseessseesnseesnseesnseesnseesnseens 280

© 2008, 2009, 2011, 2015 Cl Plus LLP

13 Cl Plus Specification v1.3.2 (2015-03)

M.5.7 Product EVENt IMESSAZE.eeeueiiietietieieeite ettt ettt ettt ettt et et et e st e s et e sbeesbeesaeenbe et e emteeseeebeenbeenbeenrean 280
M.5.8 Purchase HiStory EVENt IMESSAZEc..eeuiiiiiiieiiieitiete ettt ettt sttt be et et eat e eneesbeenbeeneean 281
M.5.9 Recharge EVENt IMESSAZEcueeeuietieiieieeiie ettt ettt ettt ettt e st e bt e e e e e s et e satesaeesae e bt et e emteeneeeneenbeenseensean 281
M.5.10 SOt EVENE IMESSAZEC....uveeveevieiieiieieetientteteesteetesetestaesseesseesseasseasseassesseenseenseansesssesssesssesseesessseessenssessesnsennsens 281
M.5.11 Smart Card EVENt MESSAZE........cveevirriertieiieiieieetestesttesteesteeseestesseesseeseesseassesssesssesssesseesseesseasseessesseensennsens 282
M.6 Data Type Id COMPONEILSccueeievrriieiieiieiienieesteetesteeseesseesseesseessseasseesseesseessaesseesssessseesseessessssessees 282
M.6.1 ACCESS EVEIIE....couiiiiiiiiiiiiiiet ettt ettt ettt sttt et ettt sae et en 282
M.6.2 BYEE DIAta ...ttt h e bttt b ettt e e et eh e e heenhe e bttt enteenteeneeebeenbeenrean 283
M.6.3 CAS INTOIMALION ..ttt ettt b e s bt et e bt e et e ae e et e e bt e bt enbeemteeseesaeesaeenbeenseeneeenteans 283
M.6.4 CICAM INFOIMAION ...ttt ettt ettt b e s bt e s bt et e et et eae e st e e be e bt enbeemeeeaeesbeesueenbeenseeneeeneens 284
M.6.5 Credit StAtUS EVEIT ..ottt ettt et st et e et e e et e e et e s bt e sbee bt ebeeneeeneeene 284
M.6.6 EITOT STATUS ..ottt ettt e s bt e e bt et e et eat e e a e e e bt et e et e em b e emeeeaeesbeesaeesneenbeeneeeneeans 285
M.6.7 o E170) 2O SRUPSRUPRRRPTE 286
M.6.8 HISEOTY EVEINL.....eiiiiiiieiieciieciteee ettt ettt et et e st esttesse e st enseasseessessaensaesseenseessesssesssesseenseenseansennsenns 289
M.6.9 HISEOTY REGQUESE ..evvieiiieiieeiieeiteeie ettt ettt ettt et e et e st e steesse e seenseasseesseesaensaesseensaessesssesssesssesseanseansennsenns 289
M.6.10 NUMETIC INACK c..eveiieniiieieet ettt ettt bbbt ebt ettt b e bbbt e st et e st e b s bt ebeeaeeseenee 290
MLO.TT ODBJECE IACIEILY ..evvevveiieiieieeie ettt ettt ettt et e st e steesteebeesseesseessesseesseesseessesssesssessaesseanseasseasseassenssesennsens 290
ML6.12 Parental LEVEL.....c.eouiiiiiiiieitieieee ettt ettt h e bbbt ettt eb et nee 291
IMLO.13 PIN COUC ..tttk e et e ekt e st et e e st ese e s e es et e eseeseeneansens e s ebeeseeseeneansensessenseeneaneeneensenes 291
M.6.14 PIN REQUESE EVENL....cooiiiiiiiiiiiiiiii ettt ettt ettt e b et e sbt e et e bt e e bt e e nbbesbeeenbneenees 291
M.6.15 PIN INTOIMALION....c..tiiiiiiitieeitieecteeete et et e et e et e et e e teeetee e taeesteeessaeassseessaeesseessseessseassseansseesseensseensseesss 292
A BT LT s (o e L o1 RS URTSSURTRPRP 293
ML6.17 PIOQUCE EVENE ...ttt ettt et e et e e te e et e e taeestaeessaeesaaeessaeessseessseensseesseesseenssaenseas 294
MLO.18 PrOAQUCE INFO ..oeieiieiie ettt et e et e e ta e et e e taeesbeeessaeestaeesaeessseensseensseesseesseesssaenseas 295
M.O. 19 ProdUC REGUESTc.eeitiiitieiieie ettt ettt et e st et e bt esae e b e e st e etsessaesseesseesseessesssesseesseenseasseasseassesseesaensens 296
IMLO.200 PUICRASE ...ttt ettt h e bbbt e a ettt b e bt e bt ea b ea e nb e b s bt eb e e bt en b et e st e b ebeebeene e st enee 297
IMLO.21 RECHATEE ...ocuvieiiieiiieiiecitecte ettt ettt ettt et et e st esae e beesbeasseeseeeseeseesseesseessesssesssesseesseenseenseesseasseaseansannsens 297
M.0.22 RECNATZE EVENL.....iiiiiiiiiiiiiicii ettt ettt e te sttt e s bt ete e s e esbeessessaesbeesseesseessessaesseeseenseasseesseassenssesaensens 299
IMLO.23 SEIVICE Ll .ttt ettt b e bt bt a et e e bbbt bt bt e a et e st bbbt et ne e 299
IMLO.24 STOT. ittt ettt h bt etttk h e e bt h e a et h bbbt e heea e n b et b e bt bt e st n et et bbbt ene st enee 299
IMLO.25 SIOEEVENL .eeeiiiiiiieeiie ettt ettt et e et e bt e e bt e e taeesbaeessaeesseeessaeassseessaeensseessaeensseensseensseensseesseensseenseas 300
MLO.26 SINATTCATAeiiiieeiieeieeetieeiee et e et e et e e tee e bt e eteeesteeeeaeestaeessseesseeassseassseessaeensseessseensseensseensseensseensseesssaeses 300
M.6.27 SMArtCard EVENL........cociiiiiiiiieciie ettt ettt et e et e bt e ete e e taeestbeesaeestae e sbeestseesaeesaeensaeesbeensraeses 302
M.6.28 SMArtCard REQUESEccuieiieieieii ettt ettt ettt ettt ettt e et e st e bt e bt e teeneesseesseesaeenseeneeeneeeneeeseeseennean 303
Y O B U 1< ol B T 1 USRS 303
IMLO.300 WILEE ...tttk b e bt b e st e et et e bt bt e bt e a e en b et e bt e bt eb e e bt en b et et e b bt ebeeneeneenee 303
MLO.31 WALLEt IACIEILY ..e.vvevveiietieie ettt ettt ettt e st e st e sbeebeesbeesseesaesseesseesseesbeessessaesseesseenseesseesseessassaensaensens 304
M.7 MHP APLIMaAPPING......oiiiiiiiiriieiieiie et ete et esttestresreebeesseesstessaesssessseasseasseessessssessseassessseesseessessssessses 304
Annex N (normative): CICAM Broadcast Profileccccceveviiiiiviienieiiicieceee e 307
N.1 Service Information (INOTIMALIVE)c.eerieriirieiieeiterie et eteeteete et et et e steesaeeseeesteesseesseesaeesaseenns 307
N.1.1 CI PIUS Private DESCIIPLOTScuieivietieiieieetieeteesieesteeteetestesteesseesseeseasseessesssesseesseessesssesssesssesssesseesseessessenns 307
N.1.2 CICAM NIT ettt et b et et e bt s bt ekt e bt eh e e st et en b e et e eb e s bt eb e eseeneens et e besaeebeeneenseneens 307
N.1.2.1 SYSEEM._ AEIIVETY AESCIIPLOT. .. eiviiitietieiieie e ettt et ettt e et e eeteeaesaeesteesbeesseesseesseessesseesseesseenseessesssessnesens 308
N.1.2.2 HINKAZE AESCIIPIOT ...eiuvieiiieiiieiieeiieittesteeste ettt etteettesteesbeesseesbeesseesaesseesseesseesseesseesseessesssenseessaenseessesssessnesens 308
N.1.2.3 CIPIUS_ SCIVICE A@SCIIPLOT .. .iivietieiieeieeiieitie st et ete et e et eeteeste e beebeesbeessesseesseesseesseessesssesssesaenseessesssessnensns 308
N.1.2.4 ciplus_content 1abel deSCTIPLOT........ccueieiiriiriiriiriireet ettt st een 309
N.1.3 ST .ttt ettt ettt et et e ettt e ke e st et b et e b e b e e te bt ekt et b e s s e s b e he ekt Rt e Rt es s e s s an b e eRe ekt eR e estensensenbeeseeseestesbensenbenbenneeseeseenbensens 310
N.1.4 BT ettt ettt ettt ettt et e st e st e b et e b e st et e es b e s b e s s en b e b e ekt e Rt estes s e s s enbe b e b e Rt et s enbensenbeebebeeneesaensensensens 311
N.1.4.1 2 I (<) DA< SRR 311
N.2 Profile BERAVIOUT.......ccciiiiieiieiiece ettt ettt sttt e e e steesntesnseenseessaesseesnnesnsennns 311
N.2.1 Logical Channel LiSt OTZaniSatiOnc.ceeueerueerveerieerieestreesreesiteessseesseeesssessseessseesssesssssesssessssessssssesseesne 311
N.2.2 Logical Channel NUMDEIING.ccccutiiiieiiiiiieeiie et eie et e eiteeeeeteeeseeeeteeeseaeetaesseessseessseensseenseesnsseensnesnes 312
N.2.3 SEIVICE TYPES weveeuriiiiieeiieeiie ettt ettt ettt e sttt e sttt e setee sttt essbeeasaeessseeasseesaseeasseesaseeasseesssaeanseesnseeanseesnseeanseesnssesnseenns 312
N.2.4 INEIWOTK UPAALES ...ttt ettt ettt et e et e et e et e e sateeataeesbeensaeessbeensseesseensseenssaensaeessesnsseensseenses 312
N.2.5 TEXE SEIIMES. e eteteeteeteet ettt ettt ettt eat ettt b e e bt s bt ebe e et et et st bt s bt eb e e bt e st et et e b e sbeebeeaeeneennens 312
| 1 10) O SRRPPRUUSUPPRRTR 313

© 2008, 2009, 2011, 2015 Cl Plus LLP

14 Cl Plus Specification v1.3.2 (2015-03)

Foreword

The DVB Common Interface specifications EN 50221 [7] and TS 101 699 [8], describe a system whereby a
removable Conditional Access Module, given the appropriate rights, unscrambles protected content and routes it
back to the Host over the same interface. The Common Interface connector is an industry standard PCMCIA
slot. This means that potentially high value content is traversing a "standard" interface without any protection.

One of the aims of this specification is to address this problem. It is intended that this specification also clarifies
some aspects of Common Interface behaviour that were undefined or ambiguous in the original specifications,
EN 50221 DVB Common Interface Specification [7] and TS 101 699 Extensions to the Common Interface
Specification [8].

The specification addresses some other requirements which have been identified by the market to make
communication and interaction between the CA system, and the user, more uniform across different Host
vendors and models.

© 2008, 2009, 2011, 2015 Cl Plus LLP

15 Cl Plus Specification v1.3.2 (2015-03)

1 Scope

This specification addresses the concerns of service providers, CA operators and content owners about content
protection after the conditional access protection has been removed. Specifically at the point where it leaves the
CA module and re-enters the Host. To remove these concerns a strong and robust Content Control system is
required to protect the content at this point.

This specification describes such a system, including all the rules for authentication, key generation and copy
control information forwarding.

The domain of this system is the Common Interface CA Module to Host connection. It is not associated with a
specific CA system and it is not intended to be extended beyond the Host. It is also not limited to any particular
type of interface, however since the current base of implementations use PCMCIA slots, problems which might
arise from the use of other interfaces have not been identified or addressed.

The mechanisms defined in this specification document are referred to as Common Interface Plus or CI Plus.
This specification is based upon, and extends, the existing CI specifications; EN 50221 DVB Common Interface
Specification [7] and TS 101 699 Extensions to the Common Interface Specification [8].

To provide optimum security in an environment containing individuals willing to spend time and effort in
breaking such systems, the specification uses a collection of established, industry accepted and validated
techniques, including device and message authentication and encryption.

Authentication between the CICAM and Host provides confirmation to the CICAM that it is operating with a
legitimate Host; similarly that the Host is operating with a legitimate CICAM.

The specification uses shared private keys which are calculated by both the CICAM and Host separately and
information passing over the interface is not sufficient for a third device to calculate this key. This process uses
established, tried and tested methods which at the time of writing have no specific weaknesses.

This specification only applies to the reception of services which are controlled by a Conditional Access system
and have been scrambled by the service provider. Services that are not controlled by a Conditional Access
system are not covered by this specification.

This specification is intended to be used in combination with the appropriate certification process, and subject to
conformance by the manufacturers to the CI Plus Robustness Rules [6] controlled by the selected Certification
Authority.

This specification also provides a list of recommendations to clarify the DVB-CI standard further.

2 References
2.1 Normative references
[1] RSA PKCS#1 v2.1: June 14, 2002. RSA Cryptography Standard, RSA security

inc.ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkes-1v2-1.pdf

[2] FIPS PUB 46-3: October 25, 1999. National Institute of Standards and Technology, Data
Encryption Standard (DES).http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[3] FIPS PUB 180-3: October 2008. Secure Hash Signature Standard, NIST.
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

[4] FIPS PUB 197: November 26, 2001. Specification for the Advanced Encryption Standard
(AES), National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[5] SCTE 41:2004. POD copy protection system. Society of Cable Telecommunications
Engineers. http://www.scte.org/documents/pdf/ANSISCTE412004.pdf

[6] CI Plus Device Interim License Agreement. http://www.ci-plus.com

© 2008, 2009, 2011, 2015 Cl Plus LLP

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.scte.org/documents/pdf/ANSISCTE412004.pdf
http://www.ci-plus.com/

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

16 Cl Plus Specification v1.3.2 (2015-03)

CENELEC EN 50221: February, 1997. Common Interface Specification for Conditional
Access and other Digital Video Broadcasting Decoder
Applications http://pda.etsi.org/pda/queryform.asp

ETSITS 101 699 V1.1.1: November, 1999. Digital Video Broadcasting (DVB);
Extensions to the Common Interface Specification http://pda.etsi.org/pda/queryform.asp

ETSITS 101 812: August 2006. Digital Video Broadcasting (DVB); Multimedia Home
Platform (MHP) Specification 1.0.3. http://pda.etsi.org/pda/queryform.asp

ETSIEN 300 468 V1.12.1 (2011-01): Digital Video Broadcasting (DVB); Specification
for Service Information (SI) in DVB systems. http://pda.etsi.org/pda/queryform.asp

SHS validation list. http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm

ANSI X 9.31: September 9, 1998. American National Standards Institute, Digital
Signatures using reversible public key cryptography for financial services industry (rDSA).

ISO/IEC 13818-1:2000(E). Information technology — Generic coding of moving pictures
and associated audio information: Systems.

ISO/IEC 13818-6:1998(E). Information technology — Generic coding of moving pictures
and associated audio information, Extensions for DSM-CC.

ISO/IEC 8859-1:1998. 8-bit single-byte coded graphic character sets, Part 1: Latin
alphabet No. 1

ISO/IEC 13522-5:1997, Information technology — Coding of multimedia and hypermedia
information — Part 5: Support for base-level interactive applications

ISO 3166-1:1997. Codes for the representation of names of countries and their
subdivisions — Part 1: Country codes

ISO 639-2:1998. Codes for the representation of names of languages — Part 2: Alpha-3
code.

RFC3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile (version 3). http://www.ietf.org/rfc/rfc3280.txt

RFC 3566, The AES-XCBC-MAC-96 Algorithm and Its Use With Ipsec, S. Frankel
(NIST) H. Herbert (Intel), September 2003

RFC4055: Additional Algorithms and Identifiers for RSA Cryptography for use in the
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. http://www.ietf.org/rfc/rfc4055.txt

ITU-T Rec X.501: Series X: Data Networks And Open System Communications,
Directory.

DTG D-Book 5.0: Digital Terrestrial Television, Requirements for Interoperability Issue
5.0. http://www.dtg.org.uk/publications/books.html

R206-001:1998. Guidelines for implementation and use of the common interface for DVB
decoder applications. http://www.cenelec.org/Cenelec/Homepage.htm

NIST Special Publication 800-38A, 2001 Edition, Computer Security Division, National
Institute of Standards and Technology. http://csrc.nist.gov/publications/nistpubs/800-
38a/sp800-38a.pdf

ATSC Doc. A/70A:2004, July 22, 2004: Advanced Television Systems Committee, ATSC
Standard: Conditional Access System for Terrestrial Broadcast, Revision A.

OC_SP_CCIF2.0-123-110512: 2011-05-11. Cable Card Interface 2.0 Specification, Cable
Television Laboratories

© 2008, 2009, 2011, 2015 Cl Plus LLP

http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.dtg.org.uk/publications/books.html
http://www.cenelec.org/Cenelec/Homepage.htm
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

17 Cl Plus Specification v1.3.2 (2015-03)

[28] PC Card Standard version 8.0 Volume 2 Electrical Specification: 2001-04.
PCMCIA/JEITA Standardisation Committee

[29] PC Card Standard version 8.0 Volume 3 Physical Specification: 2001-04. PCMCIA/JEITA
Standardisation Committee

[30] PC Card Standard version 8.0 Volume 4 Metaformat Specification: 2001-04.
PCMCIA/JEITA Standardisation Committee

[31] PKCS #3: Diffie-Hellman Key Agreement
Standard, ftp://ftp.rsasecurity.com/pub/pkcs/ascii/pkcs-3.asc

[32] ETSITS 101 162 V1.4.1 (2011-05): Digital Video Broadcasting (DVB); Allocation of
Service Information (SI) codes for DVB systems

[33] CI Plus Licensee Specification, available under licence from the CI Plus Trust Authority.

[34] High-bandwidth Digital Content Protection System, Interface Independent Adaptation,
Revision 2.0.

[35] ETSI TS 102 757; Content Purchasing API.

[36] A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-
22b.pdf

[37] Supplementary CI Plus Specification for Service / Network Operators. http://www.ci-
plus.com

[38] ETSI ES 202 184 V2.1.1. MHEG-5 Broadcast Profile

[39] ITU-T J.96:2001; Technical method for ensuring privacy in long-distance international
MPEG-2 television transmission conforming to ITU-T J.89

[40] RFC1123; Requirements for Internet Hosts -- Application and Support

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

authentication: A procedure to securely confirm that a Host or CICAM has a genuine certificate and that the
certificate has not been revoked. Also: a means to confirm securely that a message originated from a trusted
source.

Authenticated: A quality resulting from the application of an Authentication procedure; securely confirmed.

bypass mode: A Host mode of operation where the TS input to the Host Demux is taken directly from the
source (tuner) and not from the CICAM.

Carousel: Method for repeatedly delivering data in a continuous cycle. In this case, via an MPEG 2 Transport
Stream.

CA-only: The CICAM mode of CA-descrambling EMI=00 content and returning it to the Host CC-
unscrambled.

cached PIN: The PIN code that is sent in the record_start protocol.

© 2008, 2009, 2011, 2015 Cl Plus LLP

ftp://ftp.rsasecurity.com/pub/pkcs/ascii/pkcs-3.asc
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf

18 Cl Plus Specification v1.3.2 (2015-03)

controlled content: Controlled content means content that has been transmitted from the headend with (a) the
Encryption Mode Indicator ("EMI") bits set to a value other than zero, zero (0,0), (b) the EMI bits set to a value
of zero, zero (0,0), but with the RCT value set to one (1).

CICAM: Common Interface Conditional Access Module.

CICAM Certificate: The unique certificate issued to each CICAM and used for CICAM authentication.
Parameter name: CICAM_DevCert.

Data Carousel: One of the two forms of carousel defined by DSM-CC, ISO 13818-6 [14], part of the MPEG 2
Specification.

Host: Any device that includes a CI Plus compliant CAM slot.

Host Certificate: The unique certificate issued to each Host device and used for Host authentication. Parameter
name: Host DevCert.

Encrypted: Data modified to prevent unauthorized access (compare with "scrambled").
Nonce: A randomly chosen value inserted in a message or protocol to protect against replay attacks.

pass-through: A Host mode of operation where the TS input to the Host Demux has previously passed through
the CICAM from the source (tuner).

re-scramble: The CICAM mode of CA-descrambling and CC-scrambling content.

Secure Authenticated Channel: A secure communication path that exists between the Host and CICAM.
Scrambled: Content modified to prevent unauthorized access (compare with "encrypted").

trusted reception: Reception of SI data which has not been through a CICAM, i.e. bypass mode.
uncontrolled content: Uncontrolled content is content that is indicated by EMI value = 00.

viewing PIN: The PIN used to enable viewing of content in live or recording playback mode.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

E{K}(M) Encryption of message 'M' using key 'K’
D{K}(M) Decryption of message 'M' using key 'K'

P Public key

Q Private key

DQ Device private key

DP Device public key

A{K}(M) Authentication of message 'M' with key 'K'
V{K}(M) Verification of message 'M' with key 'K'
A®B Bit-wise exclusive OR of 'A' and 'B'

A|B Bit-wise OR of 'A' and 'B'

Al B Concatenation of 'A' and 'B'

0x... This prefix indicates a hexadecimal value follows.
0Ob... This prefix indicates a binary value follows.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AES Advanced Encryption Standard
APDU Application Protocol Data Unit
APS Analogue Protection System
ASN.1 Abstract Syntax Notation One
AV Audio Video

© 2008, 2009, 2011, 2015 Cl Plus LLP

BAT
bslbf
BSM
CA
CAM
CAS
CBC
cC
CCK

CI
CICAM
CICAM ID
CRL
CWL
DES
DH
DOT
DSM-CC
DTV
DVB
ECB
ECM
EIT
EMI
EMM
FQDN
FTA
HOST 1D
ICT

v

LSB
MAC
mjdutc
MMI
MPEG
NIT
PCMCIA
PIN
PMT
PPV
PSI
RCT
RFC
ROT
RSA
RSD
RSM
SAC
SAK
SDT
SEK
SHA
SIV
SOCRL
SOCWL
SOPKC
SMS
SRM
SSAC
SSU

19 Cl Plus Specification

Bouquet Association Table

bit serial leftmost bit first

Basic Service Mode

Conditional Access

Conditional Access Module

Conditional Access System

Cipher Block Chaining

Content Control

Content Control Key

Common Interface

Common Interface Conditional Access Module
CICAM's unique identification number
Certificate Revocation List

Certificate White List

Data Encryption Standard

Diffie-Hellman

Digital Only Token

Digital Storage Media — Command and Control
Digital Television

Digital Video Broadcast

Electronic Code Book

Entitlement Control Message

Event Information Table

Encryption Mode Indicator

Entitlement Management Message

Fully Qualified Domain Name

Free-To-Air

The Host device unique identification number
Image Constraint Token

Initialisation Vector

Least Significant Bit

Message Authentication Code

Modified Julian Date UTC

Man Machine Interface

Motion Pictures Experts Group

Network Information Table

PC Memory Card International Association
Personal Identification Number
Programme Map Table

Pay-Per-View

Program Specific Information
Redistribution Control Token

Request For Comment

Root Of Trust (i.e. Trust Authority)

Rivest Shamir Adleman public key cryptographic algorithm
Revocation Signalling Data

Registered Service Mode

Secure Authenticated Channel

SAC Authentication Key

Service Descriptor Table

SAC Encryption Key

Secure Hash Algorithm

SAC Initialisation Vector

Service Operator Certificate Revocation List
Service Operator Certificate White List
Service Operator Public Key Certificate
Short Message Service (mobile phone)
System Renewability Message

Single Source Authenticity Check

System Software Update

© 2008, 2009, 2011, 2015 Cl Plus LLP

v1.3.2 (2015-03)

20 Cl Plus Specification v1.3.2 (2015-03)

TLF Tag Length Format

TS Transport Stream

TSC Transport Scrambling Control

UCK URI Confirmation Key

uimsbf unsigned integer most significant bit first
URI Usage Rules Information

UTC Coordinated Universal Time

VOD Video On Demand

3.4 Use of Words

The word shall is used to indicate mandatory requirements strictly to be followed in order to conform to the
specification and from which no deviation is permitted (shall equals is required to).

The word should is used to indicate that among several possibilities one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required (should equals is recommended that).

The word may is used to indicate a course of action permissible within the limits of the specification (may
equals is permitted to).

4 System Overview (informative)

4.1 Introduction

The Content Control system (CC System) described in this specification is intended to support a secure link for
transport stream packets between one CICAM and a Host. This CC system specifies extensions to the DVB-CI
specification to add protocol messages and features on both devices in order to protect selected content from
being copied.

If the content (CA scrambled content or clear content) selected by the user does not require protection (i.e. no
copy protection information in the transport stream related to this content) then both devices shall have
behaviour fully compliant with DVB-CI EN 50221 [7] & TS 101 699 [8].

The end-to-end system overview is depicted in Figure 4.1. High value content may be protected from the head-
end to the Host by the CA system. However, once the content has been demodulated and the CA system
scrambling has been removed it is vulnerable to being copied as it travels across the Common Interface. It is the
job of the Content Control system specified in this document to protect AV content while it is transferred across
the Common Interface and passed to external AV interfaces.

© 2008, 2009, 2011, 2015 Cl Plus LLP

21 Cl Plus Specification v1.3.2 (2015-03)

Head-End DTV Receiver

CA System > Head End
ECM/EMM MUX/Modulator

f G y: i

CA System » CA System
Key Generator Encryption Cipher

Tuner CC Decryption

Demod Demux

Host
Bypass

CICAM

CICAM Pass Through

Content Provider CASystem | |
Decryption Cipher

v 4 v 4

CA System CC System
Key Calculation Crypto Tools

CC Encryption

A

v

Smart Card

Figure 4.1: System Overview

4.2 Content Control System Components

For the purposes of this specification the Content Control (CC) system as a whole comprises the following
components (see Figure 4.1):

. The DTV Receiver (Host)
. The CICAM
° The Head-end

Protection of the media before the CA system applies its scrambling is not considered in this specification.
Likewise, apart from the propagation of Usage Rules Information (URI), what happens to the media after re-
entering the Host and being decrypted is not considered in this specification.

The three aforementioned components are briefly described in the following sections:

4.21 Host

In the context of this specification the Host is a consumer electronics device that is used to receive and navigate
the broadcast digital media. This device shall include one or more Common Interface slots which accept
CICAMs.

Typically the Host device contains some form of tuner, a demodulator, a demultiplexer (Demux) and media
decoders. These are pre-requisites for the reception of digital TV. For free-to-air material this is all that is
required to receive and decode digital content, for content protected by a CA system then a CICAM is required.

DVB CICAMSs that comply with EN 50221 [7] have no Content Control system to protect the descrambled
content. Content where the CA system protection has been removed is passed to the Host unprotected. Hosts
compliant with this specification may interoperate with CICAMs to provide a secure content control system to
protect high value content which has been CA descrambled.

© 2008, 2009, 2011, 2015 Cl Plus LLP

22 Cl Plus Specification v1.3.2 (2015-03)

A Host is able to determine whether any CICAM inserted into the interface complies with only EN 50221 [7] or
whether it additionally complies with this specification. A Host shall operate with both CI Plus and EN 50221
[7] CICAMSs as outlined in Table 4.1. Free to view content shall never be impeded by CI Plus.

Table 4.1: CICAM and Host Interoperability (Informative)

Host
Cl Cl Plus
Default Cl behaviour as described by EN Host shunning may optionally protect
50221 [7]. controlled content when signalled in the

broadcast stream.

cl Default Cl behaviour as described by EN
50221 [7] if Host shunning is not activated by
the broadcaster.

Content decrypted by the CI CICAM is not re-
CICAM encrypted on the Common Interface.

Some controlled content may optionally be | Controlled content is not displayed unless the
descrambled and passed to the Host under | CICAM and Host have authenticated and the
control of the CA System. Host supports the encryption algorithm(s) as

prescribed by Cl Plus and required by the

Cl Plus | Content decrypted by the Cl Plus CICAM is | CICAM.

not re-encrypted on the Common Interface.

Controlled content decrypted by the CICAM is
re-encrypted on the Common Interface
subject to the EMI value in the URI.

The Host includes a set of cryptographic tools and features that enable it to verify that any CICAM that has been
inserted is both an authentic and trusted CICAM.

422 CICAM

The CICAM contains the consumer end of the CA system. It comprises a CA decryption cipher, optional smart
card interface and software to enable decryption keys to be calculated using data from the received stream.

For non-ClI Plus versions of the common interface the content is transferred to the Host in the clear across the CI
connection leaving the content open to be intercepted and copied. This specification ensures any content that is
signalled to be copy restricted is locally encrypted by the CICAM with a Content Control system before being
passed to the Host.

In addition to the CA delivery protection system, CICAMs contain cryptographic tools and features which
enable it to authenticate the trustworthiness of the Host it has been inserted into. If the CICAM authenticates
with the Host it descrambles a broadcast service and applies Content Control encryption to the content.

423 Head-End

The head-end is where the CA system scrambles content using the CA system cipher. The head-end also
introduces into the stream other CA specific information which enables the CICAM to descramble the content
and to manage the subscriber access and entitlements.

4.3 Implementation Outline

The CICAM CC System consists of the following three operational elements:

. Host Authentication; based on the exchange of Host and CICAM certificates. Each device verifies the
others certificate using signature verification techniques. The Host ID is checked by the CICAM (in a
Basic Service Mode) against a revocation list and appropriate revocation action against compromised
devices is taken. Optionally, further Service Operator specific checks may be undertaken in the Head-
end (Registered Service Mode).

© 2008, 2009, 2011, 2015 Cl Plus LLP

23 Cl Plus Specification v1.3.2 (2015-03)

. Content Control; Content Control scrambling by the CICAM of content that requires protected
transmission from the CICAM to the Host.

. Content Security; secure propagation of content usage rules from the CA system to the Host in order to
enable the application of appropriate restrictions to any output connections.

The CICAM first CA-descrambles the content and then re-scrambles 'high value' content using the Content
Control Key before delivery to the Host. A similar Content Control de-scrambling process occurs in the Host.

4.4 Device Authentication

The Content Control System requires authentication of the Host and CICAM prior to the CICAM descrambling
any CA-scrambled content requiring Content Control. The CICAM requests the Host's certificate and the Host
provides it. The Host requests the CICAM's certificate and the CICAM provides it.

Authentication is based on:

The CICAM being able to verify the signature of the Host device certificate containing the Host ID.
. The Host being able to verify the signature of the CICAM certificate containing the CICAM ID.

. CICAM and Host proving they each hold the private key paired with the public key embedded in the
certificate by signing a DH session key and sending it to the other device for signature verification.

. CICAM and Host proving that they can derive the authentication key.

4.5 Key Exchange and Content Encryption
The Content Control mechanism itself consists of four phases:

e Setup

e Key Derivation

e Content Encryption.

. Content encryption is subject to URI values, which are transferred securely by the Content Control
mechanism.

Version 1.3 of this specification extends the Content Control with:
. Parental control (PIN code management)
. Entitlement binding to recordings, which are transferred securely by the Content Control mechanism.
. URI version 2 extending the retention limit and includes a Digital Only Token (DOT).

The CICAM and Host both contain algorithms for Diffie-Hellman (DH) key negotiation, SHA-256 hashing,
DES and AES. The CICAM and Host also hold private keys and the corresponding public keys.

4.6 Enhanced MMI

CI Plus introduces a standardised presentation engine into the CI profile to present text and images on the Host
display without necessitating any further extensions to the Application MMI. The presentation engine enables
the CICAM to present information with the look and feel specified by the service operator rather than being
constrained to the manufacturer High Level MMI.

Version 1.3 of this standard extends the Application Profile to include support for VOD applications.

It is mandatory for a Host to support the "CI Plus browser" application MMI which is described in Chapter 12.
The existing High Level MMI resource requirements are described in Chapter 13.

© 2008, 2009, 2011, 2015 Cl Plus LLP

24 Cl Plus Specification v1.3.2 (2015-03)

4.7 Cl Plus Extensions

CI Plus introduces some refinements of the existing DVB-CI resources in addition to some new resources which
are described in Chapter 14, including:

. Provision for Low Speed communication over IP connections which may be used to support
Conditional Access functions.

. CAM Software Upgrade facilitates the software upgrade of the CICAM in cooperation with the Host,
standardising the CICAM and Host interaction. Host support of the software upgrade is mandatory.

The CI Plus security requirements and CI Plus extensions require faster transfers over the CI link which is dealt
with in Annex G. Clarifications of DVB-CI use cases are specified in Annex E.

4.7 1 Cl Plus 1.3 Extensions

CI Plus version 1.3 introduces some refinement of the existing CI Plus version 1.2 and DVB-CI resources in
addition to some new resources which are described in Chapter 14, including:

. Extensions to the Low Speed Communication resource which removes some constraints of the
previous version in order to improve throughput. The Low Speed Communication resource is
mandatory for all Hosts that support an IP connection.

. The new Operator Profile resource provides a CI Plus standardised broadcast profile and uses the
CICAM to translate any network private signalling into a uniform information structure allowing all CI
Plus Host devices to perform a full installation and a channel listing of all of the services required by
the Service Operator.

. Host control version 2 adds new commands for the CICAM to tune the Host to a service which is not
part of the Host channel line-up. The service selected is based on the physical description of the
Transport Stream that carries the service and the service identification.

3 Content Control Overview (normative)

The main aim of this specification is to protect the received content, after any CA system scrambling has been
removed, as it passes across the Common Interface to the Host. This is performed by:

. Mutual authentication of CICAM and Host.

. Verification of Host and CICAM.

. Encryption key Calculation.

. Communication using a Secure Authenticated Channel.

These procedures are described in detail in this specification.

5.1 End to End Architecture

For the purposes of this specification the complete system comprises everything from the head-end to the Host
including the CICAM. Anything upstream of the head-end is not in the scope of this specification. Any
connection between the Host and another device is not considered in this specification. This specification does
address the propagation of Usage Rules Information which the Host shall use when making media available on
any relevant external interface.

© 2008, 2009, 2011, 2015 Cl Plus LLP

25 Cl Plus Specification v1.3.2 (2015-03)

Head-End Host Oth.er
Device
Key
> Out Of Scope
CA Protected
—> CC Protected
CICAM

Figure 5.1: End-To-End Diagram Showing Scope of Protection Schemes

Figure 5.1 shows the end-to-end system and indicates the scope of the CA protection and Content Control
system which is described in this specification. This specification addresses the interface between the CICAM
and the Host which is protected by the CC system. This operates with the assistance of the CA system and a set
of cryptographic tools to provide protection for the media passing to the Host. The Host, using a similar set of
cryptographic tools, removes the protection and makes the content available to the Host decoder(s).

52 General Interface Behaviour

The start-up behaviour on power up is described in the document EN 50221 [7].

The CC resource, defined in this specification, is used to protect the content a) when it is in transit from the
CICAM to the Host and b) if and when it is made available on external interface(s) of the Host. Multiple steps
are involved in this process. The system components use the CC resource to start a mutual authentication
process. When the CICAM and Host have mutually verified that they are communicating with legitimate CI
Plus components, a Secure Authentication Channel (SAC) is initialised. The SAC is used to transfer messages
that are authenticated and encrypted. The system components establish a common CC scramble/descramble key
and exchange Usage Rules Information and optional license. The process is explained in Figure 5.2, while table
5.1 refers to sections in this specification that provide the detailed mechanisms.

CICAM Host
| |
Step1 .L
[1] CICAM triggers authentication process
[2] Host engages in mutual authentication proces.
- gag
L
Step2 I I [3] CICAM requests authentication key host
H [4] Host confirms authentication key.
Step3 I I [5] establish SAC
H [6] establish SA
Step4 I I [7] establish content re-/de-scrambler key
H [8] establish content re-/de-scrambler ke
Step5 r.1 [9] CICAM initiates transfer of URI info
[10] Host applies URI settings
]
[11] Host acknowledges

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 5.2: High Level Interface Behaviour (Informative)

© 2008, 2009, 2011, 2015 Cl Plus LLP

26

The process is defined as described in Table 5.1:

Table 5.1: High Level Interface Behaviour (Normative)

ClI Plus Specification v1.3.2 (2015-03)

No.

Description

Refer to

Start Authentication step #1 — certificate verification and DH key exchange

1

CICAM triggers authentication process.

The CICAM initiates the authentication process when there is no
authentication key present from a previous successful binding. The
authentication process is introduced in section 5.9. Refer to listed reference for
full details.

Section 6

Host engages in mutual authentication process.

The Host verifies the received protocol data to determine if it originated from a
legitimate CICAM and engages in a mutual authentication process.

Section 6

Start Authentication step #2 — authentication key verification

3
4

CICAM requests authentication key Host.

The CICAM requests the authentication key (AKH) from the Host, in order to
determine that both CICAM and Host have calculated the same key. The Host
replies to this request with its computed authentication key.

Section 6

Start step #3 —

establish SAC

5
6

Establish SAC.

After successful authentication, the CICAM and Host start to exchange data
and compute key material for the encryption (SEK) and authentication (SAK) of
messages that are to be transmitted over the SAC. Upon establishing the SAK
and SEK keys, the CICAM shall synchronize with the Host to start using the
new keys within a predefined timeout. The SAC is initialised using this key
material.

Section 7

Start step #4 —

establish CC key

7
8

Establish CC key.

After successful authentication, the CICAM may start computing the Content
Control key (CC key). After successful initialisation of the SAC the CICAM may
inform the Host to compute CC key. Upon establishing the CC key the CICAM
shall synchronize with the Host to start using the new CC key within a
predefined timeout. The (de)scrambler is initialised using this CC key. Note
that this step may be performed repeatedly based on the maximum key
lifetime setting.

Section 8

Start step #5 —

transfer and exert copy control on content

9

CICAM initiates transfer of URI info and optional license.

The CICAM transfers the Usage Rules Information (URI) and optional license
that matches the current copy control constraints on the selected service to the
Host. Note that this step may be performed repeatedly during a programme
event, based on the actual setting of the URI. See Note 2.

Section 5.7.4

10
11

Host applies URI settings, associate the license recording and Host
acknowledges.

After reception of the URI information the Host shall reply to the CICAM within
a predefined timeout and then apply the copy control constraints to the
external interfaces, as defined in the Cl Plus Compliance Rules for Host
Device [6].

Section
5753

NOTE:

1. Refer to referenced sections for a detailed description of the mechanisms.

2.

The URI version used shall have been negotiated see 5.7.5.1

5.3

Key Hierarchy

A layered key hierarchy is used to implement content protection and copy control, as is shown in Figure 5.3.

© 2008, 2009, 2011, 2015 Cl Plus LLP

27 Cl Plus Specification

v1.3.2 (2015-03)

[Root certificate

[Root certificate
I

CICAM Host
Credentials layer
———1{DHop | [DH_p
- [DHg | [DH g
[MDQ \ [HDQ
[PRNG_seed | [PRNG_seed
|
|

[Manufacturer certificate

[Manufacturer certificate
I

[Device certificate Device certificate

}7
}7
\
|
|
|
\

CICAM_ID HOST_ID

Authentication layer

‘ DHY (DH nonce y) ‘ DHX (DH nonce x

v

l—

\—>< DHPM (DH Public key Module) < DHPH (DH Public key Host)

eXChang

l€—

‘ DHSK (DH Secret Key) ‘ DHSK (DH Secret Key)
AKM (Authentication Key Module) | <«—— verify-] AKH (Authentication Key Host
\
SAC |layer
‘ Ns_Module (nonce from Module) }\ /{ Ns_Host (nonce from Host)
\eXChang — | ¢
« M
N SAK (SAC Authentication Key) P > SAK (SAC Authentication Key) .

SEK (SAC Encryption Key) D SEK (SAC Encryption Key)
| SIV (SAC Initialisation Vector) \ | SIV (SAC Initialisation Vector)

Content control layer

‘ Kp_module (nonce from Module) }\
¢ eXChang

CCK (CC Key) \ CCK (CC Key)

CIV (CC Initialization Vector) CIV (CC Initialization Vector)

Figure 5.3: Key Hierarchy

© 2008, 2009, 2011, 2015 Cl Plus LLP

28

Table 5.2: Key to the Credentials

ClI Plus Specification v1.3.2 (2015-03)

Key Description Stored or Volatile Exchanged or Keep Local
Root cert Root certificate stored (license constant) | keep local (not replaceable)
Brand cert | Brand certificate stored (license constant) | exchange (not replaceable)
Device cert | Device certificate stored (license constant) | exchange (not replaceable)
prng_seed | Per manufacturer seed for PRNG stored (license constant) | keep local (not replaceable)
DH p Diffie-Hellman prime modulus stored (license constant) | keep local
DH_g Diffie-Hellman generator modulus stored (license constant) | keep local
DH_q Diffie-Hellman Sophie Germain stored (license constant) | keep local

constant

MDQ Module Device Private key stored (license constant) | keep local (not replaceable)
MDP Module Device Public key stored exchange

HDQ Host Device Private key stored (license constant) | keep local (not replaceable)
HDP Host Device Public key stored exchange

DHX Diffie-Hellman nonce (exponent x) volatile keep local

DHY Diffie-Hellman nonce (exponent y) volatile keep local

DHPM Diffie-Hellman Public key Module volatile exchange

DHPH Diffie-Hellman Public key Host volatile exchange

DHSK Diffie-Hellman Secret Key stored keep local

AKM Authentication Key Module stored (on module) keep local

AKH Authentication Key Host stored (on Host) exchange (protected)
Ns_Module | Nonce SAC Module volatile exchange

Ns_Host Nonce SAC Host volatile exchange

SEK SAC Encryption Key volatile keep local

SAK SAC Authentication Key volatile keep local

SIvV SAC Initialisation Vector stored (license constant) | keep local

Kp Key precursor volatile exchange (protected)

CCK Content Control Key volatile keep local

CIv CC Initialisation Vector volatile keep local

5.3.1

Keys on the Credentials Layer

There are a pair of public and private keys defined for the CICAM and for the Host. The CICAM has a Device
Private key (MDQ) and the corresponding Device Public key (MDP) which is embedded in the CICAM's device
certificate. The Host similarly carries HDQ and HDP. There is a unique certificate chain for both CICAM and
Host. There are constants that are used in computations, such as the prime (DH_p) and generator (DH_g) for the
Diffie-Hellman authentication process.

The data on the credential layer (such as keys, seeds, certificates and constants as suggested in table 5.2) are
involved in operations on the authentication layer. The credential layer contains parameters that are not to be
replaced. This specification does not specify the exact mechanisms used to protect the credentials, which is out

of scope.

5.3.2

Keys on the Authentication Layer

The device public key, from the device certificate, and the device private key are involved in two operations.
(Not shown in Figure 5.3):

1) Protect the parameter exchange during authentication. The authentication is based on Diffie-Hellman,
which requires the CICAM and Host to exchange parameters which must be protected against
alteration by a malicious source. Refer to section 6.1.2 for full details.

2) Verification of the certificate chain. The certificate chain contains information that is used in
subsequent steps in the key hierarchy. The received certificates must be mutually verified, refer to

section 9.4 and section 9 for full details.

The resultant keys for the authentication layer are the Diffie-Hellman Secret Key (DHSK) and the
Authentication key (AKM for CICAM and AKH for Host). The CICAM requests the Authentication Key used
by the Host. Refer to section 6 for details.

© 2008, 2009, 2011, 2015 Cl Plus LLP

29 Cl Plus Specification v1.3.2 (2015-03)

The DHSK and AKM or AKH are protected and managed by the authentication layer. Other layers (such as the
SAC layer and the Content Control layer) may occasionally require these keys for calculation of their volatile
secrets. The Authentication Layer passes the requested keys but the consuming layer shall not maintain or store
them.

5.3.3 Keys on the SAC Layer

The SAC layer uses keys to authenticate and encrypt a message before it is transmitted. The receiving part uses
the identical calculated keys to decrypt and verify a message. The SAC Authentication Key (SAK) is used to
authenticate and verify a SAC message. Similarly the SAC Encryption Key (SEK) is used to encrypt and
decrypt the SAC message payload. SAK and SEK are calculated together independently on CICAM and Host.
SAK and SEK are both volatile short term secrets. Refer to section 7 for full details.

Authentication layer

Auth. and
verify

Auth. and
verify

DHSK
AKM

DHSK
AKH

SAC layer
Exchange Exchange
and nonces and
SEK confirm confirm SEK
SAK SAK

‘Fﬁmthentcated and encrypted SAC messagm—}

Figure 5.4: Keys on the SAC Layer

5.3.4 Keys on the Content Control Layer

The CC layer uses keys to scramble AV content before it is transmitted from CICAM to Host. The Content
Control Key, CCK, (and if required CIV) are used to scramble AV. On the receiving side the Host uses the
identical calculated keys to descramble the AV content. CCK (and if required CIV) are calculated together
independently on the CICAM and Host. CCK (and if required CIV) are both volatile, short term secrets. Refer to
section 8 for full details.

Content control layer

Propagate Propagate
and Key precursor- and
CCK confirm confirm CCK
(CIv) (CIv)
—0C encrypted MPTS traffic »- D{CCK}C) C—p

Figure 5.5: Keys on the CC Layer

5.4 Module Deployment

CICAMs may be deployed in a Basic Service Mode (BSM) or a Registered Service Mode (RSM). Basic Service
Mode is mandatory, Registered Service Mode is optional. Registered Service Mode consists of three phases:

© 2008, 2009, 2011, 2015 Cl Plus LLP

30 Cl Plus Specification v1.3.2 (2015-03)

1) Certificate Verification & DH Key Exchange
2) Authentication Key Verification
3) Head-end Report Back

Both Service Modes support phase 1 and 2. Only the Registered Service Mode supports the third phase: Head-
end Report Back (see Table 5.3).

Table 5.3: Supported Phases per Service Mode

Mode / Phases Certificate Verification & Authentication Head-end
DH Key Exchange Key Verification Report Back
Basic Service Mode ° °
Registered Service Mode ° ° °

In Basic and Registered Service Mode, the CICAM may operate in two states:

. Limited Operational; EN 50221 [7] compatible mode. No services which require CI Plus protection are
CA descrambled.

. Fully Operational; CI Plus compatible mode. All CI Plus protected services are CI Plus re-scrambled.

The next two sections explain both modes in more detail, the third section describes how errors are handled by
the CICAM and the Host.

5.4.1 Deployment In Basic Service Mode

The Basic Service Mode defines the operation of the CICAM in a broadcast environment (i.e. no online
bidirectional communication channel). The CICAM does not become operational immediately when inserted
into the Host device and the power is applied; the following protocol has to be executed first:

. Power up Re-authentication (see section 6.3)

. Certificate Verification & DH Key Exchange (see section 6.2)

. Authentication Key Verification (see section 6.3)

. Secure Authenticated Channel (SAC) establishment (see section 7)
. Content Control (CC) key establishment (see section 8)

Figure 5.6 gives an overview of the authentication process in Basic Service Mode. At power up the CICAM first
determines if the Host device is CI Plus compatible. A CI Plus compatible Host announces the CC resource
during the resource manager protocol at start-up, see section 12.3 and EN 50221 [7] section 8.4.1.1 (2). Where
the Host device is not compatible a descriptive error (see Figure 5.10) is given using the High-Level or
Application MMI (3) and the CICAM becomes Limited Operational (10) (i.e. EN 50221 compatible). When the
Host device is CI Plus compatible it checks if Power up Re-authentication is possible (4). Power up Re-
authentication is possible when the CICAM has previously successfully bound with the Host device. On a
successful binding then Certificate Verification and DH Key Exchange (5) and Authentication Key Verification
(6) may be skipped, and the CICAM may start immediately with SAC establishment (7). After SAC
establishment follows CC Key establishment (8). With the SAC and CC Key established the CICAM becomes
fully operational (9).

© 2008, 2009, 2011, 2015 Cl Plus LLP

31 Cl Plus Specification v1.3.2 (2015-03)

CICAM Module
No—#| Error Notification
@ MMI Dialog (3)
Yes
4———Yes
“4)
No
v v
Certificate
Establii':gent @ Verification & DH
Key Exchange (5)
CC Key Authentication Key
Establishment (8) Verification (6)
y A
Fully Limited
Operational (9) Operational (10)

Figure 5.6: Authentication Process in Basic Service Mode

The SAC is used to communicate the content Usage Rules Information (URI) in a secure manner. The URI is
associated with a service/event that is CA protected and conveys copy control information for analogue (APS)
and digital (EMI) Host device outputs (see section 5.7.5.3). The Host device uses the default, and most
restrictive, Usage Rules until the URI delivery protocol is concluded successfully (see section 5.7.5) and the
event related Usage Rules are communicated to the Host device.

The CC Keys are used for the encryption of CI Plus protected services by the CICAM and for the decryption of
CI Plus protected services by the Host device. The Host device deduces the CC Key as a result of a DH Key
Exchange; no CC Key is transferred from the CICAM to the Host device. Figure 5.7 gives an overview of the
SAC and CC Key establishment process, which are executed (3) and (5) when a key refresh (2) and (4) is
required. If for some reason the SAC or CC Key can not be renewed (6) and (7) then the CICAM reverts to the
Limited Operational State (8) otherwise its state remains Fully Operational (1).

No
No

SAC

Establishment (3)
CC Key ¢ A CC Key
timeout (7) Establishment (5)
Yes
A4
Limited

Operational (8)

Figure 5.7: SAC and CC Key Renewal Process

© 2008, 2009, 2011, 2015 Cl Plus LLP

32 Cl Plus Specification v1.3.2 (2015-03)

Basic Service Mode supports the revocation of Host devices by means of a Certificate Revocation List (CRL)
that is transmitted by the Head-end to the CICAM using a DSM-CC data carousel. In case of a Host device
revocation, the CICAM informs the user that their Host device is black-listed using the Generic Error Reporting
feature (see section 5.4.3).

In addition to the CRL, the Basic Service Mode supports a Certificate White List (CWL) that enables the
Service Operator to revert a previous revocation of a single Host device. See section 5.5 for a detailed
description of the CI Plus revocation mechanism.

5.4.2 Deployment in Registered Service Mode

Registered Service Mode is an extension of Basic Service Mode and is intended for networks that include a bi-
directional communication channel from the CICAM to a network subscriber management system. To
implement Registered Service Mode the CICAM may use the High Level or Application MMI to present
instructions and registration data to the user to communicate back to the network subscriber management
system.

The operational behaviour of Registered Service Mode is defined by the Service Operator and is outside the
scope of this specification.

5.4.3 Generic Error Reporting

Errors may be detected and reported by either the CICAM or Host. When an error is detected by the CICAM
then it shall use the High-Level or Application MMI to display a pre-defined error code. When the Host device
detects an error then it may use some Host specific method to display the pre-defined error code. The error-code
may be accompanied by descriptive text and shall be acknowledged by user interaction. Annex F defines
standard error conditions and error codes.

Where the CICAM supports Registered Service Mode the CA Vendor or Service Operator may define a
mapping between Action and Error Codes. The CA vendor or Service Operator shall determine the Action
Codes supported in a Registered Service Mode and is out of scope of this specification.

An example of an Action Request Code mapping is 'invalid Host certificate', Annex F.1 defines this error
condition as Error Code 16, which may be mapped to any Action Request Code by the CA Vendor or Service
Operator. The resulting Notification Message provides information to the customer and may also provide
instructions to call a service number.

9.5 Introduction to Revocation (informative)

The CI Plus specification includes revocation as a method to deal with Host devices whose security has been
compromised. The specification distinguishes three mechanisms of revocation:

1) Host Service Shunning
2) Revocation by CAS
3) Host Revocation

Host Service Shunning is described in detail in section 10. The revocation by CAS is defined by a particular
CAS and is out of scope for this specification. The remainder of this section describes the Host Revocation
mechanism. The CI Plus CICAM Licensee Specification [33] and Supplementary CI Plus Specification for
Service / Network Operators [37] specifies the requirements for Host Revocation implementation.

5.5.1 Host Revocation
Host Revocation is revocation by denial of service i.e. the CICAM ceases CI Plus operation, starving the Host

device of CI Plus Content Control services. Host devices to revoke are listed in a Certificate Revocation List
(SOCRL). The following revocation lists are defined for this purpose

e Service Operator Certificate Revocation List (SOCRL)
e Service Operator Certificate White List (SOCWL)

© 2008, 2009, 2011, 2015 Cl Plus LLP

33 Cl Plus Specification v1.3.2 (2015-03)

A SOCRL is created by the Root-of-Trust on request of a Service Operator specifically for their operation.
Revocation is always tied to a specific Service Operator. A Host device may be revoked for one Service
Operator and be functional for others. Host device revocation only applies to those services that are required by
the Service Operator to be CI Plus protected (e.g. HD premium content) allowing other services (e.g. CA
protected low value content) to remain accessible to the Host. Entries in the SOCWL undo a revocation defined
in the SOCRL.

To ensure reception of a SOCRL by the CICAM, the SOCRL should be part of each Transport Stream (TS) that
carries services belonging to the Service Operator. Where the TS contains services belonging to two or more
Service Operators a SOCRL for each Service Operator must be added to the TS.

The exact rules for revoking a device are determined by the CI Plus license, and are therefore out-of-scope for
this specification, see CI Plus Licensee Specification, [33].

The trust model for revocation identifies two entities: 1) the CICAM and 2) the Host device. The Host device is
the target of revocation and is considered as untrusted. The following threats are considered:

1) Replay; the Host device may replay a SOCRL that does not contain its own identity.
2) Blocking; the Host device may prevent the SOCRL from reaching the CICAM.
3) Tampering; the Host device may change or remove a SOCRL entry that contains its identity.

The first threat is countered by adding a timestamp or counter to the SOCRL. The second threat is countered by
defining a mandatory cycle constraint; the CICAM must receive a SOCRL within a pre-determined time-
window (with a considerable grace-period to prevent race conditions). To prevent tampering the SOCRL is
signed by the Service Operator's private RSA key and distributed by the Service Operator to CICAM:s in their
network. A CICAM can verify the integrity of an SOCRL using the RSA public key in the Service Operator's
certificate. This certificate in turn is verified by the Root-of-Trust certificate (See chapter 9).

5.5.2 Revocation Granularity

The CI Plus specification supports different levels of revocation granularity:
1) Unique Host devices
2) Ranges of Host devices
3) Host devices of a certain Model-type
4) Host devices of a certain Brand

A Service Operator may use any of these granularities when requesting Host revocation. The SOCWL supports
only single Host devices to be un-revoked from a revoked range. This feature may be used for testing individual
devices from a device set that is revoked.

5.5.3 Revocation Signalling Data

The availability of a SOCRL, SOPKC (and SOCWL) in the network is indicated by the Revocation Signalling
Data (RSD) information. The RSD shall carry:

1) Service Operator identity; identifies the provider of the CI Plus protected services, SOCRL and
SOCWL.

2) SOCRL and/or SOCWL download information; contains the information that the CICAM requires to
find the SOCRL and SOCWL in the Transport Stream. If no download information is specified then
the Service Operator is not transmitting a SOCRL and SOCWL.

3) Latest SOCRL and/or SOCWL version numbers; the version numbers for the latest SOCRL and
SOCWL instance that are currently broadcast.

© 2008, 2009, 2011, 2015 Cl Plus LLP

34 Cl Plus Specification v1.3.2 (2015-03)

4) SOCRL and SOPKC transmission timeouts; the SOCRL and SOPKC downloads have a transmission
timeout and these values are conveyed by the RSD. Each of these files must be received before the
timeout period has elapsed otherwise the CICAM becomes Limited Operational.

The RSD is protected against replay, blocking and tampering. Every CICAM has the capability to detect the
RSD on the network. The CAS shall provide the CICAM with the capability to switch the detection of the RSD
on or off, but the exact mechanism is out of scope for this specification and CAS specific. If the service operator
switches detection of the RSD on, the RSD shall be present on the network and the RSD shall be transmitted
repeatedly. The exact requirements and format of the RSD is defined in the Supplementary CI Plus Licensee
Specification for Service / Network Operators [37].

The CICAM shall ensure that it has the latest versions of the RSD, SOCRL and SOCWL.

554 Transmission Timeout

The cycle-time of the RSD should be significantly shorter than its transmission timeout to guarantee reception.

The SOCRL download has a transmission timeout and this value is conveyed by the RSD.

555 SOCRL and SOCWL Download Process

Download (using a carousel) of the SOCRL and SOCWL is executed according to Figure 5.8, which is
informative and does not preclude other implementations. Each of the process steps is briefly discussed.

e Start (1). The download of RSD may commence after the CICAM and Host have bound successfully.
e Download RSD (2). The CICAM receives the RSD of the Service Operator.

e RSD Download timeout (3). On a RSD transmission timeout the Host device is temporarily revoked
(18). When the download has successfully completed, the CICAM determines if a SOCRL or, SOCRL
and SOCWL should be downloaded.

e Download SOPKC (4). The CICAM downloads the SOPKC.

e SOPKC Not Present (5). If the SOPKC is not present, or invalid, then the Host is temporarily revoked
(20).

o RSD valid (6). Using the SOPKC the CICAM shall determine that the RSD is valid. Refer to CI Plus
Licensee Specification [33] for more details.

e Download SOCRL (7). The CICAM compares the SOCRL version number' in the RSD with the
'version number' of a previously stored SOCRL. Where the RSD indicates a newer version, the SOCRL
must be downloaded, similarly for the SOCWL. The location of the data carousel containing the
SOCRL and SOCWL is found in the RSD.

e SOCRL download timeout (8). On a SOCRL transmission timeout the Host is temporarily revoked
(18). When the download has completed successfully, the CICAM processes the SOCRL (7).

© 2008, 2009, 2011, 2015 Cl Plus LLP

35

Start (1)

A

Download RSD

Temp. Revoke
CICAM limited
operational (20)

A

A

(@)

YES
download time-

A

Cl Plus Specification v1.3.2 (2015-03)

NO

Download SOPKC
@)

SOPKC Not

Present (5)

YES
S

Download

OCWL
(12)

NO_RsD valid

A

(6)

Process SOCWL
(13)

Download
SOCRL

@)

C

YES download

timeout

®)

NO

Process SOCRL
)

device on
SOCRL

OS!

16

A

Un-revoke:
CICAM fully
operational (17)

Revoke:
CICAM limited
operational (18)

.

Update revoked
host devices in
binding history

(19)

Figure 5.8: SOCRL and SOCWL Download Flow Chart

Process SOCRL (9). When the SOCRL download has successfully completed, the CICAM verifies the
digital signature of the SOCRL. The SOCRL is signed with the Service Operator credentials. The
version number of the SOCRL and that specified in the RSD are checked for equality.

SOCRL Valid (10). The digital signature of the SOCRL is checked for authenticity and the version

number of the SOCRL is equal to the version number that is contained in the RSD file otherwise the
Host is temporarily revoked (20).

© 2008, 2009, 2011, 2015

Cl Plus LLP

36 Cl Plus Specification v1.3.2 (2015-03)

e SOCWL Signalled in RSD (11). If no SOCWL is signalled in the RSD then the CICAM proceeds to
check if the Host is in the SOCRL (16).

e Download SOCWL (12). If a SOCWL is signalled in the RSD it is downloaded.

e Process SOCWL (13). When the SOCWL has been successfully downloaded, the CICAM verifies the
digital signature of the SOCWL. The SOCWL is signed with the Service Operator credentials.

e SOCWL Valid (14). The following conditions shall be met in order to validate the SOCWL:
o The SOCWL digital signature over the SOCWL is valid
o The SOCWL 'version number' is equal to the ‘version number’ that is contained in the RSD
Otherwise the SOCWL is considered invalid and ignored (16).

o Host device on SOCWL (15). Where the Host that is currently bound to the CICAM is listed in the
SOCWL then CI Plus protected services shall be un-revoked (17), otherwise the SOCRL is checked

(16).

o Host device on SOCRL (16). Where the Host that is currently bound to the CICAM is listed in the
SOCRL then the Host shall be revoked (18), otherwise the Host device is not revoked (17).

e Un-revoke: CICAM fully operational (17). The Host that is bound to the CICAM is not revoked, it is
either on the SOCWL or is not listed on the SOCRL. Any existing (temporary) revocation is overruled
or removed.

e Revoke: CICAM limited operational (18). The Host that is bound to the CICAM is revoked; all CI
Plus protected services remain CA scrambled until a SOCRL is received that does not contain an entry
for the Host or a SOCWL is received that contains an entry for the Host. The revocation state overrules
any temporary revocation state.

e Update Revoked Host Device in Binding History (19). The CICAM maintains a list in non-volatile
memory of Hosts that have successfully bound to the CICAM. This list must be updated:

o Where the Host is on the SOCWL then its entry in the binding history shall be updated by
removing a revocation flag for the current Service Operator.

o Where the Host is on the SOCRL then its entry in the binding history shall be updated by
setting a revocation flag for the current Service Operator.

o Each Host that is in the binding history for the current service operator shall be verified
against the SOCRL (and SOCWL) and revocation flags adjusted appropriately.

e Temporary Revoke: CICAM limited operational (20). As a result of a RSD transmission timeout, a
SOCRL transmission timeout, an invalid SOCRL or SOPKC the CICAM temporarily revokes the Host
by becoming limited operational. Any temporary revocation is removed when the RSD, SOPKC and
SOCRL are all valid (10).

5.5.6 Denial of Service
The revocation process is based on a denial of service by the CICAM and is executed according to Figure 5.9,

which is informative and does not preclude other implementations. Each of the process steps are briefly
discussed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

37 Cl Plus Specification v1.3.2 (2015-03)

Start (1)

A

Service Selection

(2

Host device
revoked (4)

ervice Cl Plu
protected (3

NO

CA descramble
CA descramble and Cl Plus
service (5) rescramble
service (6)
v
Output to

host device (7)

Figure 5.9: Revocation by Denial of Services Flow Chart

Start. After the CICAM and the Host have bound successfully, the descrambling of CA protected
services and re-scrambling of CI Plus protected services may commence.

Service Selection. The user selects a service and the Host tunes to the requested service. The CICAM
first checks if the selected service is CI Plus protected before the CA protection may be removed (3).

Service CI Plus Protected. The CICAM determines by means of the EMI value if the selected service
is CI Plus protected. If CI Plus protection is required then the CICAM checks if the Host is not revoked
(4) otherwise the CA protected service may be descrambled (5).

Host device revoked. The CICAM uses the binding history to check if the Host to which it is bound, is
flagged as (temporary) revoked. If the bound Host is revoked then the CA protected service is not
descrambled otherwise the service is descrambled (6).

CA Descramble Service. The selected service is CA descrambled but not CI Plus re-scrambled. The
unprotected service is transmitted to the Host (7).

CA Descramble Service and CI Plus Re-scramble Service. The selected service is a CI Plus
protected service and the bound Host is not revoked, the service is first CA descrambled and then CI
Plus re-scrambled. The CI Plus protected service is transmitted to the Host (7).

Output to Host device. The CICAM may transmit the selected service to the bound Host for
consumption. The service is either unencrypted (CA protection removed) or encrypted (CA protection
removed but CI Plus protection is added).

© 2008, 2009, 2011, 2015 Cl Plus LLP

38

5.6 (De)Scrambling of Content

5.6.1 Transport Stream Level Scrambling

Cl Plus Specification v1.3.2 (2015-03)

To protect high value content, a service provider may choose to "scramble" (encrypt) the content of the service
elementary streams. The receiving device uses a descrambler to "descramble" (decrypt) the elementary streams
so they may be consumed. The descrambler determines when to descramble by interrogating the transport

scrambling control (TSC) bits in the TS packet as defined in Table 5.4

Table 5.4: Definition of Transport Scrambling Control Bits

Transport scrambling control bits Description Comment

00 No descrambling Support required.

01 Scrambling with DEFAULT content key | Not supported by CICAM and Host.
10 Scrambling by the EVEN content key Support required.

11 Scrambling by the ODD content key Support required.

NOTE: Limitations to TS level scrambling adhere to ISO 13818-1 [13].

Dual-key descramblers use two registers to store two keys: the first register may contain the key the descrambler
is currently using. During this key period the second register may be updated with a new key for the next keying
period. To distinguish the registers they are identified as the odd and even key register. The TSC bits in the TS
packet indicates if the descrambler is to use the key in the odd or even key register in order to descramble the TS
packet and flips to the corresponding register when necessary. Refer to Figure 5.10 for details.

Xs ‘ Xs Xs
Scrambled, Scrambled, Scrambled, Dual key TS
using key A, using key B, using key C,
TSC indicates odd TSC indicates even TSC indicates odd
t —»
odd
‘ CCkey A ‘ CCkey A ‘ CCkey C ‘ CCkey C H descrambler
empty ‘ CCkey B CCkey B CCkey D ‘ even registers
t0 t1 tz t3 t4
Key: active register is underlined.

Figure 5.10: Relation between Descrambler Registers and TS

The odd/even key refresh is signalled by the CICAM in the data request APDU, the Host knows in advance
which descrambler register it has to store the Content Control Key (CCK) that the CICAM commands it to start
computing. To determine if the Host has actually computed the CC key and loaded it into the requested register
(odd or even) the CICAM and Host synchronize with each other; the CICAM initiates a sync request APDU
which the Host has to confirm. If the key refresh timer expires the CICAM shall start using the new CC key
(CCK) and modifies the TSC bits of the TS packet header. Directly after the CICAM changes the TSC value the
Host shall detect the change and switch to the alternate key register. The URI protocol transfers the URI value to
the Host. The URI indicates content restrictions. Refer to Figure 5.11 for details.

© 2008, 2009, 2011, 2015 Cl Plus LLP

39 Cl Plus Specification v1.3.2 (2015-03)

Program change A occurs.
CICAM encrypts content. Host sets
URI to default. CICAM initiates URI
refresh (i.e. CC_SAC_data_req)

Program change B occurs.
CICAM encrypts content. Host sets

URI to default. CICAM initiates URI
refresh (i.e. CC_SAC_data_req)

Host confirms with
CC_SAC data_cnf
before timer = 1

Host applies URI to
external interface

URI transfer confirmed < 1 sec

Host applies URI to
external interface < 1 sec

A within 1 sec \4
A . A .
gl "
1 2 2
- Program with EMI = 00 Program with EMI > 00 Program with EMI > 00
= Content in cleartext Encrypted using Encrypted using
=
5 «old » CCK-1 « new CCK-2
Timer for Timer for Timer for
Max key session period ‘| key refresh period Max key session period
0 1 8 9 10
“«——————— —— >

CICAM and host each calculate “new”

. CICAM starts CC encryption with
CCK before timer =9

“new” CCK-2 and updates TSC bits.
Host detects TSC change and switches
to indicated key register.

A .
»
A .
»

Start of CCK computation

Host replies with CC_SAC data_cnf
before timer = 1

Host replies with sync confirm (i.e.
CC_SAC sync_cnf) before timer = 10

Max_key_session_period expires. CICAM
initiates key refresh (i.e. CC_SAC _data req)
and starts 10 sec. key refresh timer

CICAM sends sync request (i.e.
CC_SAC sync_req)

&I‘ A -
'I‘

Key lifetime period using
CCK-1ine.g. odd

Key lifetime period using
CCK-2 in e.g. even

Notes:

Refer to section 5.7.5 for details on the URI refresh protocol.

Refer to section 8.1 for details on the Content Control key refresh protocol.

Refer to section 11.3.1for details on the APDUs.

For the duration of a key lifetime period the CICAM re-scrambles all Elementary Streams under CC
control with the same CCK and, where AES is chosen, IV.

b=

Figure 5.11: Dual Key Refresh and URI Transfer

5.6.1.1 PES Level Scrambling

Where the service provider uses PES Level Scrambling of the elementary streams, i.e. the
PES_scrambling_control bits of the PES_packet are non-zero, then any re-scrambling by the CICAM shall be
re-applied at the Transport Stream level and the PES_scrambling_control field shall be set to Not Scrambled.

5.6.2
5.6.2.1

Scrambler/Descrambler Definition
Scrambling rules

This specification defines two scramblers for Transport Stream Output protection, DES and AES. Table 5.5
describes the mandatory Host and CICAM capabilities.

© 2008, 2009, 2011, 2015 Cl Plus LLP

40 Cl Plus Specification v1.3.2 (2015-03)

Table 5.5: Host and CICAM Capabilities

Scrambler option CICAM Host
DES-56-ECB Mandatory Mandatory for both SD and HD Hosts
AES-128-CBC Optional Mandatory for HD Hosts only.

The definition of SD and HD Hosts for the purposes of this document is specified in Annex D.

The Host and CICAM negotiate scrambler capabilities during certificate exchange. Each device determines the
opposite device's scrambler capability, see 9.3.9.5. Both devices shall decide which cipher to use, see table 5.6.

If there is an existing binding, i.e. matching authentication keys, the previously negotiated cipher shall be used,
see section 6.3.

Table 5.6: Scrambling Cipher Selection Rules

Module Host Decision Comment
none none | CC stopped and TS output for clear content. "none™ for either Host or
module
DES DES Transport Steam Output re-scrambling utilizes DES.
DES AES Transport Steam Output re-scrambling utilizes DES.
AES DES Transport Steam Output re-scrambling may utilize DES. | See Note 3.
AES AES Transport Steam Output re-scrambling utilizes AES.
Notes

The content owner could accept to use either DES or AES, meaning that a provider may make the
technology choice to use DES or AES enabled CICAMs.

Transport Stream Output as defined in EN 50221 [7]

The CA System may decide that DES is not suitable and choose not to descramble the content.

The CI Plus Content Control system adheres to the following scrambling rules:

The Transport Stream packets of the Elementary Streams of the selected programme that are in the
clear on the network side shall not be scrambled by the CI Plus Content Control and shall remain in the
clear.

Content that has been descrambled by the network CA system and where the CI Plus Content Control
delivers a URI carrying EMI with value 0x00 shall not be re-scrambled by the CI Plus Content Control.
In this case the Transport Stream packets of the Elementary Streams belonging to the selected
programme that were scrambled on the network are passed to the Host in the clear.

Content that has been descrambled by the network CA system and where the CI Plus Content Control
delivers a URI carrying EMI with any other value than 0x00 are re-scrambled by the CI Plus Content
Control. In this case the Transport Stream packets of the Elementary Streams belonging to the selected
programme that were scrambled on the network are passed to the Host re-scrambled by CI Plus
Content Control.

The CI Plus Content Control shall always use the same scrambler cipher for all types of content (audio,
video or some other component of the selected programme) and use the highest negotiated cipher.

The CICAM shall only descramble, and possibly re-scramble, elementary streams that have been
notified for descrambling in the CA_PMT according to EN 50221 [7] section 8.4.3.4.

The CICAM is not obliged to pass content over a DES encrypted channel. i.e. it is at the service
operators discretion whether to deliver high value HD (or SD) content over DES and may select to
deliver the content to AES devices only, effectively disabling DES only devices for those services.

Apart from the rules defined in Table 5.9, the scrambling rules of SCTE41 [5], section 7.1.1 apply. In the case
of conflict the rules above take precedence. (e.g. apart from DES the usage of AES is allowed and specified.)

© 2008, 2009, 2011, 2015 Cl Plus LLP

41 Cl Plus Specification v1.3.2 (2015-03)

5.6.2.2 Transport Stream Scrambling with DES

The payload of Transport Stream packets may be encrypted using DES-56 in ECB mode with residual blocks
left in the clear. The DES scrambler and descrambler adheres to SCTE41 [5], Appendix B.

NOTE: There are differences in bit and byte numbering used in MPEG?2 (see ISO 13818-1 [13]) and the
specification of DES (see FIPS 46-3 [2]). The numbering system mapping is defined in ATSC
Document A/70A [26], Annex A.

5.6.2.3 Transport Stream Scrambling with AES

The payload of Transport Stream packets may be encrypted using AES-128 in CBC mode with CC key and IV
changing per key lifetime period and residual blocks left in the clear. Refer to FIPS 197 [4] for AES-128 and
refer to NIST Special Publication 800-38A [25] for usage of AES-128 in CBC mode.

Encryption of the content is based on ATSC A/70A [26], Appendix D.3. The following section describes the
AES scrambler and descrambler for this specification.

Figure 5.12 shows the high level format of a Transport Stream packet (see ISO 13818-1 [13]).

hdr payload
hdr Adaptation field
hdr Adaptation field payload
0 4 188

Figure 5.12: Transport Stream Packet

Transport Stream packets comprise a header (shaded grey) and payload field. Depending on the size of the
adaptation field (grey), the length of the payload varies between 0 and 184 bytes. Only the payload is scrambled.
The payload is segmented into blocks of 128 bits (16 bytes) and passed through the AES scrambling engine as
described below.

5.6.2.3.1 Scrambling

An encryption function commonly defines b as clear text and its scrambled version s as cipher text. The AES
encryption function is represented by s = E 4z5.125.cac{ CCK} (b), where a Content Control Key (CCK, defined in
section 8.1.4) is used to encrypt / scramble a binary block b of length equal to 128 bits (16 bytes). Encryption
processes b into a block of the same size, s.

When the clear text is larger than 128 bits the content is encrypted using AES in CBC mode (i.e. Cipher Block
Chaining), using the following operation:

s(m) = E 55 125 cae {CCK}[b(m) D s(m— 1)] Eq.5.1
Where:

. CCK is the Content Control Key.

. b(m) represents the m " block of 128 bits in the sequence, where m = 2..n. Encryption of the current
block b(m) requires knowledge of the cipher text s(m-1) (i.e. the output of the previously scrambled
block).

Notice that Equation (5.1) does not work for m = 1. For the first block (i.e. m = 1), the data for s(0) does not
exist. Therefore it is necessary to define an Initialization Vector (IV), which is used to compute the first
scrambled block s(0) with the following operation:

© 2008, 2009, 2011, 2015 Cl Plus LLP

42 Cl Plus Specification v1.3.2 (2015-03)

S() = E s 125 coe (CCK Y1) @ 1V] Eq.5.2
Where:

. CCK is Content Control Key and 7/} (CIV) is an initialization vector, as defined in section 8.1.4.

The appropriate vector IV shall be used at the beginning of a Transport Packet. The data payload of a TS packet
is maximally 184 bytes long, the maximum number of blocks for encryption with AES-128-CBC is 11 (since
residual blocks remain in the clear 184*8/128 is rounded to 11).

The Transport Stream packets of all selected elementary streams use the same key and initialisation vector.
There are two special cases of residual blocks: terminating and solitary short blocks. Both blocks remain in the
clear and do not require scrambling or descrambling.

5.6.2.3.2 Terminating short block:

Assume that a certain TS packet may be divided into M blocks: {b(1), b(2),, b(M)}, a frequent occurrence is
that the size of the last block is less than 128 bits. In this case, b(M) is by definition a terminating short block.
Refer to Figure 5.13 for details.

MPEG2 TS packet:

Headers and Data payload
Adaptation field il

Terminating
short block

T T (e | [o)

) 4) 4) 4
key key key key
—>» AES —>» AES —>» AES
b(4)
ws(1) vs(2) s(3) y ‘clear”

Figure 5.13: Scrambling of Data and Terminating Short Block

5.6.2.3.3 Solitary Short Block:

The second case, solitary short block, occurs when the TS packet to encrypt has only one block b(1) and its size
is less than 128 bits. Refer to Figure 5.14 for details.

MPEG2 TS packet

Headers and Data
Adaptation field payload
b(1)
| Solitairy
short block
b(1)
“clear”

Figure 5.14: "Scrambling" of Solitary Short Block

© 2008, 2009, 2011, 2015 Cl Plus LLP

43 Cl Plus Specification v1.3.2 (2015-03)

5.6.2.34 Descrambling

Similar to scrambling above, the AES decryption function is represented by b = D 4xg 125.c5c{CCK}(s), where a
Content Control Key (CCK, defined in section 8.1.4) used to decrypt / descramble a binary block s of length
equal to 128 bits (16 bytes). Decryption processes s into a block of the same size b.

When the cipher block is larger than 128 bits the content is decrypted using AES-128 in CBC mode using
following operation:

b(m) = D s cpe ACCK }s(m)]® s(m —1) Eq. 5.3
Where:
. CCK is Content Control Key.

. s(m) represents the m ™ block of 128 bits in the sequence, where m = 2..n. Decryption of the current
block s(m) requires knowledge of the cipher text s(m-1) (i.e. the previously scrambled block).

Equation 5.3 does not work for m = 1. For initialization we use following operation:
b(1) = D g5 125 ce {CCK}[S(D] eI Eq.5.4
Where:

. CCK is Content Control Key and /7 (CIV) is an initialization vector, as defined in section 8.1.4.

MPEG2 TS packet

Headers and

Data payload

Adaptation field
Terminating
short block
s(1) s(2) s(3) b(4)
Y Y Y
key key key
—>» AES —>» AES —>» AES
Y Y A 4
v > >
E JE JE clear
b(1) b(2) b(3) v b@)

Figure 5.15: Descrambling of Data and Terminating Short Blocks

© 2008, 2009, 2011, 2015 Cl Plus LLP

44 Cl Plus Specification v1.3.2 (2015-03)

MPEG2 TS packet

Headers and Data
Adaptation field payload
b(1)
| Solitairy
short block
b(1)
“clear”

Figure 5.16: "Descrambling” Solitary Short Blocks

5.7 Copy Control Exertion on Content
5.7.1 URI Definition

The content provider and the content distributor determine Usage Rules Information (URI) values for each
programme (i.e. service or event) off-line. The CA system delivers the URI securely from the network head-end
to the CICAM. The CICAM passes URI to the Host using a SAC protocol. The Host uses the URI to control
copy creation, analogue output copy control encoding, constrained image triggering and to set copy control
parameters on Host outputs.

5.7.2 Associating URI with Content

The CA System shall securely associate the URI with content, i.e. a specific MPEG Service / Event. The URI is
associated with the selected service via the 16-bit MPEG2 programme number, as specified in ISO 13818-1
[13].

All PIDs that belong to a programme (as indicated in the PMT) are associated with only one URI.

NOTE: content (i.e. MPEG2 events) covered by this specification shall not use a programme number with
value 0 (zero).

5.7.3 URI transfer — Head-End to CICAM

The URI may be transmitted from the DVB head end to the CICAM in undisclosed ways. An example is to
carry actual URI information and programme number information in an EMM or ECM message, protected by
the network CA system. The exact transport mechanism used to carry the URI data from head-end to CICAM is
out of scope for this specification.

574 URI transfer — CICAM to Host

Once the CICAM receives URI data this shall be transmitted from CICAM to Host via the URI message format.
The URI message format is described in section 5.7.5.2.

The CICAM transfers the URI to the Host under different operating conditions using the following methods:

. When watching live content, using the URI transmission and acknowledgement protocol (See section
11.3.3.6)

. When recording content with EMI=1,1, using the License Exchange protocol (See section 11.3.4.1)

. When playing back recorded content which has a license, using the Playback License Exchange
protocol (See section 11.3.4.2)

© 2008, 2009, 2011, 2015 Cl Plus LLP

45 Cl Plus Specification v1.3.2 (2015-03)

A CI Plus CICAM shall not send a URI transmission unless it has been selected by the Host for descrambling
the current service.

Immediately after power up or channel change to a CAS controlled service, the Host shall use the initial default
URI values shown below.

Table 5.7: Default Values for Cl Plus URI Version 1

Field Default Initial Value
protocol version 0x01
emi_copy_control_info Ob11
aps_copy_control_info 0b00
ict copy_control_info 0b0
rct_copy_control_info 0b0
rl_copy_control_info 0b000000
reserved bits 0b0

Table 5.8: Default Values for Cl Plus URI Version 2

Field Default Initial Value
protocol version 0x02
emi_copy_control_info 0b11
aps_copy_control_info 0b00
ict copy control _info 0b0
rct_copy_control_info 0b0
dot_copy_control_info 0b0
rl_copy_control_info 0b00000000
reserved bits 0b0

After setting this initial default URI the Host shall start a 10-second timer. If the Host has not yet successfully
completed the URI delivery protocol when the timer reaches ten (10) seconds, the Host shall change URI values
to the Error Value which is the same as the initial default value except that the ICT bit is set to Obl: in that case
the Host shall apply Image Constraint as if the ICT bit was set to one. The URI after timeout is called the final
default URI.

A CI Plus compliant device shall support URI version 0x01 and 0x02 and may ignore other URI versions. Any
future URI version shall incorporate EMI and APS bits as defined in version 0x01.

Future URI versions shall not override existing bits in URI version 0x01. This means that future URI versions
may add additional content restrictions, which a future device may support, as long as the content limitations are
not made less restrictive. The settings of the EMI, APS and ICT bits shall always be respected.

The Host is expected to cache the URI whilst tuned to a given service regardless of the signal state, i.e. if the
signal is lost due to antenna disconnection or the signal falling below the required minimum level then any
previously received URI shall remain in force.

575 URI Refresh Protocol

The URI message delivered from the CICAM to the Host is protected by the SAC (refer to section 7). The
CICAM and Host shall jointly execute the steps below, once for each transfer of the URI. Any failure of the
steps described below shall result in a failed URI delivery. If the protocol is not completed successfully before
the one second timeout expires the CICAM shall disable CA-descrambling and the Host shall set the URI to the
default URI value until the URI refresh protocol successfully completes.

The CICAM shall send a URI to the Host only after the CICAM and Host have successfully bound and
negotiated a shared Content Control Key (CCK). The CICAM shall initiate URI transfer to the Host on a CAS
controlled service immediately after:

. the Host sends a ca_pmt to the CICAM, or

. the Programme Number changes on a tuned 'channel', or

© 2008, 2009, 2011, 2015 Cl Plus LLP

46 Cl Plus Specification v1.3.2 (2015-03)

. any change in the URI bits during a programme, or

. any change in the MPEG packet ID (PID) values that the CICAM is descrambling.

The exact process is explained in Figure 5.17.

headend CICAM Host

[1] associate URI and program

[2] deliver URI in e.g. EMM (out of scope)

[3] generate URI message

[4] start 1 second timeout

|
[5] transmit Sac msg(URI_message+program_nr)
:| 1_[6] verify message

[7] confirm SAC msg(uri_confirm)
-I_[Q] exert copy control settings
| k |

[8] verify host confirm

Notes

1. This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.
2. Steps 1 and 2 are shown for completeness, but are out of scope for this specification.

3. Refer to Figure 5.11 for an overview showing both URI refresh protocol and CCK refresh protocol.

Figure 5.17: URI Refresh Protocol (informative)

The process is defined as described in Table 5.9:

© 2008, 2009, 2011, 2015 Cl Plus LLP

47 Cl Plus Specification v1.3.2 (2015-03)

Table 5.9: URI Protocol Behaviour (normative)

Description

Refer to

Association of URI with programme.

The URI is associated with the content (DVB service or event). The exact process;
including alternating URI values is out of scope.

Delivery of URI in e.g. EMM (out of scope).

The delivery of the URI is typically protected by the CA system to preserve the
association between URI and programme number. The exact delivery process is out
of scope.

CICAM generates URI message.

The CICAM calculates uri_confirm to authenticate Host acknowledgment of receipt
(Note 5), as:

uri__confirm = SHA,(uri _message|| UCK)

where:
° UCK = SHA.56 (SAK)

The value uri_confirm is locally kept for comparison in step 8.
The CICAM shall generate a cc_sac_data_req APDU for the URI message, carrying:
. the uri_message,

e the program_number

Section 5.7.5.1

CICAM starts 1 second timeout.

The CICAM starts a 1 second timeout in which the URI protocol has to complete.
(Note 1)

Figure 5.15

CICAM transmit SAC message with URI payload.

The CICAM transmits a SAC message with payload from step 3 and transmits this to
the Host. (Note 2).

Section 7.3 and
11.3.1

Host verifies message.

After the Host verifies the SAC message is correct, the Host extracts the URI value
and programme number.

Host transmits SAC message with URI confirmation.

The Host checks it supports the URI version requested by the CICAM. The Host
confirms URI delivery with the cc_sac_data_cnf APDU, carrying

. uri_confirm
and uses the SAC to transmit this to the CICAM. (Note 2)
The Host calculates uri_confirm in an similar way to the CICAM in step 3 above.

Failure to respond constitutes a failure of the copy protection system and sets the URI
to the default value (Notes 3 & 4).

Section 7.3 and
11.3.1

© 2008, 2009, 2011, 2015 Cl Plus LLP

48 Cl Plus Specification v1.3.2 (2015-03)

8 CICAM verifies Host confirm.

The CICAM compares the received uri_confirm from the Host with the value
calculated in step 3 above.

Failed equivalence constitutes a failure of the copy protection system and sets the
URI to the default value (Notes 3 & 4).

9 Exert copy control settings

The Host shall control its outputs based on the valid URI immediately.

Notes:

1. If the steps above are not completed before the one-second timeout expires the CICAM SHALL
disable CA descrambling of copy protected content (i.e. EMI # 0x0) for the associated MPEG
programme until the URI delivery protocol completes successfully. When the protocol completes then
the CICAM shall wait for one second before the URI protocol is reinitiated.

Refer to section 7.2 for an explanation how the URI protocol data is packed into a SAC message.

The Host shall apply the default URI settings. The default URI values are defined in section 5.7 4.
Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations
adhere to the SHS validation list. See SHS Validation List [11].

aoRwb

5.7.51 URI Version Negotiation Protocol

CICAM Host

rl-l [1] request host supported URI versions
¥ [2] confirm URI version(s,

Figure 5.18: URI Version Negotiation Protocol

The URI version negotiation is performed once after (re)initialisation of the SAC. The CICAM sends a message
to the Host requesting the URI versions it is capable of supporting. The Host replies with a bitmask of the URI
versions it supports. Refer to section 11.3.3.7.

The CICAM shall determine matching combinations of URI versions supported by both the CICAM and Host.
The CICAM shall decide what URI version to use, the exact process is out of scope of this specification.

If no matching combinations of URI versions other than the default are found, the system shall use the default
URI version.

5752 Format of the URI message
The URI version 1 message syntax is defined in Table 5.10, version 2 syntax is shown in Table 5.11.

Table 5.10: URI Version 1 Message Syntax

Field length Mnemonic
uri message () {
protocol version 8 uimsbf
aps_copy control info 2 uimsbf
emi copy control info 2 uimsbf
ict copy control info 1 uimsbf
rct copy control info 1 uimsbf
reserved for future use 4 uimsbf
rl copy control info 6 uimsbf
reserved for future use 40 uimsbf
}

© 2008, 2009, 2011, 2015 Cl Plus LLP

49

Cl Plus Specification v1.3.2 (2015-03)

Table 5.11: URI Version 2 Message Syntax

Field length Mnemonic
uri message () {

protocol version 8 uimsbf
aps_copy control info 2 uimsbf
emi copy control info 2 uimsbf
ict copy control info 1 uimsbf
if (emi copy control info == 00) {

rct copy control info 1 uimsbf
}
else {

reserved = 0 1 uimsbf
}
reserved for future use 1 uimsbf
if (emi copy control info == 11) {

dot copy control info 1 uimsbf

rl copy control info 8 uimsbf
}
else {

reserved = 0x00 9 uimsbf
}
reserved for future use 40 uimsbf

}

5.7.5.3

Coding And Semantics Of Fields

protocol_version: This parameter indicates the version of the URI definition and is defined in Table 5.12:

Table 5.12: Allowed Values for protocol_version

Contents Meaning Comment

0x00 Forbidden not used in this specification

0x01 URI protocol version 1 specification version 1.2

0x02 URI protocol version 2 specification version 1.3

0x03-0xFF reserved for future use

Note: A device made according to this version of the Cl Plus specification shall understand
values 0x01 and 0x02 and ignore URI messages that have a protocol_version value that
it does not support.

aps_copy_control_info: This parameter describes the Analogue Protection System (APS) bits which define the

setting of analogue copy protection used on the analogue output, as explained in Table 5.13:

Table 5.13: Allowed Values for aps_copy_control

Contents Value in Binary Comment
0x0 00 Copy Protection Encoding Off
0x1 01 AGC Process On, Split Burst Off
0x2 10 AGC Process On, 2 line Split Burst On
0x3 11 AGC Process On, 4 line Split Burst On

emi_copy_control_info: This parameter describes the Encryption Mode Indicator (EMI) bits. The CI Plus

system shall use the EMI bits to exert copy control permissions of digital and analogue outputs as explained in

Table 5.14.
Table 5.14: Allowed Values for emi_copy_control
Contents Value in Binary Comment
0x0 00 Copying not restricted
0x1 01 No further copying is permitted
0x2 10 One generation copy is permitted
0x3 11 Copying is prohibited

© 2008, 2009, 2011, 2015 Cl Plus LLP

50 Cl Plus Specification v1.3.2 (2015-03)

ict_copy_control_info: This parameter describes the Image Constrained Trigger (ICT) bit. The Host shall use
the ICT bit to control a constrained image quality on high definition analogue component outputs explained in
Table 5.15.

Table 5.15: Allowed Values for ict_copy_control_info

Contents Value in Binary Comment
0x0 0 No Image Constraint asserted
0x1 1 Image Constraint required

rct_copy_control_info: This parameter describes the Encryption Plus Non-assert (RCT) bit. The Host shall use
the RCT bit to trigger redistribution control on Controlled Content when the RCT value is set to a value of one
(1) in combination with the EMI bits set to a value of zero, zero (0,0), which signals the need for redistribution
control to be asserted on Controlled Content without the need to assert numeric copy control as explained in
Table 5.16.

Table 5.16: Allowed Values for rct_copy_control_info

Contents Value in Binary Comment
0x0 0 No Redistribution Control asserted. Default.
0x1 1 Redistribution Control asserted

dot_copy_control_info: This parameter describes the Digital Only Token (DOT) bit. The Host shall use the
DOT bit to control analogue video outputs as explained in Table 5.17. When the EMI bits are equal to (1,1) the
CICAM may set the dot_copy_control info bit to a value other than (0) to prohibit the output of analogue video
content by the Host.

Table 5.17: Allowed Values for dot_copy_control_info

Contents | Value in Binary Comment

0x0 0 No Digital Only Constraint asserted (default)

0x1 1 Digital Only Constraint asserted; output on analogue video
outputs is prohibited.

rl_copy_control_info: This field describes the retention limit of the recording and/or time-shift of content from
the time that it is retained. Figure 5.19 shows how the retention limit is applied. The default
rl_copy_control_info bits in the URI message shall always be filled with the default retention limit value 0x00
except when the EMI bits are set to a value of one, one (1,1). When EMI is (1,1) the CICAM may set the
rl_copy_control_info bits to a value other than 0x00 (zero) to override the default 90 minutes retention limit,
other values may signal a retention limit in hours or days. When EMI is (1,1) and the CICAM has not received
information from the network then the default rl_copy control info value in the URI message is filled with the
default retention limit value 0x00.

Table 5.18: URI Version1 Allowed Values for rl_copy_control_info

Contents Value in Binary Comment
0x00 000000 Default retention limit of 90 minutes applies
0x01 000001 Retention limit of 6 hours applies
0x02 000010 Retention limit of 12 hours applies
0x03-0x3F 000011-111111 Retention limit of 1-61 multiples of 24 Hrs applies as signalled
by bits

© 2008, 2009, 2011, 2015 Cl Plus LLP

51 Cl Plus Specification v1.3.2 (2015-03)

Table 5.19: URI Version 2 Allowed Values for rl_copy_control_info

Contents Value in Binary Comment
0x00 00000000 Default retention limit of 90 minutes applies
0x01 00000001 Retention limit of 6 hours applies
0x02 00000010 Retention limit of 12 hours applies
0x03-0xFE 00000011-11111110 | Retention limit of 1-252 multiples of 24 Hrs applies as signalled
by bits
OxFF 11111111 Unlimited retention period.

If the CICAM receives rl_copy control info from the network which is for a higher URI version than the Host
can support, the CICAM shall use the highest rl copy control info value capable for the matching URI version.

For Example:
Network rl_copy control info = 0xf0 (238 days)
Host with URIV2 rl_copy_control_info = 0xf0 (238 days)

Host with URIv1 rl_copy_control info = 0x3f (61 days)

© 2008, 2009, 2011, 2015 Cl Plus LLP

52 Cl Plus Specification v1.3.2 (2015-03)
90 mins retention limit
19:00 20:00 21:00
Event Start Now Event End
< : ; 1hr ofﬁ::vr:b?:rrently Empty Buffer : ;
18:00 23:00
2 Hr Event
90 mins retention limit
19:00 20:30 21:00
Event Start Now Event End
{ I 90 mins of event currently viewable Empty Buffer I }
18:00 23:00
2 Hr Event
90 mins retention limit
19:00 21:00 21:00
Event Start Event End Now
{ I :s:]et‘::t 90 mins of event currently viewable I }
18:00 23:00
2 Hr Event
90 mins retention limit
19:00 21:00 21:30
Event Start Event End Now
| 1 Hour of event ti |
{ | deleted content our ?/i:\\rlvzrl;lecu"en Y | ;
18:00 23:00
2 Hr Event
90 mins retention limit
19:00 21:00 22:30
Event Start Event End Now
{ I deleted content I }
18:00 23:00

2 Hr Event

Figure 5.19: Example of a Retention Time Limit of 90 mins

© 2008, 2009, 2011, 2015 Cl Plus LLP

5.8

53 Cl Plus Specification v1.3.2 (2015-03)

Modes Of Operation

Hosts and CICAMs that meet this specification shall be completely compatible with the Common Interface
specified in EN 50221 [7] and TS 101 699 [8]. A DVB CICAM inserted into a CI Plus Host shall function as
normal. The Host shall recognise that it is DVB CI and use the resources that it has. If a CI Plus CAM is
inserted into a DVB CI Host, the Host shall recognise it as a valid DVB CI device and function normally. Table
5.20 describes the various operating modes of CICAMs and Hosts.

Table 5.20: Operating Modes of CICAM and Host

Host CICAM State EMI>0 EMI=0

Cl Plus DVB CI DVB CI (Note 1) DVB ClI

DVB CI Cl Plus No Descrambling (Note 2) DVB CI (Note 4)

Cl Plus Cl Plus Authenticated Descramble + CC (Note 4) Descramble

Cl Plus Cl Plus SAC Failed No Descrambling DVB CI (Note 4)

Cl Plus Cl Plus CCK Failed No Descrambling DVB CI (Note 4)

Cl Plus Cl Plus CICAM Shunned Shunning Active (See section | Shunning Active (See section
10.4.2) 10.4.2)

Cl Plus Cl Plus Host Revoked CICAM Pass-through (Note 3) | CICAM Pass-through (Note 3)

Cl Plus Cl Plus Authentication Failed No Descrambling No Descrambling

Notes:

1. Only if ClI Plus descriptor absent in SDTactual-

2. CICAM shall detect EMI >0 and shall not descramble.

3. Content is passed through the CICAM un-altered.

4. The service operator and CAS may choose under what Content Control conditions to descramble

content to a DVB ClI device
5.8.1 Host Operation with Multiple CICAMs

A CI Plus compliant Host may support a maximum of 5 CI Plus slots. Each slot may contain either a DVB
CICAM or a CI Plus CAM. All combinations are allowed. There may be additional slots that support DVB CI

only.

For a single tuner Host the TS shall be daisy-chained through each inserted CICAM. See Figure 5.20. For dual-
tuner systems, there is no need for daisy-chaining and it's up to the Host manufacturer to route the two TS in a
suitable way.

Host

D

CICAM 1

CICAM 2, ...,N-1

) CICAM N

Figure 5.20: Daisy Chaining Of Transport Stream Through CICAMs

© 2008, 2009, 2011, 2015 Cl Plus LLP

54 Cl Plus Specification v1.3.2 (2015-03)

The Host and single CICAM shall be able to descramble one service, and possibly re-scramble it according to
this specification. A situation where two or more modules descramble a different service of the TS may be
optionally performed by the Host and CICAM.

When a CICAM is plugged in, the Host starts the communication with the CICAM as described in EN 50221
[7]. The CICAM opens the sessions required for its operation. The Host remembers the corresponding slot
number for each open session. When more than one CICAM is present during start-up of the Host, the Host may
initialize the CICAMs one by one, i.e. it may delay initialization of the next CICAM until the previous one is
complete.

At start-up, a CI Plus CAM first performs the verification of the Host's Authentication Key (AKH). If this
succeeds, the complete authentication protocol may be skipped. Section 6.3 explains this procedure. When a
CICAM tries to open a session to a resource, the Host may be busy for various reasons. A CICAM shall accept a
response "'resource busy" when it tries to open a session.

Compliant CICAMs shall fully support the CA resource as defined in EN 50221 [7]. When a service is to be
descrambled, the Host may send a ca_pmt command with ca_ pmt cmd id query to all inserted CICAMs. Each
CICAM checks if it can descramble the service. For this check, the CICAM refers to private data from the CA
system. After receiving the ca_pmt_reply from each CICAM, the Host may select one to descramble by sending
a ca_pmt with ca_ pmt command_id set to ok descrambling to this CICAM. A CICAM that is not selected for
descrambling shall pass the TS unaltered.

CICAMs shall support Host implementations where multiple slots share the same address, data and some
control lines. Each CICAM shall check its Card Enable #1 pin (CE1# pin) before acting on any signals on the
shared bus.

When a module requests a CC key recalculation while the Host is running a CC key recalculation with another
module, the Host may indicate that it is busy.

When a CICAM encounters data in the TS which is not understood, it shall relay the TS unaltered.

5.8.2 Single CICAM with Multiple CA System Support
5.8.2.1 Introduction

This section defines how a single CICAM with multiple CA Systems and multiple smartcard readers shall
operate with the CI Plus requirements.

5822 CICAM Device Certificates

The CICAM shall have only one Device Certificate; the certificate is not dependent on the number of CA
Systems supported by the CICAM.

5.8.2.3 CCK Refresh
The CCK is independent of the CA System; the CA System is responsible for controlling the CCK refresh.
At CICAM start-up the CCK is created as defined in section 8.1.4.

Only one CA System shall be active at any one time, only the active CA System shall control the CCK refresh
command. CCK refresh is defined in section 8.1.2.

5824 Host revocation

Revocation of the Host shall only be performed by the active CA system.

5.9 Authentication Overview

The CI Plus specification requires mutual authentication of both the Host and CICAM. Before the CICAM may
start descrambling CA protected content, the Host and CICAM shall pass an authentication procedure, which is
based on successfully completing the following:

© 2008, 2009, 2011, 2015 Cl Plus LLP

55 Cl Plus Specification v1.3.2 (2015-03)

. CICAM requests and Host provides its certificate chain. CICAM verifies the signature of the Host
device certificate that contains HOST ID and the CICAM verifies the signature of the Host Brand
certificate.

. Host requests and CICAM provides its certificate chain. Host verifies the signature of the CICAM
device certificate that contains the CICAM_ID and the Host verifies the signature of the CICAM
Brand certificate.

. CICAM and Host prove they possess the private key corresponding with the public key embedded in
the certificate by signing a DH public key, together with other protocol data, and sending it to the other
device for signature validation.

. CICAM and Host prove that they can derive the authentication key.
This process is described in detail in section 6.

The mutual authentication mechanism is based on Diffie-Hellman (DH). Refer to PKCS #3 [31] for a detailed
explanation of DH. The CI Plus authentication protocol utilizes a 3 pass protocol, applied to the standard DH
algorithm for key agreement. A simplified explanation of the 3 pass DH is given in Figure 5.21.

CICAM Host

-I-I [1] generate nonce

[2] send (nonce)

[3] generate random x

]
[4] DH Public key Host = g* mod p

[5] send(DH Public key Host)

II [6] generate random y

k]
[7] DH Public key Module = g* mod p

|
I I [8] send(DH Public key Module)

J-I [9] DH private key = (g*)’ mod p

[10] DH private key = (g¥)* mod p

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked

Figure 5.21: Diffie-Hellman Three Pass Process (informative)

Note that both sides compute a DH private key. Each side computes the key starting with a different private
values (e.g. x and y) and end up with the same secret (DH private) key.

Several measures are taken to protect the DH parameters in transit between the CICAM and Host:

. The CICAM starts the communication by sending a nonce to the Host. This nonce shall be covered by
the complete protocol and used in signatures for parameter exchange in the protocol.

© 2008, 2009, 2011, 2015 Cl Plus LLP

56 Cl Plus Specification v1.3.2 (2015-03)

. The CICAM and Host shall mutually exchange their stored device and brand certificates which are
created by the ROT. The Host shall verify the signature of the opposite certificate.

. The CICAM and Host shall mutually exchange protocol parameters protected with a signature using
the public / private key framework from the certificates. The sender shall create a signature on all
exchanged protocol parameters using its private key and the Host shall positively verify a signature
using the opposite public key received from its certificate.

Refer to section 6 for a detailed description of the exact authentication mechanisms.

5.10 Content License Exchanges

When an item of content to be recorded has a URI with EMI = “1,1”, the CICAM has the option to provide a
license at the time of recording. The Host shall associate this license with the item of content for the lifetime of
the recording. If a license exists for an item of content, the license shall be checked by the original CICAM
when the content is played back to determine if the Host still has entitlement rights to the content. The content
license checking requires that the CICAM and Host securely transfer licenses to each other over the Common
Interface. On recording, the license supplied by the CICAM contains CAS specific data that is stored by the
Host and is associated with the recorded content. On playback of the recorded content then the associated
license is transferred back to the original CICAM that created the license without any change. The CICAM
evaluates the license and returns a playback status in addition to a new license and playback URI which replaces
the existing content license. The Host is required to return the license to the CICAM which originally issued the
license; the Host uses the CICAM_ID to identify the CICAM used for recording and for subsequent playback.

The licenses are always exchanged via the SAC using the cc_sac_data_req and cc_sac_data_cnf APDUs, see
sections 11.3.1.3 and 11.3.1.4.

5.10.1 Record Start Protocol

The Host shall signal the start of a CA protected service recording to the CICAM with the Record Start protocol
using the SAC, see section 11.3.4.4 for protocol details. This exchange informs the CICAM of the current
operating mode of the Host and optionally allows the Host to provide the CICAM PIN. The CICAM may cache
the CICAM PIN for unattended recording or timeshift. The CICAM PIN shall only be used to enable
uninterrupted recording when a future parental control event may occur. The CICAM PIN shall not be used to
enforce parental control on playback and live viewing where the user shall be asked to enter the CICAM PIN by
means of the MML.

The Host may initiate a Record Start protocol on a FTA service in anticipation that the service may change to
CA protected service later. The CICAM should not expect another Record Start protocol at any future transition
between FTA and CA protected.

5.10.2 Content License Exchange on Record

If a license is required to be associated with an item of content, then at the start of recording the CICAM sends
the Host a license using the SAC. This license exchange process uses the CICAM to Host License Exchange
Protocol, see section 11.3.4.1 for more detail. The URI which accompanies the license shall be applied
immediately and supersedes any previous URI.

5.10.3 Content License Exchange on Check

The Host may determine the current state of a content license associated with a recording by using the License
Check Exchange Protocol, see section 11.3.4.3. The Host shall send the message to the CICAM that originally
issued the license. The License Check Exchange Protocol is provided for Host information only and is not used
for evaluating playback rights.

The CICAM responds to the License Check Exchange with status information of the license. The status
information provides information on content availability and may be used when displaying a recording library.
The status information includes a play count which is an 8-bit field containing the remaining number of plays
that the user is entitled to.

© 2008, 2009, 2011, 2015 Cl Plus LLP

57 Cl Plus Specification v1.3.2 (2015-03)

5.10.4 Content License Exchange on Playback

On playback of content which has an associated license then the Host shall send the license to the original
content recording CICAM for evaluation. The license is sent to the CICAM securely on the SAC using the
Playback License Exchange Protocol, see section 11.3.4.2. The CICAM processes the license to establish
whether it still has rights to play the content. A new license and URI are returned to the Host to replace the
originals in case the information contained has changed, e.g. play count. The Playback License Exchange
Protocol is performed while playing the content to ensure that playback start is not delayed. If the Playback
License Exchange response is not OK, or the response takes longer than 10 seconds, then the playback shall be
stopped. The URI which accompanies the license in the Playback License Exchange Protocol shall be applied
immediatly.

5.10.5 Content License and Timeshifting

The Host is not required to store or exchange the content licenses when buffering content for timeshift, e.g. live-
pause (90 minute retention). However, if the Host subsequently changes the buffered content into a recording, it
shall associate the received licenses with the item of content for the lifetime of the recording.

Note: This implies that if timeshifting is implemented with the ability to convert the timeshift buffer into a
recording then all content licenses received during the timescale of the buffer contents must be retained until the
buffer contents are no longer able to be converted into a recording.

5.10.6 Record Stop Protocol

The Host shall signals the end of a recording using the Record Stop Protocol using the SAC, see section
11.3.4.6. For every Record Start Protocol for a given program_number the Host shall execute a corresponding
Record Stop Protocol. e.g. on a channel change the Host shall send a Record Stop Protocol for the current
service, initiate a tune to the new location and then send Record Start Protocol for the new service.

5.11 Parental Control

For Free-To-Air services age rating for content may be signalled with the DVB parental rating descriptor. The
Host may optionally offer a mechanism for:

e Setting a maximum age rating of content above which a PIN is required to be entered before viewing.
e For entering the PIN that will authorise the exception to this limit. For the purposes of this document
this PIN will be referred to as the Host PIN.

For CA protected services the age rating may be delivered via the CA system or in the broadcast stream using
the DVB parental rating descriptor. On CA protected services the derivation of parental control is out of scope
of this specification and is determined by the CAS and/or CICAM. The CICAM may offer a menu item to set
the PIN that authorises an exception. For the purposes of this document this will be referred to as the CICAM
PIN. The exact method used for the delivery of the age rating in this case is out of scope of this specification.

CI Plus version 1.3 adds features to the Content Control resource to enable these two potential parental control
systems to be handled as one for the convenience of the user. The parental control for CA protected services is
handled as normal depending on the CICAM PIN capabilities. The CICAM informs the Host of the minimum
age rating where it starts to handle PIN code management; this allows the Host to exert parental control when
the Host rating is set to a lower level than the CICAM rating. For FTA services, when the Host determines that
the current content has an age rating that exceeds the user age threshold, then the Host may pass PIN entry
control to the CICAM with a cc PIN MMI req() message containing the Host FTA PIN code (depending on
the reported CICAM PIN capabilities). The CICAM then creates an MMI prompting the user to enter the PIN.
The CICAM compares the PIN entered with both the CICAM PIN and with the Host PIN passed in the message
and if the user entered PIN matches with either then the content is allowed to be viewed.

During normal viewing the user may be asked to enter a PIN code to continue viewing a service or event. This
may occur on service selection or at the start of a new event. In the normal course of events the viewer will enter
the correct PIN and continue to watch the service or event. The video and audio shall be unavailable until the
correct PIN is entered.

During recording or timeshifting of CA protected content the aforementioned behaviour would cause
unacceptable blank periods where the content is not being descrambled for the recording and therefore could not

© 2008, 2009, 2011, 2015 Cl Plus LLP

58 Cl Plus Specification v1.3.2 (2015-03)

be viewed during playback. CI Plus version 1.3 specifies a record start protocol whereby the Host passes the
PIN to the CICAM which shall be cached by the CICAM (depending on the CICAM PIN capabilities) in case it
is required during the recording. To ensure that this mechanism is not misused the CICAM shall clear any stored
cached PIN codes at the end of the recording.

Within the scope of this specification the Host and CICAM PINs are assumed to be numerical digits 0-9 and
shall be no longer than 8 digits.

Within the context of parental control the term AV includes all associated elementary stream components that
may be presented to the viewer. e.g. “AV blanking” means the Host shall disable the presentation of audio,
video, subtitles, etc.

The Host must abide by the parental control rules defined in the CI Plus Device Interim License Agreement [6].

5.11.1 CICAM PIN Capabilities

The Content Control resource PIN provides features that allow for different levels of PIN management by the
CICAM. The CICAM reports its capabilities in response to a capabilities request from the Host. The CICAM
may offer no PIN code management at all or may report the capability to handle PIN code management for CAS
controlled content, the capability to handle PIN code management for both CAS controlled and Free-To-Air
content.

The cc_PIN capabilities APDUS, see section 11.3.2.1, enables the Host to determine how any PIN code parental
controls for programme events and services are to be managed. The resource shall be interpreted and
implemented by all Host devices.

The PIN capabilities are sent to the Host using cc_ PIN_capabilities_reply() APDU. This APDU is sent in
response to a cc_PIN_capabilities_req() from the Host. The cc_PIN_capabilities reply() APDU is also sent to
the Host whenever the PIN capabilities change including when the effective age rating at which the CAM starts
managing the PIN code is changed in the CICAM.

The PIN capabilities APDU contains information allowing the CICAM to inform the Host as to how any PIN is
being handled ensuring that the Host does not interfere with the operation. The APDU contains a time and date
of the last PIN change which enables the Host to determine if any outstanding scheduled recordings require a
new PIN code.

The CICAM PIN capability is defined in the following sections.

5.11.11 No CICAM PIN Capabilities

The CICAM does not perform any parental rating on any services (FTA and CAS). The Host may optionally
provide a mechanism to do parental rating at the discretion of any user parental rating setting. The Host provides
a native user interface for PIN entry.

511.1.2 CICAM PIN Capabilities for CA Services Only

The CICAM does not perform any rating management on FTA services. The CICAM performs the CAS PIN
code management for services that the CICAM is capable of descrambling (e.g. matching CA_system_ID). The
CICAM shall use a high level or application MMI message to get the PIN from the user. The Host shall ignore
any PIN code management from a CICAM which is not capable of descrambling the content. The Host may
optionally do parental rating on FTA services at the discretion of the user setting a parental rating and CA
services if the parental rating set in the Host is lower than the rating provided in the CICAM PIN capabilities, in
which case the Host provides a native user interface for PIN entry.

511.1.3 CICAM PIN Capabilities for CA and FTA Services

The Host may request the CICAM to display a MMI screen for FTA services and CA services where the
parental rating set in the Host is lower than the rating provided in the CICAM capabilities. The Host does not
need to provide a native user interface for PIN entry and may use the CICAM to perform PIN entry. The
CICAM shall not indiscriminately show a PIN MMI unless explicitly requested by the Host on FTA services.
The CICAM confirms the PIN entered is correct with the CICAM PIN or the Host PIN sent in the

© 2008, 2009, 2011, 2015 Cl Plus LLP

59 Cl Plus Specification v1.3.2 (2015-03)

cc_ PIN. MMI req() before returning the status in the cc PIN reply(). The CICAM performs the CAS PIN
management and shall use a high level or application MMI message to get the PIN from the user.

51114 CICAM PIN Capabilities for CA Services Only (cached PIN)

The CICAM does not perform any rating management on FTA services. The CICAM performs the CAS PIN
code management and shall use the High-Level or Application MMI to get the PIN from the user. The Host may
optionally perform parental rating, at the discretion of the user setting a parental rating, on both FTA services
and CA services when the parental rating set in the Host is lower than the rating provided in the CICAM PIN
capabilities, in which case the Host provides a native display for PIN entry.

The Host may use the Record Start Message to provide the CICAM with the CICAM PIN. In this case the
CICAM shall use the cached PIN code for enabling uninterrupted recording. The viewing PIN provided by the
user via the MMI shall be used for control of the live viewing of the content and shall not interrupt any ongoing
recording.

Moving to a timeshift or watch and buffer mode, if the cached PIN was entered incorrectly (via the record start)
then the viewing PIN shall replace the cached PIN.

511.1.5 CICAM PIN Capabilities for CA and FTA Services (cached PIN)

The Host may request the CICAM to display a MMI screen for FTA services and CA services where the
parental rating set in the Host is lower than the rating provided in the CICAM capabilities. The Host does not
need to provide a native interface for PIN entry and uses the CICAM MMI. The CICAM shall not
indiscriminately show a PIN MMI unless explicitly requested by the Host on FTA services. The CICAM
confirms the PIN entered is correct after comparison with the CICAM PIN and/or the Host PIN sent in the
cc_ PIN. MMI req() before returning the status in the cc PIN reply(). The CICAM performs the CAS PIN
management and shall use the High-Level or Application MMI message to get the PIN from the user.

The Host may use the Record Start Message to provide the CICAM with the CICAM PIN. In this case the
CICAM shall use the cached PIN code for enabling uninterrupted recording. The viewing PIN provided by the
user via the MMI shall be used for control of the live viewing of the content and shall not interrupt any ongoing
recording.

Moving to a timeshift or watch and buffer mode, if the cached PIN was entered incorrectly (via the record start)
then the viewing PIN shall replace the cached PIN.

5.11.2 CICAM PIN code

The CICAM may offer the management of a PIN code and age rating value to provide parental controlled access
to content. The CAS may obtain the requirement for a PIN directly from the CAS system (e.g. ECM) or by
using SI information in the broadcast stream such as the DVB parental rating_descriptor.

In an unattended recording mode the entry of a PIN code may be required and the cc PIN_cmd() is used to pass
the PIN code to the CICAM at the point the user booked a recording event to confirm the PIN is correct. The
CICAM shall acknowledge the PIN code using a cc_PIN_reply(). The PIN sent in the cc PIN_cmd() shall not
be stored or used for unattended recording or timeshift by the CICAM, instead the CICAM shall only use the
PIN provided in the Record Start protocol.

© 2008, 2009, 2011, 2015 Cl Plus LLP

60 Cl Plus Specification v1.3.2 (2015-03)

User HOST CICAM

¢———CAM Detected—————

cc_PIN_capabilities_req()—————m

cc_PIN_capabilities_reply()

—————
Capability_field == “03” or “04”

Set record event with optional Pin———#»|

cc_PIN_cmd()———» (Optional) Confirms pin is
correct at the time of
setting the record event

wakes up, tunes to service

Timer recording start: HOST 4——cc_PIN_reply()}———

4———CAM Detected———

cc_PIN_capabilities()
Capability_field == 03" or “04”

Record Start message »

operating_mode == “02"

—— —cc_PIN_event()———

4 Parental rating updated
B cc_PIN_event()-------------------7

Record Stop message————m

Start playback———————»»> CICAM checks Parental
rating is higher than rating on
—CC_PIN_ y———» o
The Host shall blank the AV ce_PIN_playback(the CAS/CICAM: if yes
to the user until the next CICAM displays MMI
positive PIN_reply cc_PIN_reply(
4 Parental rating updated
777777777777777777 cc_PIN_playback()--------------
e cc_PIN_reply()-------------------—

Figure 5.22: Unattended Record Sequence Diagram (Informative)

To start a recording a PIN code may be required to start the CICAM descrambling, in this case the Record Start
SAC message may be used to pass the PIN code to the CICAM with no user interaction. The CICAM shall
provide the PIN to the CAS if the PIN is required to descramble the recorded program and acknowledge the PIN
code using the cc_PIN_event() containing the parental control rating for users during playback. If the parental
rating for the program changes the Host is not required to resend the PIN and the CICAM provides the PIN to
the CAS and sends an updated cc_ PIN_event() to the Host.

When the Host stops an unattended recording the Host sends a Record Stop message, the CICAM stops using
the cached PIN for descrambling the content.

During playback, Figure 5.22 shows that the CICAM receives a cc PIN playback() APDU when the Host
encounters a ‘pin_event’ in the recording. Depending on the Operator requirements or local legislation, the
CICAM determines if parental control should be enforced. In the case that the CICAM decides parental control
does not have to be enforced the CICAM sends a cc PIN reply() APDU with a status of “PIN code correct” or
“Video Blanking Not Required”. The Host blanks the AV for the period between the ‘pin_event’ in the
recording and receiving a cc_ PIN reply() APDU with a status of “PIN code correct” or “Video Blanking Not
Required”, this may cause a flicker. The flicker may be prevented by scheduling the cc PIN playback() APDU
one or more seconds early thereby allowing the CICAM sufficient time to send the cc PIN reply() APDU

© 2008, 2009, 2011, 2015 Cl Plus LLP

61 Cl Plus Specification v1.3.2 (2015-03)

before the actual ‘pin_event’ is encountered in the recording. If the ‘pin_event’ in the recording is encountered
before the cc_ PIN reply() APDU is received by the Host then the Host shall blank the AV until the
cc_PIN reply() APDU is received with “PIN code correct” or “Video Blanking Not Required”.

User

HOST

————Channel selected/change———»>|

The Host is not required to
blank the AV.
No cc_PIN_reply will be sent
by the CICAM

The Host shall blank the AV
to the user until the next

positive cc_PIN_reply

Start Timeshift

Pause/Rewind

—

Start playback———————

The Host shall blank the AV
to the user until the next
positive cc_PIN_reply

Playback cancelled————————p»

CICAM

————CAM Detected————

————cc_PIN_capabilities_req()——»

cc_PIN_capabilities_reply()
Capability_field == “01” or “02"

Record Start message »
operating_mode == “00"

cc_PIN_event()
PINcode_status == 0x04

cc_PIN_event()
PINcode_status == 0x02

——cC_PIN_reply()—————

Change Operating Mode message »

operating_mode == “01"

4¢——cc_PIN_event()——

+———————cc_PIN_playback(}———»>

—cc_PIN_reply()————

Change Operating Mode message >
operating_mode == “00"

CICAM continues to
descrambles the content.

Parental rating update —
CICAM provides a MMI for
PIN if required.

CICAM continues to
descrambles the content. If
the PINcode_status ==
“0x00”, “0x01” or “0x03” the
CICAM stops descrambling

During this mode the CICAM
will not provide MMI for PIN.

4 Parental rating updated
R cc_PIN_event()-----------------—

CICAM checks Parental
rating is higher than rating on
the CAS/CICAM; if yes
CICAM displays MMI

4 Parental rating updated
777777777777777777 cc_PIN_playback()---------------p»

Figure 5.23: Timeshift Sequence Diagram (Informative)

At playback the Host shall send the cc PIN_playback() APDU with the age rating supplied by the CICAM on a
cc_PIN event() when the recording was made to the CICAM which originally sent the cc PIN event(). The
CAS checks the rating and requests a high level or application MMI to obtain the PIN information, if required,
before returning a cc_PIN_reply() to the Host. The CICAM responds to the Host with the cc PIN reply() to
confirm if the Host may continue playback of the recording.

Figure 5.23 shows that during the viewing of live broadcasted content the Host receives a cc_ PIN_event()
APDU after which it blanks the AV. It is not necessary for the Host to pro-actively blank the AV when the

© 2008, 2009, 2011, 2015 Cl Plus LLP

62 Cl Plus Specification v1.3.2 (2015-03)

PINcode status field in the cc PIN event() APDU is equal to ‘0x04’ (Video blanking not required). The ‘PIN
event’ must be stored with the associated content for the possible enforcement of parental control during
playback.

If the Host stops recording it shall send a Record Stop message. The CICAM shall stop using the cached PIN to
descramble the content. If the previously entered viewing PIN was correct this shall be used to allow the viewer
to watch the content with no interruption. If the previously entered viewing PIN was incorrect then the CICAM
shall enforce the appropriate parental control.

5.11.3 Host PIN code

The Host PIN code is a private PIN code normally managed by the Host and end-user only. The Content Control
resource allows the CICAM PIN code to be used by the Host to present age rated Free-To-Air content. Host PIN
code management is a optional feature that may or may not be implemented by a Host manufacturer.

On a Free-To-Air service, if the Host determines that the parental control rating of the service is higher than the
rating set by the user then the Host sends the cc PIN. MMI req() with the Host PIN to the CICAM to use a high
level or application MMI message to get the PIN from the user. The CICAM confirms the PIN entered matches
the CICAM PIN or the PIN sent in the cc PIN. MMI req() before returning the cc PIN reply(). Figure 5.24 is
provided for informative purposes:

User HOST CICAM

-¢—CAM Detected

cc_PIN_capabilities_req()——»

cc_PIN_capabilities_reply()

-
Capability == “02” or “04”

—EIT with age ratings»|
cc_PIN_MMI_req()——»

MM

MM

PIN entered————»
MMI response————————p»

~4——cc_PIN_reply()

Figure 5.24: Free to Air PIN (Informative)

© 2008, 2009, 2011, 2015 Cl Plus LLP

63 Cl Plus Specification v1.3.2 (2015-03)

5.11.4 Notification that a PIN is required

The cc PIN_event() APDU is sent by the CICAM to notify the Host that a PIN is required to view the recorded
program and to provide the parental rating for use during playback and the time at which it has changed. If the
parental rating of the program changes the Host is not required to resend the PIN and the CICAM provides the
PIN to the CAS and sends an updated cc_PIN_event().

The CICAM shall send the cc PIN_event() APDU to the Host whenever the parental rating changes, this
includes the transition from when a PIN is required to when a PIN is no longer required. i.e. parental rating has
been removed. The CICAM shall send a rating of 0x00 (parental rating undefined) to inform the Host that the
PIN is no longer required.

CICAMs with a CA_system_ID that does not match that of the program to be recorded shall not send

cc_PIN event(). Hosts shall ignore cc PIN events() from any CICAM where the CA_system_ID does not
match the currently selected service. The CICAM shall not send a cc_ PIN_event() APDU when the Host is not
recording i.e. the Host has not completed the Record Start Protocol.

CICAMs with a CA_system_ID that matches that of the program to be recorded but are not able to descramble
the program to record (e.g. No Rights available) shall send a cc PIN_event() with the status "Error - Content
still CA scrambled".

CICAMs with a CA_system_ID that matches that of the program to be recorded but are not able to descramble
due to incorrect PIN entry shall send a cc PIN_event() with the status "Error - Bad PIN code".

5.11.5 Transfer of Parental Rating to CICAM

In recorded content the point at which parental rating changes, e.g. at event boundaries, is indicated by the
cc_PIN event() which is stored with the content, see section 11.3.2.4. During playback when the parental rating
of the content changes the Host sends a cc PIN playback() to the CICAM, see section 11.3.2.5.

The Host is required to return the cc_ PIN_playback() to the CICAM which originally descrambled the content;
the Host uses the CICAM_ID to identify the CICAM used for descrambling and subsequent playback. When
playback is attempted and the CICAM is not present or not responding then the Host shall continue to blank the
parental controlled content until such time that the original CICAM is again present in the Host and is able to
process the PIN playback request.

5.11.6 PIN Code Caching

The Host may provide the capability to store a PIN to be used as part of a record start message so that the
CICAM is able to continue descrambling the content on encountering parental rating control. The Host shall
only use this cached PIN for recording or confirming the cached PIN for a future record event.

The Host shall not reveal the cached PIN to the user in any form e.g. via the native UI or menu.

5.12 Recording and Playback

This section discusses the recording storage and subsequent playback requirements of a Host that records CI
Plus protected content using the Content Control resource. The Host is always required to honour the URI
settings, Parental Control (PIN) notifications and Content License.

The URI, License and PIN changes shall be accurately stored with the programme content such that each
transition may be accurately reproduced by the Host on subsequent playback matching the events with the
original delivery content position. The PIN notification contains a time stamp and may be accurately aligned
with the stream. The URI and License do not contain a time stamp and shall be aligned with the content based
on their reception time at the Host.

The Host shall not aggregate Licenses or PINs. The Content Control protection of Licenses, URIs and PINs
shall apply from the position in the stream where the protection was applied in the recording until the next
protection position in the recording or the end of the stream. The scope of each content protection component is
defined as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

64 Cl Plus Specification v1.3.2 (2015-03)

e A URI extends from the reported position to the next URI reported position, or to the end of the
recording, in a forwards direction.

e A License extends from the reported position to the next URI or License reported position, or to the
end of the recording, in a forwards direction.

e A PIN extends from the reported position to the next PIN reported position, or to the end of the
recording, in a forwards direction.

00:00:00:000 URI #1, License #1

00:01:00:000 PIN #1
Event 1
01:30:00:000 URI #2
01:30:00:000 PIN #2
Event 2
02:00:00:000 URI #3, License #2
Event 3

03:00:00:000

Figure 5.25: Example recording sequence

Any of the aforementioned transitions may occur at any time in the recording as shown in Figure 5.25 which
depicts a time, rather than event based, recording.

The content in Figure 5.25 is protected as follows, where URI#n is a change in the URI, License#n is the content
license and PIN#n is a parental control event where the parental rating has changed. For the purposes of the
example then we assume that the recording spans three events, typically we would expect a single event to be
recorded.

Event#1: is content that is license protected with License#1 and URI#1 there is a parental control PIN#1 one
minute into the recording.

Event#2: is content that is not licence protected and has URI#2, there is a parental control PIN#2 in effect.

Event#3: is content that is licence protected with License#2 and URI#3 and there is a parental control PIN#2 in
effect.

It should be noted that License#1 and License#2 may be the same or a different license. Whilst in a recording
mode then the URI and License are dispatched together in a single message. The Host does not interpret the

© 2008, 2009, 2011, 2015 Cl Plus LLP

65 Cl Plus Specification v1.3.2 (2015-03)

license and simply returns it on a playback operation at the appropriate time in the stream when a new license
block is entered.

5.12.1 Playback Session

On playback of a recording the Host shall effectively include the concept of a session. On playing a recording
then the session shall be opened, the session is not closed until the playback is stopped, a pause does not
constitute a session close. A session may be closed by the Host as a result of the content retention time limit
being exceeded, at which point the content protected by the retention time limit is made inaccessible.

Licenses are consumed, typically as encountered, during the playback. Consumption of a License requires a
license exchange with the CICAM and the License and URI associated with the recording are exchanged with a
new License and URI to be associated with the recording replacing each of the existing stored values. A license
is only consumed once in the context of a playback session, irrespective of the user navigation moving between
different license blocks that have already been consumed in the current session.

A parental rating (PIN) transition in the recording requires the Host to remove all displayable components of the
recording (i.e. blank video, mute audio, disable subtitles, etc.) until a PIN valid is acquired from the CICAM, via
the user, when the content may be restored. A PIN exchange must be performed with the CICAM when crossing
any PIN event in the recording in either a forward or backward direction if the content is to be displayed. The
CICAM (Service Operator) may reduce user interaction within the context of a playback once a valid PIN has
been entered and any further PIN requests from the Host should ideally not invoke a user interaction provided
that the parental rating of the first PIN entry is not exceeded, the exact operation of the CICAM is determined by
the Service Operator and country regulations.

Navigation in a forwards and backwards direction in the recording requires the Host to honour all the License,
URI and PIN constraints at each transition point in the recording. When moving in a backwards direction then
the Host is required to re-evaluate the constraints when crossing a constraint event in the recording, this requires
the Host to find the previous transition type and appropriately apply the constraint. Within the context of a
playback session, on encountering a:

PIN Constraint: a PIN exchange shall be performed with the CICAM

License Constraint: each license is exchanged with the CICAM only once in a playback session, at first
encounter. On any subsequent encounter of a successfully exchanged license, there is no requirement to
exchange that license with the CICAM again.

URI Constraint: the URI shall be applied as described in section 5.7.

The URI returned from a CICAM license exchange may change the existing recorded License and URI and shall
be associated with the content at the same position as the original, displacing the existing License and URI. The
new URI shall be used immediately for playback. The new URI may alter the retention time limit which shall be
applied in a similar way to the recording process, taking into consideration the length of the material when
viewed with a normal playback time. e.g. Consider a 2 hour (120 minute) programme that changes its retention
limit from 30 days to 90 minutes. At the instant the URI is changed then the first byte of the recorded material at
the URI transition has a new retention time limit of 90 minutes, the last byte of the 120 minute recorded event
has a retention time limit of 120+90 or 210 minutes. A URI that exists without a License is not re-presented to
the CICAM on playback and is not replaced in the recording.

Where a recording has multiple URIs with different retention limit values then the Host is required to manage
the retention limits of each URI region according to the CI Plus License Agreement [6]. The Host may choose to
handle each URI region retention limit separately or apply the most restrictive retention limit to the whole of the
material. In either case the Host shall not exceed the stated retention limit for any URI region. The exact method
by which the Host manages different retention times within a single recording is implementation specific, but in
all cases must be managed according to the CI Plus License Agreement.

A Host is not obliged to remove recording content from storage which has exceeded its play count. If the
Service Operator requires the content to be removed once it has been viewed on playback, when a transition
from a play count of one to zero occurs, then the retention limit should be set appropriately through the playback
URI to force the Host to remove or render unusable the content once the retention time limit has been exceeded.

© 2008, 2009, 2011, 2015 Cl Plus LLP

66 Cl Plus Specification v1.3.2 (2015-03)

5.13 SRM Delivery

The CICAM may receive System Renewability Messages (SRM) data files, as specified in [34]. SRM data files
perform the function of blacklist for HDCP [34]. These SRM data files are to be applied to the HDCP function
of a Host, subject to the Host deploying a HDCP output in source or repeater mode.

The implementation of a HDCP function in a CI Plus Host shall be in compliance with the CI Plus Licensee
Specification [33]. A CI Plus Host requiring SRM files shall accept these files if the CICAM initiates the
transfer of those SRM files.

5.13.1 Data file transfer protocol

This section describes the mandatory protocol to transfer SRM data files from CICAM to Host. The
responsibility of CI Plus is to transfer the SRM data files safely. The correct application of SRM files is part of
the HDCP function and out of scope of the CI Plus specification.

5.13.1.1 Initialisation and message overview

The process is explained in figure 5.26:

headend CICAM Host

[1] assign correct SRM
(out of scope)

[2] deliver SRM data (out of scope)

[3] generate message

k]
[5] transmit Sac msg(datafile)

1_[6] verify message
]
[7] confirm SAC msg(status+datafile_confirm)

[8] verify host confirm

| [4] start 10 second timeout

[9] apply SRM data

Q(out of scope)
]

Figure 5.26: Delivery of SRM data files

© 2008, 2009, 2011, 2015 Cl Plus LLP

67 Cl Plus Specification v1.3.2 (2015-03)

Table 5.21: SRM Data file Transfer Protocol Behaviour (normative)

No. Description Refer to
1 Assign correct SRM (out of scope).
The correct SRM is assigned to the CICAM Host combination. The exact process is
out of scope.
2 Delivery of SRM (out of scope).
The delivery of the SRM is typically protected by the CA system or delivered to the
CICAM by other means (for example: preloading). The exact delivery process is out
of scope.
3 CICAM generates message. Section 11.3.5
The CICAM calculates datafile_confirm to authenticate Host acknowledgment of
receipt (Note 3), as:
datafile _confirm = SHA, ;(datafile || UCK)
where:
. datafile is the SRM file.
. UCK = SHA,s6 (SAK).
The value datafile_confirm is locally kept for comparison in step 8.
The CICAM shall generate a cc_sac_data_req APDU for the (SRM) data file
message, carrying:
. the SRM data file (datatype id = DTCP.srm etc.)
4 CICAM starts 10 second timeout.
The CICAM starts a 10 second timeout in which the SRM data transfer protocol has
to complete. (Note 1)
5 CICAM transmit SAC message with SRM datafile payload. Section 7.3 and
11.3.1
The CICAM transmits a SAC message with payload from step 3 and transmits this to
the Host. (Note 2).
6 Host verifies message. Section 7.4
After the Host verifies the SAC message is correct, the Host extracts the SRM data
file. The Host may pass the SRM data file to the consuming function, which is out of
scope.
7 Host transmits SAC message with SRM data file confirmation. Section 7.3, 11.3.1

The Host calculates the datafile_confirm in exactly the same way as the CICAM did
I'Ir']hsét?ipogi confirms SRM data file delivery with the cc_sac_data_cnf APDU, carrying
. datafile confirm (datatype id = datatransfer confirm)
. status

and uses the SAC to transmit this to the CICAM. (Note 2)

Failure to respond constitutes a failure of the data file transfer (Note 1).

and 11.3.5

© 2008, 2009, 2011, 2015 Cl Plus LLP

68

ClI Plus Specification v1.3.2 (2015-03)

Verify Host confirm.

The CICAM compares the received datafile_confirm from the Host with the value

calculated in step 3 above.

Failed equivalence constitutes a failure of the data file transfer and may be followed

up by the CICAM. (Note 1)

Apply SRM data (out of scope).

The application of the SRM data file is out of scope.

Notes:
1.

2.
3.

If the steps above are not completed before the 10 second timeout expires the CICAM shall consider
that the data file transfer failed. Any subsequent actions from the CICAM are out of scope.

Refer to section 7.2 for an explanation how the SRM data is packed into SAC message.

Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations
adhere to the SHS validation list. See SHS Validation List [11].

5.13.2 Data transfer conditions

The CICAM starts initiating a data file transfer the first time it detects a SRM data file. In case the Host is not
requiring this file, it may notify this in the confirmation message, and the CICAM shall refrain from sending
subsequent SRM data files. In any case the Host shall follow up with a confirmation to detect message deletion.
When the Host indicated that it received the SRM data file, the CICAM shall refrain from sending identical files
multiple times.

Figure 5.27 explains the CICAM operation for data file transfer.

?

4>< (1) init data file transfer >

(2) CICAM detects (SRM) file

v

(3) CICAM sends (SRM)
file to host

(4) host

No

responds within
timeout?

Ok / Host busy) 4

response status
requires
datafile?

Not required

A

(6) follow up (out of scope)

Note: timeout is defined as 10 seconds.

Figure 5.27: CICAM sided overview of data files delivery conditions (informative)

© 2008, 2009, 2011, 2015 Cl Plus LLP

69 Cl Plus Specification v1.3.2 (2015-03)

§) Authentication Mechanisms
6.1 CICAM Binding and Registration

CICAM binding and registration is performed in three steps:
Verification of Certificates & DH Key Exchange.
Verification of Authentication Key.
Optional Report Back to Service Operator (Registered Service Mode only).

These steps are described in the following sections.

6.1.1 Verification of Certificates & DH Key Exchange

The Host and CICAM start the authentication protocol by exchanging the Host certificate chain, CICAM
certificate chain, signed data and Diffie-Hellman public keys. Before authentication is complete the CICAM is
authorized only for programmes with EMI data set to a value of 00 (copying allowed).

The CICAM verifies the signatures contained in the Host certificate chain and the signature on the Diffie-
Hellman public key. This is a mutual authentication protocol and the Host shall verify the signatures contained
in the CICAM certificate chain along with the signature on the Diffie-Hellman public key. The DHPH is
protected by the Host with a signature that involves the Host's HDQ. The CICAM side verifies the received
DHPH with the HDP of the Host, which it obtains from the Host device certificate. The DHPM is protected in
an identical way, using the MDQ for signing and the MDP for verification.

If the Host certificate chain verifies together with the signature on the Diffie-Hellman public key, the HOST ID
shall be extracted from the Host device certificate. Similarly, if the CICAM certificate chain verifies together
with the signature on the Diffie-Hellman public key, the CICAM _ID shall be extracted from the CICAM device
certificate.

If the certificate or signature verification fails the CICAM shall not remove the network CA (i.e. shall not
decrypt the network CA from the incoming TS) even if the subscriber would otherwise be authorized to receive
the service. The CICAM attempts to display an error message using the MMI resource on the Host, see section
5.4.3 for details about the error messages and EN 50221 [7], section 8.6 for an explanation of the MMI resource.
If the Host is temporarily unable to service the request for an MMI dialogue, the CICAM shall keep retrying
while the Host is tuned to a CA service for which it is responsible for.

6.1.2 Verification of Authentication Key

The CICAM and Host derive a long-term Authentication Key from data exchanged between the CICAM and
Host during the first phase of the authentication procedure. The authentication key is computed from the DH
private key together with unique data from this particular binding, the HOST _ID and CICAM_ID (refer to
section 6.2.3.4 for details).

The CICAM sends a request message to the Host to request the Authentication Key derived by the Host. The
Host follows this with a confirm message which includes the requested authentication key. After reception the
CICAM compares the received authentication key with the one it previously stored. If the CICAM comparison
is successful the Host has proved that it derived the same authentication key and the CICAM accepts that Host
as legitimate allowing communication. Both sides store the derived authentication key in non-volatile memory
so that it is available for computation of key material for the SAC and the CC. Refer to section 7 (SAC) and
section 8 (Content Control Key) for details.

If a matching Authentication key has not been received within 5 seconds of the request message, the CICAM
shall not remove the network CA (i.e. shall not decrypt the incoming TS), even if the subscriber would
otherwise be authorized to receive the service.

© 2008, 2009, 2011, 2015 Cl Plus LLP

70 Cl Plus Specification v1.3.2 (2015-03)

6.1.3 Report Back to Service Operator

When the system is deployed in Registered Service Mode the CICAM may initiate an MMI "registration"
message, allowing an exchange of information between the CICAM and the service operator. The exact
mechanism is not in the scope of this specification.

6.1.4 CC System Operation

Figure 6.1 explains how the 3-step authentication is integrated into the overall CC operation. This is informative
and other implementations of network related components are possible. The 3-step authentication process is
mandatory.

The CICAM Content Control System (CC) shown in Figure 6.1 comprises the following basic steps:

1) The CC resource shall be provided by the Host and any attempt by modules to provide a CC resource
shall be ignored by the Host's resource manager. The Host shall support one session of the CC resource
for each CI slot. During the profile inquiry process (see Figure 6.1 and Figure 6.2) the Host shall report
that a Content Control resource is available. If the resource is not reported this constitutes a failure of
the Content Control system and the system shall continue at step (13).

2) A session to the Content Control resource shall be opened by the CICAM, section 11.3. If a valid
session is not successfully opened the Content Control system shall be considered failed. The CICAM
shall send a cc_open_req APDU to the Host. The Host shall respond with a cc_open_cnf APDU within
5 seconds (see section 6.2.1).

Failure to respond to this request within 5 seconds constitutes a failure and the system shall continue at
step (14).

The cc_system_id_bitmask in the Host response shall include CC version 1, see section 11.3.1.2. If the
cc_system_id_bitmask does not include CC version 1 the system shall continue at step (13).

3) The CICAM checks if there is an authentication key stored in non-volatile memory. If the CICAM
contains a valid authentication key (AKM) it shall request the Host to send its authentication key
(AKH). If the CICAM does not have a valid AKM then the CICAM and Host shall continue with step

(6).

4) The CICAM requests the Host to send its authentication key (AKH). The Host shall respond with its
AKH within 5 seconds. If the AKH is not available, then it shall transmit a value of all zeros. A value
of all zeros shall be recognized by the CICAM as an invalid AKH.

5) The CICAM shall compare its stored AKM with the received AKH. If the authentication keys match
then a previous authentication has been completed successfully and the certificates are considered
valid. The DH Secret Key (DHSK) and authentication keys (AKM/AKH) computed on both sides are
then preserved, the key material for the SAC (SAK and SEK) and the Content Control Key (CCK) are
independently (re)generated and synchronized on both sides. The system shall then continue with step
10). If the authentication keys do not match then the system is required to authenticate and shall
continue with step (6). Note that Host behaviour for multiple modules and multiple slots is defined in
section 6.3.

6) The CICAM triggers the start of the DH protocol and certificate exchange. The exact DH based
authentication protocol is described in Figure 6.2 step (1).

7) If the DH protocol completed successfully, the system shall continue at step (8). Any failure in the
completion of the DH protocol constitutes a failure of the Content Control system and the system shall
continue at step (11).

8) The CICAM shall request the Host to confirm its authentication key (AKH) within 5 seconds.

9) The CICAM shall compare its authentication key AKM with the received AKH. If they are not equal,
this constitutes a failure of the Content Control system (see section 6.1.1) and the system shall continue
at step (11). If they are equal, then the CICAM and Host concludes the Diffie-Hellman operation
completed successfully and shall store the derived authentication keys (DHSK and AKM/AKH) into
non-volatile memory.

© 2008, 2009, 2011, 2015 Cl Plus LLP

7 Cl Plus Specification v1.3.2 (2015-03)

(1

CC resource

reported by host
?

N (13) CICAM is DVB Cl and
operate with limitations.

Yes

(2) success
opening CC
resource ?

No
(wrong system id)

No
(14) Reset. ><7(response
timed out)

10)

11)
12)

Yes

(3)
CICAM
stores valid AKM
?

Yes

(4) CICAM requests host
to send AKH within 5 secs

®)
AKH matches
tored AKM 2

No

A 4

(6) CICAM triggers DH 3 pass |
protocol

(7) Success
performing DH
protocol?

No

Yes Yes v

(11) CICAM initiates MMI
(8) CICAM requests host dialogue with end user

to send AKH within 5 secs

(9) AKH matches
computed AKM?

N
No

Yes

v v
(10) Fully operational
- for clear and network (12) Limited Operation
encrypted content

Figure 6.1: Overview of CICAM and Host in the CC Operation (Informative)

The system is fully operational to process clear and CA encrypted content provided that the user has
the necessary entitlements and after successful computation of the SAC (see section 7) and CC keys
(see section 8) the Host will be able to display content.

The CICAM initiates a dialogue indicating a failure to authenticate.

The system is limited to processing only clear content.

© 2008, 2009, 2011, 2015 Cl Plus LLP

72 Cl Plus Specification v1.3.2 (2015-03)

6.2 Authentication Protocol

Section 6.2.1 explains the authentication protocol messages exchanged over the external interfaces. Section
6.2.2 explains the authentication conditions. Section 6.2.3 explains the authentication protocol local verification
and key computations.

The CICAM should not attempt authentication until the date has been obtained by both the CICAM and Host to
ensure that certificates can be verified. E.g. this may be accomplished using the date and time resource, see EN
50221 [7], section 8.5.2.

6.2.1 Initialisation and Message Overview

Authentication is performed in three steps:

CICAM Host

. . [1] open_session_request()
Authentication [2] open_session_response()

Step 1

[3] cc_open_req()

[5] cc_data_req(nonce)

Validate signatures
on protocol data and
— — 7 certificates

Validate signatures
on protocol data and
certificates

[8] cc_data_cnf(status)

[6] cc_data_cnf(DHPH+signature_A+host_dev_cert+host_brand_cert)
[7] cc_data_req(DHPM+signature_B+CICAM_dev_cert+CICAM_brand_cert)

[9] cc_data_req(AKH)

Authentication [10] cc._data_cnf(AKH)
Step 2
[11] compare AKM=AKH
|

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked. This
diagram also assumes that the CICAM does not store a valid AKM.

Figure 6.2: Authentication Exchange Sequence Diagram (Informative)

The process is defined as described in Table 6.1:

© 2008, 2009, 2011, 2015 Cl Plus LLP

73 Cl Plus Specification v1.3.2 (2015-03)

Table 6.1: Authentication Exchange (normative)

Description

Refer to

The CICAM shall open a session to the Content Control resource

Section 11.3

The Host shall confirm with a session response. Failure to open a valid session
constitutes a failure of the Content Control system.

Section 11.3

The CICAM shall send a cc_open_req APDU to the Host.

Section 11.3.1.1

The Host shall confirm with the cc_open_cnf APDU, carrying:
. cc_system_id_bitmask

Section 11.3.1.2

The CICAM shall send a cc_data_req APDU to the Host, carrying:
o a nonce (i.e. auth_nonce).

o Requests for datatype IDs to be delivered by Host as listed in referenced
subsection.

Section 11.3.3.2

The Host shall confirm with the cc_data_cnf APDU, carrying:
. DH public key of the Host (DHPH, refer to section 6.2.3.2),

. the signature A (refer to section 6.2.3),
. the Host brand certificate (Host_BrandCert, refer to section 9.2),
. the Host device certificate (Host_DevCert, refer to section 9.2).
Failure to respond with a cc_data_cnf constitutes a failure of the Content Control

system; this may occur when the Host failed to verify the received CICAM data (see
Note 2).

Section 11.3.3.2

The CICAM shall follow up with an cc_data_req APDU, carrying:
. DH public key of the CICAM (DHPM, refer to section 6.2.3.2),

. the signature B (refer to section 6.2.3),
. the CICAM brand certificate (CICAM_BrandCert, refer to section 9.2),
. the CICAM device certificate (CICAM_DevCert, refer to section 9.2).

. requests for datatype IDs to be delivered by Host as listed in referenced
subsection.

Failure to respond with cc_data_req constitutes a failure of the Content Control system;
this may occur when the CICAM failed to verify the received Host data (see Note 2).

Section 11.3.3.2

The Host shall confirm with the cc_data_cnf APDU, carrying:
o the status of the Host.

Failure to respond with cc_data_cnf constitutes a failure of the Content Control system;
this may occur when the Host failed to verify the received CICAM data (see Note 2).

Section 11.3.3.2

The CICAM shall send a cc_data_req APDU to the Host to request the Host
authentication key (AKH, refer to section 6.2.3.4), carrying:
o request for datatype ID of AKH (as specified in Annex H.1).

Section 11.3.3.3

10

The Host shall confirm with the cc_data_cnf APDU, carrying:
. AKH, either valid or filled with O (zero, indicating "invalid") (refer to section
6.2.3.4).

Failure to respond within 5 seconds with cc_data_cnf constitutes a failure of the
Content Control system (see Note 2).

Section 11.3.3.3

© 2008, 2009, 2011, 2015 Cl Plus LLP

74 Cl Plus Specification v1.3.2 (2015-03)

11 The CICAM shall compare the AKH with the newly computed AKM. If they fail to match
this constitutes in a failure of the Content Control system (see Note 2).

Note

1. Refer to Annex H for an overview of the parameters involved.

2. Behaviour on failure of the Content Control System is defined in Section 6.1 and Figure 6.1, step 11.
Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

6.2.2 Authentication Conditions

The following limits are defined in this section:

Table 6.2: Authentication Exchange (normative)

Limit Description Defined as
Nonce retry | Maximum number of CICAM retries to create a valid nonce 3

© 2008, 2009, 2011, 2015 Cl Plus LLP

75

(re)boot and/or reinsertion
\ 4

(1) CC resource and session
opened

A4

‘ (2) init nonce ‘

No
(retry < limit)
No
(retries

(©)

ClI Plus Specification v1.3.2 (2015-03)

valid nonce ?

exhausted)

(4) send nonce to host,
request data back

v

(5) receive confirm from host
with requested data

(6) valid
certificate
signatures?

(7) valid
signature A ?

‘ (9) generate random DHY ‘

v

‘ (10) compute DHPM ‘

(11)
valid DHPM ?

‘ (12) create signature B ‘

v

(13) send data +
signature B to host

v

‘ (14) receive confirm from host

with status data

Note: Retry limit defined in Table 6.2

(15)
status host ok?

(16) compute DHSK & AKM

(17)
valid keys ?

(18) send request for
AKH to host

(19)
Receive AKH <=
5sec. ?

(20)
AKH valid ?

A
(23) notify error
dialogue (optional)

<(22) authentication sucessfulD < (24) authentication failed >

Figure 6.3: CICAM sided overview of authentication conditions (Informative)

The CICAM authentication conditions shown in Figure 6.3 are described below:

Note: Refer to Table 6.3 for details on the computations and to Table 6.1 for details on the message

exchange.

© 2008, 2009, 2011, 2015 Cl Plus LLP

76 Cl Plus Specification v1.3.2 (2015-03)

1) CC resource and session shall be opened before the CICAM starts the authentication procedure.
2) The CICAM initializes a protocol nonce "auth nonce".

3) The auth nonce shall be a valid length as listed in Annex H, Table H.1. If this is not the case the
CICAM retries until it reaches the retry limit (Refer to Table 6.2). If the retry limit is reached the
authentication fails and the CICAM continues at step 23.

4) The CICAM sends the auth nonce to the Host and requests data back in the confirmation message.
5) The CICAM waits until it receives the confirmation from the Host carrying the requested parameters.

6) The CICAM verifies that the certificates received from the Host are valid by checking the SSAC.
Otherwise the authentication fails and the CICAM continues at step 23.

7) The CICAM verifies that the signature A received from the Host is valid by checking the SSAC.
Otherwise the authentication fails and the CICAM continues at step 23.

8) The CICAM verifies that the DHPH key received from the Host is valid by checking length according
to Annex H, Table H.1 and value according to control check in section 6.2.3.2. Otherwise the
authentication fails and the CICAM continues at step 23.

9) The CICAM generates a random nonce DHY for use in the DH computations.
10) The CICAM computes a DH public key DHPM.

11) The CICAM checks that the computed key DHPM is valid by checking length according to Annex H,
Table H.1 and value according to control check in section 6.2.3.2. Otherwise the authentication fails
and the CICAM continues at step 23.

12) The CICAM creates a unique signature B for the data to be exchanged with the Host.
13) The CICAM sends the protocol data to the Host with a request to receive the status of the Host.
14) The CICAM waits until it receives a confirmation from the Host with its status.

15) The CICAM checks if the status of the Host is OK. Otherwise the authentication fails and the CICAM
continues at step 23.

16) The CICAM computes the DHSK and AKM keys.

17) The CICAM checks if the DHSK and AKM are valid according to sections 6.2.3.3 and 6.2.3.4.
Otherwise the authentication fails and the CICAM continues at step 23.

18) The CICAM requests the Hosts AKH key.

19) The CICAM shall receive the Host response within 5 seconds. Otherwise the authentication fails and
the CICAM continues at step 23.

20) The CICAM checks that the response contains a valid AKH key. If the key is all zeros then the AKH is
considered invalid and the authentication fails, the CICAM continues at step 23.

21) The CICAM checks the received AKH from the Host matches the AKM of the CICAM. Otherwise the
authentication fails and the CICAM continues at step 23.

22) The CICAM completes the authentication successfully.
23) The CICAM may initiate an authentication failed MMI dialogue.

24) Authentication failed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

77 Cl Plus Specification v1.3.2 (2015-03)

(re)boot and/or reinsertion
\ 4
(1) CC resource and session
opened

(2) receive nonce from CICAM
with request for data

©)

valid nonce ?

>

z
C
>

yes

(4) generate random DHX

v ,

(5) compute DHPH (15) host status = ok

v

(16) send confirm with
N host status to CICAM
v

(6)
valid DHPH ?

(17) compute DHSK & AKH

(7) create signature A ¢

v

(8) send confirm with
requested data to CICAM

(9) receive data from CICAM (14) send confirm with
with request for host status host status to CICAM yes <(19) authentication sucessful) < (20) authentication failed >
y ‘ | |

(10) host status = error

(18)
valid keys ?

A
(21) receive request for AKH
from CICAM
(11) valid
certificate No——— P ¢
signatures? (22) send confirm with
AKH
(12) valid N) 623) authentication completecD
signature B ?

(13)
valid DHPM ?

4

P
C

Figure 6.4: Host sided overview of authentication conditions (Informative)

The Host authentication conditions shown in Figure 6.4 are described below:

Note: Refer to Table 6.2 for details on the computations and to Figure 6.2 for details on the message
exchange.

1) CC resource and session are opened successfully.

2) The Host receives a nonce from the CICAM.

© 2008, 2009, 2011, 2015 Cl Plus LLP

3)

4)
5)
6)

7)
8)
9)

10)
11)
12)
13)

14)
15)
16)
17)
18)
19)
20)

21)
22)

23)

6.2.3

78 Cl Plus Specification v1.3.2 (2015-03)

The Host checks if the received nonce is valid as listed in Annex H, Table H.1. This nonce is used
throughout the authentication protocol.

The Host generates a random nonce DHX for use in the DH computations.
The Host computes a DH public key DHPH.

The Host checks that the computed key DHPH is of valid by checking length according to Annex H,
Table H.1 and value according to control check in section 6.2.3.2.

The Host creates a unique signature A for the data that is to be exchanged with the CICAM.
The Host sends the protocol data to the CICAM.

The Host waits for response from the CICAM carrying the required parameters to complete the
authentication.

The Host sets Host status to error.
The Host verifies the certificates received from the CICAM are valid by checking the SSAC.
The Host verifies that the signature B received from the CICAM is valid by checking the SSAC.

The Host verifies that the DHPM key received from the CICAM is valid by checking length according
to Table H.1 and value according to control check in section 6.2.3.2.

The Host sends a confirmation with the local status.

The Host sets Host status to ok.

The Host sends local status as confirmation.

The Host computes the DHSK and AKH keys.

The Host checks if the DHSK and AKH are of valid according to sections 6.2.3.3 and 6.2.3.4.
Valid keys shall mean the Host authentication is successful but not yet completed.

Invalid keys or any other error during the authentication protocol shall mean the authentication has
failed.

The Host receives a request from the CICAM to report the Host AKH key.

The Host shall confirm with the value of the AKH. An invalid AKH key is filled with all zeros. Note
that the CICAM may retry, repeating steps 21 and 22.

The authentication is complete.

Authentication Key Computations

If a matching authentication key is not found (see section 6.1.2) the system performs an authentication session
as described in Figure 6.5.

© 2008, 2009, 2011, 2015 Cl Plus LLP

79 Cl Plus Specification v1.3.2 (2015-03)

CICAM Host

J-I [1] generate nonce

:|_:k |

[2] send nonce

[3] check params

[4] generate random x

k]
[5] compute DHPH
]
[6] create signature A

[7] send (DHPH + signature A) to CICAM L

II [8] check params

k]
[9] generate random y

[10] compute DHPM

k]
[11] create signature B

[12] send (DHPM+signature B) to Host

-I [13] check params
]
[14] confirm
[15] compute DHSK and AKM

]
[16] compute DHSK and AKH
]
[17] request AKH
[18] confirm AKI
[19] compare AKM=AKH
]

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 6.5: Authentication Key Material Computation Sequence Diagram (Informative)

The process is defined as described in Table 6.3:

© 2008, 2009, 2011, 2015 Cl Plus LLP

80 Cl Plus Specification v1.3.2 (2015-03)

Table 6.3: Authentication Key Material Computation (Normative)

No. Description Refer to
0 On start-up the Host performs checks if the DH parameters are valid. Section 6.2.3.1
1 The CICAM shall generate a random nonce of 256 bits (auth_nonce), which is Annex A
included in the signature of exchanged parameters of the 3 pass DH protocol.
The nonce shall be generated by a suitable PRNG.
2 The CICAM shall send the auth_nonce to the Host using the appropriate APDU Section 11.3.2.2
message.
3 The Host shall check that the received auth_nonce parameter is the correct size Annex A
(256 bits).
4 The Host shall generate a random value for DH exponent x. The value x (DHX) Annex A
shall be generated by a suitable PRNG.
5 The Host shall compute the DH public key of the Host (DHPH). Section 6.2.3.2
6 The Host shall create a signature A over the auth_nonce and DHPH, so that: Annex |
message A = (version||msg_label || auth_nonce || DHPH)
signature A = RSASSA — PSS — SIGN (HDQ, message _A)
where:
. RSASSA-PSS shall be used as referred in Note 2 below.
. HDQ is the device private key, as defined in Section 5.3.
. version = 0x01 and msg_label = Ox2.
. Auth_nonce is identical to value received in step 3.
7 The Host shall send the signature A and the DHPH key, together with the Host Section 11.3.3.2
brand certificate and the Host device certificate to the CICAM.
8 The CICAM shall check the received parameters as follows: Section 9.4

a) CICAM shall verify signature on the certificates.

b) CICAM shall verify the signature A, so that:

message A= (version ||msg _label ||auth _nonce || DHPH)
RSASSA— PSS —VERIFY (HDP,message _ A, signature _ A) = TRUE

where:
. RSASSA-PSS shall be used as referred in Note 2 below.

. HDP is the device public key received in step 7.

. Version = 0x01 and msg_label = 0x2.

. Auth_nonce is identical to the value generated in step 1.
. DHPH is identical to the value received in step 7.

. TRUE means ‘valid signature’

c) The CICAM shall verify that:

1< DHPH < DH _pand DHPH" -“modDH p=1

© 2008, 2009, 2011, 2015 Cl Plus LLP

81 Cl Plus Specification v1.3.2 (2015-03)

The CICAM shall generate a random value for DH exponent y. The value y (DHY)
shall be generated by a suitable PRNG.

Annex A

10

The CICAM shall compute the DH public key of the CICAM (DHPM).

Section 6.2.3.2

11

The CICAM shall create a signature B over the DHPM key and the exchanged
parameters auth_nonce and DHPH, so that:

message B = (version ||msg _label ||auth _nonce || DHPH || DHPM)
signature B = RSASSA — PSS — SIGN (MDQ, message _B)
where:
o RSASSA-PSS shall be used as referred in Note 2 below.
. MDAQ is the device private key, as defined in Section 5.3.
. version = 0x01 and msg_label = 0x3.

. Auth_nonce is identical to value received in step 1.

Annex |

Section 5.3

12

The CICAM sends the signature B and the DHPM key, together with the CICAM
brand certificate and the CICAM device certificate to the Host using the
appropriate APDU message.

Section 11.3.3.2

13

The Host shall check the received parameters as follows:
a) Host shall verify signature on the certificates.

b) Host shall verify the signature B, so that:

message B = (version ||msg _label ||auth _nonce || DHPH || DHPM)
RSASSA— PSS —VERIFY (MDP,message B, signature B) =TRUE

where:
. RSA shall be used as referred in Note 2 below.

. MDP is the device public key received in step 12.
. Version = 0x01 and msg_label = 0x3.

. Auth_nonce is identical to value received in step 3.
. DHPH is identical to the value generate in step 5.
. DHPM is identical to the value received in step 10.
. TRUE means ‘valid signature’

c) The Host shall verify that:
1< DHPM < DH pand DHPM ™ -“modDH p=1

d) The Host shall confirm the CICAM brand identifier is present in the certificate
and is an integer in the range 1..65535

Section 9.4

14

The Host shall confirm it is ready by sending a status using the appropriate APDU
message.

Section 11.3.3.2

15

The CICAM shall compute and store the DHSK key.
The CICAM shall compute and store the AKM key.

Section 6.2.3.3
Section 6.2.3.4

© 2008, 2009, 2011, 2015 Cl Plus LLP

82 Cl Plus Specification v1.3.2 (2015-03)

16 The Host shall compute and store the DHSK key. Section 6.2.3.3
The Host shall compute and store the AKH key. Section 6.2.3.4

17 The CICAM shall start the authentication verification (step 2 in the authentication | Section 11.3.3.3
process) by sending a request for the current authentication key AKH to the Host
using the appropriate APDU message.

18 The Host confirms the request from step 17 and sends the AKH to the CICAM Section 11.3.3.3
using the appropriate APDU message.

19 The CICAM shall check if the AKH received from the Host matches the AKM
computed by the CICAM. Failure to match constitutes a failure of the
authentication protocol (see Note 3).

Notes:
1: Refer to Annex H for an overview of parameters involved.
2: RSA is used for SSAC authentication and verification as described in Annex |. The data fields in the
signature are concatenated utilizing the tag length format described in Annex J.
3: Failure of the Content Control System is defined in Section 6.1 and Figure 6.1.
Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.
6.2.3.1 Diffie Hellman Parameters

The Diffie Hellman parameters and their requirements are not defined in this document and can be found in the
CI Plus Licensee Specification [33].

6.2.3.2 Calculate DH Public Keys (DHPH and DHPM)

The Diffie Hellman public keys (DHPH and DHPM) are volatile and shall be deleted after completion of the
authentication protocol.

The Host shall compute its Diffie Hellman public key as follows:
DHPH = DH _ public _Key,; = g” mod p Eq.6.1
The CICAM shall compute its Diffie Hellman public key as follows:
DHPM = DH _ public _Key 4. = £~ mod p Eq. 6.2
Where:
. Exponent x (DHX) and exponent y (DHY) are random and generated by a PRNG as defined in Annex
A. The exponents DHX and DHY shall be kept local and secret and shall be deleted after completion
of the authentication protocol. The value of g and p are defined in the CI Plus Licensee Specification
[33].
After computation of a DH public key following checks shall be performed:
e checkif 1< DH _ public_key < DH _p ADH _ public _key™-* modDH _p=1.
NOTE: refer to Annex H for an overview of parameters involved.

6.2.3.3 Calculate DH Keys (DHSK)

The Diffie Hellman secret key (DHSK) shall be stored in non-volatile memory. The key shall be computed as
follows:

DHSK = DH _ private Key,,,, =(DHPM)" modDH p=(DHPH)"' modDH p=DH private Key,, .. Eq. 6.3

© 2008, 2009, 2011, 2015 Cl Plus LLP

83 Cl Plus Specification v1.3.2 (2015-03)

6.2.3.4 Calculate Authentication Key (AKH and AKM)

The Authentication key AKH/AKM shall be used for the SAC key (refer to section 7.1.3) and Content Control
Key (CCK) calculation (refer to section 8.1.4). The authentication key generation occurs only once (per Host-
CICAM pair) when the CICAM and Host are first connected. The resulting authentication keys (AKM for
CICAM and AKH for Host) shall be stored in non-volatile memory. The keys shall be computed as follows:

AKM = AKH = SHA,.,(CICAM_ID|[Host_ID||DHSK) Eq. 6.4

Input parameters shall adhere to Table 6.4.

Table 6.4: Input Parameters in Key Computation

Key or variable Size (bits) Comments Refer to

DHSK 2048 The complete DH secret from the authentication | Section 6.2.3.3
process.

HOST_ID 64 Generated by the ROT and included in the Section 9.3.6
X.509 certificate of the Host.

CICAM_ID 64 Generated by the ROT and included in the Section 9.3.6
X.509 certificate of the CICAM.

Notes:

1. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations

adhere to the SHS validation list. See SHS Validation List [11].
2. Refer to Annex H for overview of parameters involved.

6.3 Power-Up Re-Authentication

After establishing the CC session, CICAM and Host perform the Authentication Key Verification protocol to
check if there is an existing binding between the two devices and re-authentication is unnecessary.

The authentication context contains the data required for Authentication Key Verification and start-up without
full authentication. This comprises of:

e AKM/AKH

° DHSK

e CICAMID/HostID

. CICAM Brand ID used for host service shunning

. scrambler algorithm that was negotiated during the binding

A Host shall store 5 authentication contexts. A CICAM shall support at least one authentication context, it may
support more.

If the CICAM has a valid authentication context, it requests the AKH from the Host and checks if the received
AKH matches with the AKM in its authentication context. If there is no match the CICAM shall retry until a
match is found or the maximum of 5 attempts has been made. The Host goes through its authentication contexts
and sends back the corresponding AKHs. When there is a match, the fast authentication is finished and Host and
CICAM continue with SAC establishment. When the Host does not have another valid authentication context it
replies with the AKH value filled with zeros. When receiving this invalid AKH the CICAM stops retrying and
starts the authentication protocol.

Implementations on the CICAM and the Host should try to minimize the cases where a full authentication is
required.

© 2008, 2009, 2011, 2015 Cl Plus LLP

84 Cl Plus Specification v1.3.2 (2015-03)

7 Secure Authenticated Channel

The SAC encrypts and decr
7.1:

ypts data into SAC messages. A contextual high level diagram is shown in Figure

Keys, SAC . SAC Keys,
Etc. > control Init and sync control < Etc.
Auth Decrypt
<—data—»| & 4—6) Secured message pipe ><—> & «—data—»
encrypt validate

NOTE: The SAC may send and receive messages in both directions.

Figure 7.1: Contextual Overview of SAC (informative)

Figure 7.2 is provided for informative purposes:

CICAM CC
resource

CICAM Sac PCMCIA Host Sac Host CC resource

rl.l [1] authentication protocol

[5] init Sac

[2] authentication protoco

[:FM] — [3] init Sac H

H [7] APDU request SAC sync

[6] o

[9] generate data

/8] APDU confirms SAC syna:]

[10] pass data

[12] check state

13] generate msg

[14] send msg

[18] check state

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 7.2: SAC Sequence Diagram (informative)

The process is defined as described in Table 7.1:

© 2008, 2009, 2011, 2015 Cl Plus LLP

85 Cl Plus Specification v1.3.2 (2015-03)

Table 7.1: Contextual Overview of the SAC (normative)

No. Description Refer to
1 Authentication protocol. Section 6.2
2 The CICAM and Host shall successfully complete the mutual authentication protocol.

3 Init SAC. Section 7.1.1

The SAC shall be initialized on the CICAM and the Host. This concerns key material
derivation and (re)setting the initial SAC state.

Request SAC sync and confirm SAC sync. Section 7.1.1
If the CICAM has correctly initialized the SAC, the CICAM shall issue an APDU to
synchronize with the Host. After successful confirmation, both sides may start to use the
SAC.

o N

9 Generating and transmitting SAC message. Section 7.3
. The SAC message is generated for the payload, by adding a message header,
15 authentication field and optionally encrypting.

16 Receiving and validating SAC message. Section 7.4
. Upon reception of the SAC message it shall be validated and if valid its payload may be
21 processed further.

Notes:

1. The SAC may send and receive messages in both directions.

2. Refer to section 7.5 for an explanation how the SAC is integrated into CI Plus architecture.

3. Refer to Tables 11.28 and 11.30 for an overview of the messages that are exchanged through the

SAC.

7.1 SAC Operation
7.1.1 SAC Initialisation

This section specifies in detail how the SAC is initialized. Figure 7.3 is provided for informative purposes:

CICAM Host

-I-I [1] SAC (re)keying required

[2] generate Ns_module

[3] send cc_data_req(Ns_module+CICAM_ID)

-I [4] generate Ns_Host

[5] confirm cc_data_cnf(Ns_Host+Host_ID)

[6] derive SAK&SEK and reset SAC state

| 71 derive SAK&SEK and reset SAC state

[8] send cc_sync_req()

H [9] confirm cc_sync_cnf{()

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 7.3: SAC Key Material Computation Sequence Diagram (informative)

The process is defined as described in Table 7.2:

© 2008, 2009, 2011, 2015 Cl Plus LLP

86 Cl Plus Specification v1.3.2 (2015-03)

Table 7.2: SAC Key Computation (normative)

No. Description Refer to

1 When the CICAM detects that a (re)keying of the SAC is required, the CICAM shall Section 7.1.2
start the process of SAC initialisation. The exact conditions for (re)keying are specified
in the referenced subsection.

2 The CICAM shall generate a nonce used in SAC key material computation. Section 7.1.3
3 The CICAM shall send a cc_data_req APDU to the Host, carrying the following Section 11.3.3.5
parameters:

. nonce Ns_module.

. CICAM_ID as extracted from the CICAM device certificate.

4 The Host shall generate a nonce used in SAC key material computation. Section 7.1.3

5 The Host shall confirm receipt of the cc_data_request APDU from the CICAM by Section 11.3.3.5
sending the cc_data_cnf APDU to CICAM, carrying the following parameters:
. nonce Ns_Host.

. HOST _ID, extracted from the Host device certificate.

Failure to respond with cc_data_cnf constitutes a failure of the copy control system.

6 The CICAM shall check that the received HOST_ID is equal to the previously stored Section 7.1.3
HOST_ID (See Note 2). If they are the same the CICAM may start to compute the SAK
and SEK and (re)set the SAC state.

7 The Host shall check that the received CICAM_ID is equal to the previously stored Section 7.1.3
CICAM_ID (See Note 2). If they are the same the Host may start computing the SAK
and SEK and shall (re)set the SAC state.

8 The CICAM shall send a cc_sync_req APDU to the Host, indicating a SAK refresh. Section 11.3.3.5

When the CICAM has initialized the scrambler, the CICAM shall send a
synchronization request to the Host, indicating that the CICAM is ready to start using
the SAC.

9 The Host shall confirm with a cc_sync_cnf APDU to the CICAM indicating that it is Section 11.3.3.5
ready to start using the SAC.

Failure to respond with cc_sync_cnf constitutes a failure of the copy control system.

See Note 3.
Notes:
1. Refer to Annex H for an overview of the parameters involved in this protocol.
2. Previous HOST_ID / CICAM_ID is stored in the 'Authentication Context'. Refer to Section 6.3
3. Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

7.1.2 SAC (re)keying Conditions

The SAC key refresh is initiated by the CICAM, whereas the Host is passively replying. The SAC key refresh
shall be triggered under any of the following conditions:

. On reboot; when (re)boot is completed successfully and there is a valid AKM stored in memory.

. On (re) insertion of a CICAM; when a CICAM is re-inserted in a Host and there is a valid AKM stored
in memory.

. On (re)authentication; when there is no valid AKM stored in memory the authentication session is
(re)initiated, resulting in successful completion (i.e. valid AKM) of the subsequent (re) authentication
session.

© 2008, 2009, 2011, 2015 Cl Plus LLP

87

° On message counter overrun.

Figure 7.4 explains the CICAM operation for SAC key refresh.

Successful (re)authentication and/or (re)boot and/or reinsertion
A 4

¢ No
(retries < limit)

>< (1) SAC initialisation)4

ClI Plus Specification

v1.3.2 (2015-03)

A
(2) CICAM initializes SAC key
refresh timer to zero seconds,
defines protocol instance.

(3) CICAM sends CICAM
nonce “ns_module”

v

(4) CICAM receives host nonce
“ns_host”

v

(5) CICAM calculates SAK and
SEK

(6)
SAC refresh
imer <= 9 sec?

»

»
yes

(10) Wait 1 second

(7) CICAM sends sync
request

A

yes

(9) Key refresh
timer <= 10 sec?

Note: The retry limit is defined as value 3 and applies to subsequent failures of the SAC protocol in step 6.

received sync
confirm within
imeout?

4

(11) CICAM enables SAC
operation.

v

(12) CICAM starts message
counter max_msg_counter=1

.

(13) CICAM sends message:
max_msg_counter+1

(14)
Max_msg_
Counter
Qverrun?

yes

Figure 7.4: Flow Chart — CICAM SAC Key Refresh Session

Figure 7.5 explains the Host operation for SAC key refresh.

(1) Host receives CICAM
nonce “ns_module”

v

(2) Host replies with host
nonce “ns_host”

v

(3) Host calculates SAK and
SEK

v

(4) Host receives sync request

(5) Host confirms sync
and starts using (newly)
calculated SAC keys

Figure 7.5: Flow Chart — Host SAC Key Refresh Session

© 2008, 2009, 2011, 2015 Cl Plus LLP

88 Cl Plus Specification v1.3.2 (2015-03)

7.1.3 SAC Key Computation

The SAC requires two keys for operation: the SAC Authentication Key (SAK) and the SAC Encryption Key
(SEK). Computation of SAK and SEK proceeds in two steps:

. Key seed calculation.

. SEK and SAK key derivation.
These are defined as follows:
Step 1: Key Seed calculation.

The Key Seed Ks is 256 bits long and shall be used for the computation of the key material Km. The process to
calculate Ks shall be performed on the Host and CICAM.

The Key Seed Ks shall be calculated on the Host as follows:
Ks, ., =SHA,,,(DHSK ||AKH ||Ns_host ||Ns_module) Eq. 7.1
On the CICAM the Key Seed Ks shall be calculated as follows:
Kscc = SHA(DHSK ||AKM ||Ns_host ||[Ns_module) Eq.7.2
Where:
i Kscican = KSjoy

. Input parameters are defined in Table 7.3:

Table 7.3: Input Parameters in Key Computation

Key or variable Size (bits) Comments Refer to
DHSK 128 The LSB bits of the DH secret from the Section 6.2.3.3
authentication process. See note 3.
AKH / AKM 256 The authentication keys from the authentication Section 6.2.3.4
process.
Ns_Host 64 Random nonce of 64 bits generated by the Host | Annex A
and transmitted by the Host to the CICAM.
Ns_module 64 Random nonce of 64 bits generated by the Annex A
CICAM and transmitted by the CICAM to the
Host.
Notes:
1. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations
adhere to the SHS validation list. See SHS Validation List [11].
2. The requirements on the random number generator for Ns_Host and Ns_module are given in Annex A.
3. DHSK is truncated from 1024 to 128 bits.

Step 2: Key Material computation.

The Key Material Km is 256 bits long and shall used for the derivation of the SEK and SAK. The Key Material
Km shall be calculated as follows:

SEK,SAK = f — SAC(Ks) Eq. 7.3

Note: The function f~SAC is not defined in this document and is obtained from the CI Plus Licensee
Specification [33].

7.1.4 SAC error codes and (re) set SAC state

The SAC re-keying conditions are explained in following Figure 7.6.

© 2008, 2009, 2011, 2015 Cl Plus LLP

89

Receiver message counter set

C

(1) SAC initialised

e

ClI Plus Specification v1.3.2 (2015-03)

/‘

>

(2) receive message

(3) message
counter valid?

yes

\ 4

No (msg. order error)——

(4) increment receiver
message counter

(5)
decrypt ok?

yes

(6) msg
verification ok?

yes

No (msg. decrypt error}——

No (msg. verification error}——

(7) process payload

Re-init SAC

(8) discard message

Figure 7.6: SAC state handling

7.2 Format of the SAC Message

A data message that is delivered as payload to the SAC shall be transformed into a SAC message as follows:

SAC message

<———overhead (optional) protection————>
<——verification——>
message counter | header payload authentication

Note: The SAC authenticates first and then encrypts.

Figure 7.7: SAC Message Composition

© 2008, 2009, 2011, 2015 Cl Plus LLP

L——» Size fixed and indicated in header

» Variable payload (e.g. APDU).

» Header with fixed / indicated size

» Counter with fixed size

90 Cl Plus Specification v1.3.2 (2015-03)

The detailed SAC message syntax is defined in Table 7.4.

Table 7.4: SAC Message Syntax

Field No. of Bits Mnemonic
message () |

message counter 32 uimsbf
/* message header starts here */
protocol version 4 uimsbf
authentication cipher flag 3 uimsbf
payload encryption flag 1 bslbf
encryption cipher flag 3 uimsbf
reserved for future use 5 bslbf
length_payload 16 uimsbf
/* message header ends here */
/* message body starts here */
if (payload encryption flag == MSG FLAG TRUE) {

encrypted payload length_payload * 8 + 128 bslbf
} else if (payload encryption flag == MSG FLAG FALSE) {

payload length_payload * 8 bslbf

authentication 128 bslbf

}

/* message body ends here */

7.2.1 Constants

The message defines the constants as defined in Table 7.5.

Table 7.5: Constants in SAC Message

Name Value
MSG_FLAG_FALSE 0
MSG FLAG TRUE 1

7.2.2 Coding and Semantics of Fields

message _counter: A data message requires a unique counter. The usage of this field is explained in section
7.4.1.

protocol_version: This parameter indicates the protocol version of this message. The device shall ignore

messages that have a protocol version number it does not support. In this version of the specification the value

of the protocol_version of this message shall be set to 0x0.

authentication_cipher_flag: This parameter is indicates the cipher that is used to generate the authentication

field as defined in Table 7.6.

Table 7.6: Allowed Values for authentication_cipher_flag

Contents Meaning Comment
0x0 AES-128-XCBC-MAC XCBC-MAC mode as described in RFC 3566 [20] (Note2)
0x1-0x7 reserved for future use
Notes
1. A device adhering to this version of the specification shall interpret value 0x0 and ignore
messages that have an authentication_cipher_flag value that it does not support.
2. With the exception that the 128 bit MAC output is not truncated and remains 128 bits.

© 2008, 2009, 2011, 2015 Cl Plus LLP

91 Cl Plus Specification v1.3.2 (2015-03)

Host
Sac
[
Decrypt
& <«—APDU—>
sync validate syne
rmsg—T Lmsgj
Y
e N
F* BN
Q (@]
< <
(%) %)
Zow) o
\ 4 \1/ \1/ A
Cl sac Auth Auin Cl Sac
#1 #2
encrypt encrypt
APDU APDU

v v

NOTE: The SAC may send and receive messages in both directions

Figure 7.8: Multiple Modules

payload_encryption_flag: This parameter indicates if the payload is encrypted. The value 1 indicates
encryption of the payload and 0 that the message payload is not encrypted. A device adhering to this version of
the specification shall interpret the value 1 and ignore messages with other unsupported
payload_encryption_flag values.

encryption_cipher_flag: This parameter indicates the cipher that is used to encrypt the message payload as
defined in Table 7.7.

Table 7.7: Allowed Values for encryption_cipher_flag

Contents Meaning Comment
0x0 AES-128 in CBC mode | AES-128 according to FIPS 197 [4] in CBC mode according to 800-38A
[25]
0x1-0x7 reserved for future use
Note: A device adhering to this version of the specification shall interpret value 0x0 and ignore messages
that have an encryption_cipher_flag value that it does not support.

length_payload: This parameter is the length of the payload message in bytes including optional padding,
excluding the authentication length, for both encrypted and non-encrypted payloads.

encrypted_payload: this field contains the encrypted data consisting of the message payload, padding if
required and authentication. Refer to section 7.3.2 for a description of this field.

payload: this field carries the unencrypted message payload (e.g. input data such as an APDU).

authentication: this field carries the authentication of the message. Refer to section 7.3.1 for a description of
the authentication procedure. This field may be encrypted as signalled by "payload_encryption_flag"; refer to
section 7.3.2 for details.

© 2008, 2009, 2011, 2015 Cl Plus LLP

92 Cl Plus Specification v1.3.2 (2015-03)

7.3 Transmitting SAC Messages

A data message that is delivered to the SAC shall be processed as follows:

1) Check the message counter for exhaustion and update the message counter. Refer to section 7.4.1 for
details.

2) Compute the authentication of the message. Refer to section 7.3.1 for details.

3) Concatenate the authentication and payload and (optionally) encrypt the message. Refer to section
7.3.2 for details.

4) Construct the final message: (message counter || header || result from step 3). Refer to section 7.2 for
details.

5) Transmit the message.

NOTE: If any of these steps fail, the message and state (e.g. keyset, counter, etc.) shall be destroyed and
an error shall be produced. Refer to section 7.1.4 for details.

7.3.1 Message Authentication

A data message on the SAC is protected with an authentication field. The authentication field is computed as
follows:

authentication = MAC{SAK }(length(header _h,)||i||header _h, || payload _p,) Eq. 7.4
Where:
. MAC is the algorithm indicated by the authentication_cipher_ flag, refer to section 7.2.2.
. SAK a 128 bit key, as defined in section 7.1.3.

. The authentication is performed over the entire message, with the exception of the authentication field.
The parameters used in the computation of the authentication field are defined in Table 7.8.

Table 7.8: Parameters in MAC Computation

Parameter length Type
length_h; 8 uimsbf
i 32 uimsbf
header h; | length_h;*8 | bslbf
payload_pi y*8 bslbf

i — This field contains the message counter value from the message. Refer to section 7.2.2 for a description of
this field.

length_h; — this parameter is the length of the header in bytes.
header_h; — this parameter represents the header of the message, see Table 7.4.

payload_p;— this parameter contains the payload of the message. For computation of the authentication field,
the original unencrypted payload shall be used.

7.3.2 Message Encryption

A flag indicates if the payload is encrypted or not. If a SAC message requires encryption, the data is encrypted
as follows:

encrypted _ payload, = E{SEK,SIV }(payload _ p, ||authentication _a,) Eq.7.5

Where:

© 2008, 2009, 2011, 2015 Cl Plus LLP

93 Cl Plus Specification v1.3.2 (2015-03)

. E is the algorithm indicated by the encryption cipher flag, refer to section 7.2.2.
. SEK is a 128 bit key. Refer to section 7.1.3 for details.

. SIV is fixed, 128 bits long and a license constant, refer to the CI Plus Licensee Specification [33]. The
SIV must be used at the beginning of each SAC message.

. Authentication a; shall be computed as described in section 7.3.1.

NOTE: Ifpayload p; # any multiple of the block cipher size (i.e. 128 bits) the message is padded by
adding a 1 (one) bit and then 0 (zeros) bits until the block size is filled. If the payload is not
encrypted then padding is not applied.

7.4 Receiving SAC Messages

A data message received by the SAC shall be processed as follows:

1) First check that the received message contains the correct message counter and protocol version.
Refer to section 7.4.1 for details.

2) Ifpayload encryption flag =1, decrypt the encrypted message payload. Refer to section 7.4.2 for
exact details.

3) Re-compute the authentication field and verify the integrity of the message. Refer to section 7.4.3 for
details.

NOTE: If any of these steps fail, the message and state (e.g. keyset, counter, etc.) shall be destroyed and
an error shall be produced. Refer to section 7.1.4.

7.4.1 Message Counter State

The receiving device (CICAM or Host) shall locally maintain a secure message counter for received messages
to track the message number of the last message received. On receiving a message from the SAC the Host shall
update the state of the receiver _message counter. The receiver _message counter is 32 bits (as is the message
counter field of the message).

Any new message number shall have a strictly increased message number i. The first message shall use number
0x1, the second 0x2, and so on. The receiver shall not accept messages which are out of order.

Correct message number: (i = receiver _message _counter +1)

Incorrect message number: (i < receiver _message _counter)\ (i > receiver _message _counter +1)

An incorrect message number produces a "message order error"; this shall be handled as explained in section
7.1.4

Message limitations:

The number of messages is limited to 2°*-1 messages. Where the message number overflows the devices shall
stop using the current keys and negotiate new keys (refer to section 7.1.2). The message number, i, wraps back
to 0x1 (not zero).

NOTE: The CICAM is the only device that is able to decide and initiate follow up actions upon message
counter exhaustion. The behaviour is specified in section 7.1.4.

7.4.2 Message Decryption

A data message on the SAC may be encrypted. The decryption is as follows:
payload _ p, ||authentication _a;, = D{SEK,SIV }(encrypted _ payload.,) Eq. 7.6

Where:

© 2008, 2009, 2011, 2015 Cl Plus LLP

94 Cl Plus Specification v1.3.2 (2015-03)

. D is the algorithm indicated by the encryption_cipher flag, refer to section 7.2.2.
. SEK is a 128 bit key. Refer to section 7.1.3 for details.

. SIV is fixed, 128 bits long and a license constant, refer to the CI Plus Licensee Specification [33]. The
SIV shall be used at the beginning of each SAC message.

. An incorrect decryption of a message produces a "message decrypt error"; this shall be handled as
explained in section 7.1.4

NOTE: authentication a; shall be split from payload p; where the length of authentication_a; may be
inferred from the value of the authentication_cipher flag.
The original SAC input data = resulting payload p; — authentication a;.
If payload_p; # a multiple of the block cipher size (i.e. 128 bit) the message is padded by adding a
1 (one) and then 0 (zeros) until the block size is filled. If the payload is not encrypted then
padding is not applied.

7.4.3 Message Verification
A data message on the SAC contains an authentication field. The authentication shall be validated as follows:
authentication _a, = MAC{SAK }(length(header _h,)||i||header _h, || payload _p,) Eq.7.7
Where:
. MAC is the algorithm indicated by the authentication_cipher flag, refer to section 7.2.2.
. SAK a 128 bit key, as defined in section 7.1.3.

. For a description of the remaining parameters refer to section 7.3.1.

NOTE: Ifthe calculated authentication_a; is not equal to authentication_a; derived from the decrypted
message (in case payload_encryption_flag = 1), or if the calculated a; is not equal to the
authentication field contained in the message (in case payload encryption flag =0), the received
message m shall be discarded and a message verification error shall be generated and handled as
defined in section 7.1.4.

7.5 SAC Integration into Cl Plus

The SAC is designed as a multiple purpose protocol and is integrated into the CC resource as explained in
Figure 7.9.

Step 1 Arbitrary data
(e.g. object structure)

Step 2 SAC SAC addin SAC
header payload paccing auth
Step 3 APDU | APDU SAC Encrypted SAC
tag length | header data

Figure 7.9: SAC message integration

© 2008, 2009, 2011, 2015 Cl Plus LLP

95

ClI Plus Specification v1.3.2 (2015-03)

Table 7.9: Data encapsulation into a SAC Message

No. Description

Refer to

1 The system collects the data objects that forms the SAC payload.

Section 11.3.1.7

2 The system authenticates the complete SAC message, comprising the SAC header, | Section 7.3

SAC payload and padding (if required).

3 The SAC payload and SAC authentication are encrypted. The encrypted SAC data Section 7.5
is appended with the SAC header and the APDU tag and APDU length.

Note: Refer to Table 11.10 for messages that are transmitted through the SAC

8 Content Key Calculations
8.1 Content Control Key refresh protocol
8.1.1 Initialization and message overview

The following Figure 8.1 is provided for informative purpose:

CICAM

Host

-I-I [1] CCK (re)keying required

]
[2] generate key Kp

]
[3] derive CIV and/or CCK

I
I [4] send CC_sac_data_req(Kp+CICAM_ID+keyregister)

[6] confirm CC_sac_data_cnf(Host_ID+status)
[7] verify HOST_ID

[9] send CC_sac_sync_req()

51 Verity cicam_ID

[8] derive CIV and/or CCK

% [10] confirm CC_sac_sync_cnf(status)

NOTE : This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 8.1: CCK material computation sequence diagram

The process is defined as described in Table 8.1.

© 2008, 2009, 2011, 2015 Cl Plus LLP

96 Cl Plus Specification v1.3.2 (2015-03)

Table 8.1: CCK Computation (normative)

Description

Refer to

When the CICAM detects that a refresh of the CCK is required, the CICAM shall start
the process of CCK initialisation. The exact conditions for (re)keying are specified in
the referenced subsection.

Section 8.1.2

The CICAM generates a nonce to generate Kp as follows:.

Kp = SHA, ., (nonce)

Section Annex
A1

The CICAM may immediately start to compute the CIV and/or CCK.

Section 8.1.4

The CICAM shall send a cc_sac_data_req APDU to the Host, carrying the following
parameters:

. Kp.
. CICAM_ID as extracted from the CICAM device certificate.

. selection for odd or even register.

Section 11.3.3.4

The Host shall check that the received CICAM_ID is equal to the previously stored
CICAM_ID (See Note 5). If they are the same the Host may start computing the CIV
and/or CCK.

A CICAM_ID verification failure shall constitute in a response of "no CC support”.

Section 8.1.4

The Host shall confirm with the cc_sac_data_cnf APDU to CICAM, carrying the
following parameters:

. HOST _ID as extracted from the Host device certificate.

Failure to respond with cc_data_cnf constitutes a failure of the copy control system.

Section 11.3.3.4

The CICAM shall check that the received HOST_ID is equal to the previously stored
HOST_ID (See Note 5). If they are the same the CICAM may use the computed CCK
and CIV.

A Host answer of CC_no support or a HOST _ID verification failure constitutes a failure
of the copy control system. See Note 6.

Section 8.1.4

The Host may compute the CIV and/or CCK.

Section 8.1.4

The CICAM shall send a cc_sac_sync_req APDU to the Host, indicating a CCK
refresh.

When the CICAM has completed initializing the scrambler, the CICAM shall send a
synchronization request to the Host. This informs the Host that the CICAM is ready to
start using the newly computed CCK.

Section 11.3.3.4

10

The Host shall use the cc_sac_sync_cnf APDU to confirm to the CICAM to indicate that
it is ready to start using the newly computed CCK.

Failure to respond with cc_sac_sync_cnf constitutes a failure of the copy control
system. See Note 6.

Section 11.3.3.4

Notes:

1.

QA wN

Once computed, the new key material shall be stored in the appropriate register of the (de)scrambler.

Refer to section 5.6 for details.
The conditions for CCK refresh are specified in section 8.1.2.
Refer to Annex H for an overview of parameters involved.

The APDUs that are required in the CCK refresh protocol shall be sent via the SAC; refer to section 7.
Previous HOST _ID / CICAM _ID is stored in the 'Authentication Context'. Refer to Section 6.3
Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

© 2008, 2009, 2011, 2015 Cl Plus LLP

97 Cl Plus Specification v1.3.2 (2015-03)

8.1.2 Content Control Key re-keying conditions

The Content Control Key (CCK) refresh is initiated by the CICAM, whereas the Host is passively replying. The
CCK refresh shall be triggered under any of the following conditions:

. After both the authentication and the SAC initialisation process have successfully completed.
. When triggered at the discretion of the CAS.

. When triggered periodically (maximum key lifetime parameter). See Section 8.1.3.

. When block counter limit is overrun (only for AES mode).

° At every reboot.

. At every reset of the CICAM.

The following Figure 8.2 explains the CICAM operation for CCK refresh.

Successful (re)authentication and/or (re)boot and/or reinsertion

(22) CICAM disables (1) GG intialisst W
network CA descrambling ! ! /‘ *
L No (>30s.)

(2) CICAM initializes CC key (15)
refresh timer to zero seconds. Key refreshtimer:
10>t>30

L sec?
No

No (<10s.)

Yes
(between 10 and 30 s.)

(3) CICAM sends key Kp.

v

(4) CICAM starts calculating
CIV and/or CCK.

v

(5) CICAM receives host
confirm.

(14) CICAM
received sync
confirm?

(16) CICAM disables
network CA descrambling

(17) CICAM enables CA
descrambling and CC
scrambling operation.

A

(6) Initial
Key_lifetime
period?

(18) CICAM starts
block_counter = 1.

»
»

(12)
Key refresh timer
>9sec?

(7)

No Key refresh timer

(retries < limit)

no

(19) CA
requests key
refresh ?

»| yes no

| v

(8) CICAM sends sync (13) CICAM sends sync
request request.

(20)
key_lifetime
expired ?

(11) Wait 1 second

yes—»

%

yes

no

) CICA
received sync
confirm within
imeout?

(21)
block_counter
expired ?

(10) Key refresh
timer <= 10 sec?

NOTES: 1. The key refresh timer is the timeout upon computing a new CCK; refer to Figure 5.15 for
details.
2. The key lifetime is described in Section 8.1.3
3. The block counter limit is defined in Table 8.2
4. The initial key lifetime is defined as the first key lifetime period (i.e. CCK computation) after
SAC (re)initialisation.
5. Start of CC scrambling operation is subject to any URI data associated with the selected
service.

Figure 8.2: CICAM operation for CCK refresh (informative)

© 2008, 2009, 2011, 2015 Cl Plus LLP

98 Cl Plus Specification v1.3.2 (2015-03)

Table 8.2: Scrambler Block Counter Limits

Scrambler Selection Block Counter Limit Comment

DES N/A not used

AES 2%

Note: The block counter limit is the number of cipher blocks that have
been processed since the refresh of the CCK.

Figure 8.3 explains the Host operation for CCK refresh.

Successful (re)authentication and/or (re)boot and/or reinsertion
\ 4

61) Wait for CICAM key refres%i

(2) Host receives key Kp

v

(3) Host confirms

v

(4) Host calculates CIV and/or
CCK

v

(5) Host receives sync request

(6) Host confirms and
starts using (newly)
calculated CC keys

Figure 8.3: Host operation for CCK refresh (informative)

8.1.3 Content Key Lifetime

The maximum key lifetime parameter is controlled by the CA system, which is out of scope of this
specification. The countdown from this value is maintained by the CICAM which triggers the CCK refresh
process.

The countdown proceeds ONLY whilst the CICAM is scrambling content. This ensures that the Content Key is
not recalculated when it is not being used.

8.1.4 Content Control Key Computation (CCK)

The scrambler requires a content key (and an IV if required) for its operation: the Content Control Key (CCK)
and a Content Initialization Vector (CIV). Computation of CCK (and CIV) proceeds in two steps:

. Key precursor calculation.

. CCK and CIV key derivation.
These are defined as follows:
Step 1: Key precursor calculation.

The Key Precursor Kp is 256 bits long and shall be used for the computation of Km. The process to calculate Kp
shall be performed on the CICAM.

The Key Precursor Kp shall be calculated on the CICAM as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

99 Cl Plus Specification v1.3.2 (2015-03)

Kp =SHA ,,, (nonce) Eq. 8.1
Where:
. Input parameters are defined in Table 8.3.

Table 8.3: Input Parameters in Key Computation

Key or variable Size (bits) Comments Refer to

nonce 256 Random nonce of 256 bits generated by the CICAM. | Annex A

Notes:

1. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations
adhere to the SHS validation list. See SHS Validation List [11].

2. The requirements on the random number generator for the nonce are given in Annex A

Step 2: Key Material computation.

The Key Material Km is 256 bits long and is used for the derivation of the Content Control Key (CCK). The
Key Material Km is calculated as follows:

CCK,CIV = f —CC(Kp) Eq. 8.2

Note: the function f-CC is not defined in this document and may be obtained from the CI Plus Licensee
Specification [33].

After successful authentication the system will have determined whether the AES or DES cipher will be used to
protect the CA-unscrambled content returning to the Host (refer to section 6). The Content Control Key (CCK)
and Initialisation Vector (CIV) are derived from the Key Material (Km) in different ways for the AES-128
scrambler and for the DES-56 scrambler.

8.1.5 Content Key for DES-56-ECB Scrambler.

The DES-56 Content Key (CCKpgs) is 64 bits. The CCK material from the f-CC is padded with parity bits in the
same way as SCTE41 [5], Appendix B into the resultant CCKpgs. The CCKpgg shall be changed as specified in
section 5.6.1.

When DES is used, the CCK shall be used to descramble a TS packet as follows:
clear _packet = Dyg ¢ pcpA\CCK o Y (Ts _ Packet) Eq. 8.3
NOTE: Refer to section 5.6.2.2 for the detailed specification of the DES (de)scrambler.

8.1.6 Content Key and IV for AES-128-CBC Scrambler.

The AES-128 Content Key (CCKAES) is 128 bits long. When AES is used, the CCK and CIV are applied to
AES to descramble a TS packet as follows:

clear _packet =D ;¢ \»s 5 {CCK s} {CIV } (T's _ Packet) Eq. 8.4

Where:

. The CCK s shall change as specified in section 5.6.1. Additionally, the CCK sgs shall be changed after
processing 2*> AES blocks.

. The CIV is fixed for every key lifetime period and shall change when the CCK changes. The current
CIV shall be re-used at the start of every MPEG2 TS packet.

NOTE: Refer to section 5.6.2.3 for the detailed specification of the AES (de)scrambler.

© 2008, 2009, 2011, 2015 Cl Plus LLP

100 Cl Plus Specification v1.3.2 (2015-03)

9 PKI and Certificate Details

9.1 Introduction

The authentication between a CI Plus Host and module includes the exchange of certificates. A device
certificate of a Host or module serves three purposes:

. prove that the device is compliant with the CI Plus specification

. provide an RSA public key of the device. This key is used for verification of the device's Diffie-
Hellman public key during the authentication protocol, see Figure 6.2 and Table 6.1

. convey the device scrambler capabilities

Each service provider that broadcasts CI Plus services has a Service operator certificate. This certificate is used
by the CICAM to verify the integrity of revocation lists that it receives from the broadcast.

9.2 Certificate Management Architecture

The CI Plus trust hierarchy is organized as a tree structure with a single Root of Trust (ROT). There is only one
tree for all participants in CI Plus, See Figure 9.1.

Root of Trust

Brand A Brand B Service Operator

Host X Host Y Module Z

Figure 9.1: Certificate Hierarchy Tree

There are four different types of certificates.
. Root certificate
- issued by the ROT
- self-signed
- only one root certificate exists for all of CI Plus
. Brand certificate
- issued by the ROT
- signed with the private key of the root certificate
- one certificate of this type exists for each brand (or manufacturer)
. Device certificate

- issued by the ROT

© 2008, 2009, 2011, 2015 Cl Plus LLP

101 Cl Plus Specification v1.3.2 (2015-03)

- signed with the private key of the brand certificate
- each single device has a unique device certificate
. Service operator certificate
- issued by the ROT
- signed with the private key of the root certificate
- one certificate of this type exists for each service operator
Each certificate contains a public key for which there is a corresponding private key.
Each Host and module device shall integrate the following certificate related information at manufacturing time.
. the CI Plus root certificate
. the brand certificate
. the device certificate
. the private key corresponding to the device certificate (MDQ or HDQ, see Table 5.2)

The service operator certificate is broadcast and unlike other certificates it does not have to be integrated into
the Host or CICAM at manufacture.

9.3 Certificate Format

All CI Plus certificates are based on the Internet Profile of X.509, defined in RFC 3280 [19]. The Multimedia
Home Platform (MHP) Specification 1.0.3, TS 101 812 [9], section 12.11 provides a good overview of
certificate encoding.

For informational purposes, the ASN.1 definition of an X.509 certificate, taken from RFC 3280 [19], section
4.1, is reproduced below:

Certificate ::= SEQUENCE ({
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT vl,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uniqueldentifier OPTIONAL,
-- If present, version MUST be v2 or v3
subjectUniquelID[2] IMPLICIT Uniqueldentifier OPTIONAL,
-- If present, version MUST be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Version ::= INTEGER { v1(0), v2(1), v3(2) }
CertificateSerialNumber ::= INTEGER
Validity ::= SEQUENCE ({

notBefore Time,
notAfter Time }

Time ::= CHOICE {
utcTime UTCTime,

generalTime GeneralizedTime }

UniquelIdentifier ::= BIT STRING

© 2008, 2009, 2011, 2015 Cl Plus LLP

102 Cl Plus Specification v1.3.2 (2015-03)

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE ({
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

This section explains the fields and extensions that are used in the CI Plus specification.

9.3.1 version

CI Plus implementations shall use X.509 version 3.

9.3.2 serialNumber

Each certificate shall include a unique serial number which shall be assigned by the issuer of the certificate.
9.3.3 signature

All certificates use RSASSA-PSS signatures as defined in PKCS1v2.1 [1], section 8.1.1.

Table 9.1: Certificate Signature Algorithm

Parameter Value
hashAlgorithm SHA-1
maskGenAlgorithm MGF1 using SHA-1
saltLength 20 bytes
trailerField one byte: Oxbc

The corresponding ASN.1 object identifiers are:
1id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }
pkcs-1 OBJECT IDENTIFIER ::= {
iso (1) member-body(2) us(840) rsadsi(113549) pkcs(l) 1 }
rSASSA-PSS-Default-Params RSASSA-PSS-Params ::= {
shalldentifier, mgflSHAlIdentifier, 20, 1}

shalldentifier AlgorithmIdentifier ::= { id-shal, NULL }

id-shal OBJECT IDENTIFIER ::= {
iso(1l) identified-organization(3) oiw(1l4) secsig(3) algorithms(2) 26 }

mgflSHAlIdentifier AlgorithmIdentifier ::= { id-mgfl, shallIdentifier }

934 issuer

CI Plus certificates (like all other X.509 certificates) use an X.501 [22] distinguished name in the issuer field.
Table 9.2 shows the issuer field for the different certificate types.

© 2008, 2009, 2011, 2015 Cl Plus LLP

103 Cl Plus Specification v1.3.2 (2015-03)

Table 9.2: Certificate Issuer

Certificate type Issuer
Root certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for ClI Plus
certificates>
OU: "test" or "production”
CN: "CI Plus Root CA certificate"
Brand certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for ClI Plus
certificates>
OU: "test" or "production”
CN: "CI Plus Root CA certificate"
Device certificate C: <country where the brand is located>
ST: <state where the brand is located>
L: <city where the brand is located>
O: <name of the brand>
OU: "test" or "production”
CN: "CI Plus ROT for" <name of the brand>
Service operator certificate | C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for ClI Plus
certificates>
OU: "test" or "production”
CN: "CI Plus Root CA certificate"

The X.501 attributes used by CI Plus are Country (C), State (ST), Location (L), Organization Name (O),
Organizational Unit Name (OU) and Common Name (CN). Please note that the same attribute may appear in a
name multiple times.

The ASN.1 encoding of an X.501 distinguished name is defined in RFC 3280 [19], section 4.1.2.4. All attribute
values may be encoded as PrintableString or UTF8String.

9.3.5 validity

The validity of the certificate must exceed the expected lifetime of the device. The CI Plus specification does
not include a method to replace root, brand or device certificates. A service operator certificate is received via
the broadcast and may be easily updated; its lifetime may be considerably shorter than that of the other
certificates.

Definition of the exact lifetimes for the certificates is out of scope of this specification.

The time in the fields notBefore and notAfter shall be encoded as UTC Time and shall include seconds, i.e. the
format is YYMMDDHHMMSSZ. The year field shall be interpreted as 20YY.

9.3.6 subject

The subject is an X.501 [22] distinguished name and uses the same encoding as the issuer field.

© 2008, 2009, 2011, 2015 Cl Plus LLP

104 Cl Plus Specification v1.3.2 (2015-03)

Table 9.3: Certificate Subject

Certificate type Subject
Root certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for ClI Plus
certificates>
OU: "test" or "production”

CN: "CI Plus Root CA certificate"

Brand certificate C: <country where the brand is located>
ST: <state where the brand is located>
L: <city where the brand is located>

O: <name of the brand>

OU: "test" or "production”

CN: "CI Plus ROT for" <brand name>
Device certificate C: <country where the brand is located>
ST: <state where the brand is located>
L: <city where the brand is located>

O: <name of the brand>

OU: <product name> (optional)

OU: "test" or "production”

CN: <device ID>

Service operator certificate | C: <country where the operator is located>
ST: <state where the operator is located>
L: <city where the operator is located>

O: <name of the operator>

OU: "test" or "production”

CN: <service operator ID>

The device ID is a hexadecimal number that consists of 16 digits. To store this number in an X.501 Common
Name (CN) attribute, it must be converted into a string. Each digit is represented by the corresponding ASCII
code, i.e. 1 is written as 0x31 and 7 as 0x37. For the hexadecimal digits A to F, uppercase letters are used (hex
values 0x41 to 0x46).

For details about the content of the device ID, refer to the CI Plus Licensee Specification [33].

The service operator ID is a hexadecimal number that consists of 16 digits. It is encoded in the same way as the
device ID. The service operator ID is used for linking a service operator certificate to the Revocation Signalling
Data file (RSD), see section 3.1.4 of CI Plus Supplementary Specification [37].

9.3.7 subjectPublicKeylnfo

The algorithm is RSA using the ASN.1 object identifier
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

pkcs-1 OBJECT IDENTIFIER ::= {
iso (1) member-body(2) us(840) rsadsi(113549) pkcs(l) 1 }

The parameters field shall have ASN.1 type NULL.

The RSA key's public exponent shall be 65537 == 0x10001, the modulus length shall be 2048 bits. Refer to
RFC 3280 [19], section 4.1.2.7 for encoding of the public key.

9.3.8 issuerUniquelD and subjectUniquelD

The issuerUniquelD and subjectUniquelD parameters are defined in RFC 3280 [19], section 4.1.2.8. CI Plus
certificates shall not use unique identifiers.

© 2008, 2009, 2011, 2015 Cl Plus LLP

105 Cl Plus Specification v1.3.2 (2015-03)

9.3.9 extensions

Certificates for CI Plus use some standard extensions as defined in RFC 3280 [19] and two private extensions
that are specific to CI Plus. The following table lists the mandatory extensions for each certificate type:

Table 9.4: Certificate Extensions

Certificate Type Mandatory Extensions
Root certificate key usage
subject key identifier
basic constraints
Brand certificate key usage
subject key identifier
authority key identifier
basic constraints
Device certificate key usage
authority key identifier
basic constraints
scrambler capabilities
ClI Plus info (optional)
CICAM brand identifier (CICAM only)
Service operator certificate | key usage
authority key identifier
basic constraints

All other extensions may be used as defined in RFC 3280 [19] and they shall not be marked as critical. CI Plus
compliant Hosts and CICAMs may ignore these extensions when parsing and verifying a certificate.

9.3.9.1 Subject Key ldentifier
The subject key identifier shall be calculated according to proposal (1) in RFC 3280 [19], section 4.2.1.2.
9.3.9.2 Authority Key Identifier

The Authority Key Identifier extension is defined in RFC 3280 [19], section 4.2.1.1. The keyldentifier field
shall be calculated according to proposal (1) in RFC 3280 [19], section 4.2.1.2.

9.3.9.3 Key usage

The key usage extension is defined in RFC 3280 [19], section 4.2.1.3 and shall always be present and marked as
critical. The value of KeyUsage depends on the certificate type as shown in Table 9.5.

Table 9.5: Key Usage Values for Certificate Types

Certificate Type Key Usage

Root certificate keyCertSign
criSign

Brand certificate keyCertSign

Device certificate digitalSignature

Service operator certificate | cRLSign
digitalSignature

9.394 Basic constraints

The basic constraints extension is defined in RFC 3280 [19], section 4.2.1.10. The values shall be set as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

106 Cl Plus Specification v1.3.2 (2015-03)

Table 9.6: Extension Fields

Certificate Type cA pathLenConstraint
Root certificate True |1
Brand certificate True
Device certificate False |-
Service operator certificate False |-
9.3.9.5 Scrambler capabilities

Scrambler capabilities is a private extension for CI Plus, it shall be present in each device certificate and marked
as critical. The ASN.1 definition is defined as

id-pe-scramblerCapabilities OBJECT IDENTIFIER ::= { id-pe 25 }
id-pe ::= {
iso(l) identified-organization(3) dod(6) internet (l) security(5)
mechanisms (5) pkix(7) 1 }

ScramblerCapabilities ::= SEQUENCE ({
capability INTEGER (0. .MAX),
version INTEGER (0..MAX) }

The following values are supported for capability

Table 9.7: Capabilities Supported

Value Meaning
0 DES
1 DES and AES
all others reserved for future use

The version field is used to further distinguish different scrambler capabilities. See the CI Plus Licensee
Specification [33] for further details.

9.39.6 Cl Plus info

The optional CI Plus info private extension conveys additional information about a CI Plus device. This
extension shall be present in a device certificate only and shall not be declared as critical.

This is its ASN.1 definition

id-pe-ciplusInfo OBJECT IDENTIFIER ::= { id-pe 26 }

id-pe ::= {
iso(l) identified-organization(3) dod(6) internet(l) security(5)
mechanisms (5) pkix(7) 1 }

CiplusInfo ::= BIT STRING

The content of CiplusInfo is undefined by this specification and may be used by future profile extensions.

9397 CICAM brand identifier

The CICAM brand identifier private extension conveys the identity of the CICAM manufacturer in the CI Plus
device certificate which should be matched with the broadcast stream for the Host shunning mechanism (See
section 10.1.1). This extension shall not be declared as critical. The extension shall be present in a CICAM
device certificate.

The ASN.1 definition is defined as:

id-pe-cicamBrandId OBJECT INDENTIFIER ::= { id-pe 27 }

id-pe ::= {
iso(l) identified-organization(3) dod(6) internet(l) security(b)
mechanisms (5) pkix(7) 1 }

CicamBrandld ::= INTEGER (1..65535)

© 2008, 2009, 2011, 2015 Cl Plus LLP

107 Cl Plus Specification v1.3.2 (2015-03)

9.3.10 signatureAlgorithm

This field is identical to signature, see section 9.3.3

9.3.11

signatureValue

This field is defined in RFC 3280 [19], section 4.1.1.3

9.4

Certificate Verification

During the authentication process (see section 6), the chains of certificates are exchanged and each device
verifies the opposite's chain. This section explains the verification process.

The CI Plus Root Certificate is stored in each device, during the authentication process, only the brand and the
device certificate are exchanged, the root certificate is never exchanged by any device.

9.41

Verification of the brand certificate

The following steps must be performed in order to verify the brand certificate.

1))
2)
3)

4)

)

94.2

Check that the Issuer of the brand certificate is identical to the Subject of the root certificate.
Check that the validity period of the brand certificate includes the current date and time.

Check that each mandatory extension listed in section 9.3.9 exists and the values are valid. Check that
no other extension is marked as critical.

Verify that the Keyldentifier in the brand certificate's authority key identifier extension is identical to
the Keyldentifier in the root certificate's subject key identifier extension.

Verify the certificate's signature by using the RSASSA-PSS verification described in RSA PKCS#1
[1], section 8.1.2.

Table 9.8: Brand Certificate verification

Parameter Value

signer's RSA public key | subjectPublicKeylnfo of the Root Certificate

message to be verified TBSCertificate of the brand certificate (see RFC 3280 [19], section 4.1)

signature to be verified signatureValue of the brand certificate

Verification of the device certificate

When the brand certificate is determined to be valid, the device certificate is checked. The process is similar to
the brand certificate verification.

1)
2)
3)

4)

5)

Check that the Issuer of the device certificate is identical to the Subject of the brand certificate.
Check that the validity period of the device certificate includes the current time.

Check that each extension listed in section 9.3.9 exists and their values are valid values listed there.
Check that no other extension is marked as critical.

Check that the CICAM brand identifier extension is present in the CICAM device certificate and that it
contains valid values according to section 9.3.9.7.

Note: Although this extension is not marked critical certificate verification shall fail if this
extension is not present or contains an invalid value.

Verify that the Keyldentifier in the device certificate's authority key identifier extension is identical to
the Keyldentifier in the brand certificate's subject key identifier extension.

Verify the certificate's signature by using the RSASSA-PSS verification described in PKCS#1 v2.1 [1],
section 8.1.2.

© 2008, 2009, 2011, 2015 Cl Plus LLP

108 Cl Plus Specification v1.3.2 (2015-03)

Table 9.9: Device Certificate verification

Parameter Value
signer's RSA public key | subjectPublicKeylnfo of the brand certificate
message to be verified TBSCertificate of the device certificate (see RFC3280 [19], section 4.1)
signature to be verified signatureValue of the device certificate

6) Ensure that the device certificate has not been revoked, this is only performed by the CICAM on
checking the Host certificate.

7) Verify that the device ID (which is part of the Subject field) contains a valid value. See Annex B for
details.

Details about revocation list checking can be found in the CI Plus Licensee Specification [33].

9.4.3 Verification of the service operator certificate

To verify a service operator certificate, received from the broadcast, the following steps must be performed:
1) Check the Issuer of the service operator certificate is identical to the Subject of the root certificate.
2) Check the validity period of the service operator certificate includes the current date and time.

3) Check that each mandatory extension listed in section 9.3.9 exists and the values are valid. Check that
no other extension is marked as critical.

4) Verify that the Keyldentifier in the service operator certificate's authority key identifier extension is
identical to the Keyldentifier in the root certificate's subject key identifier extension.

5) Verify the certificate's signature by using the RSASSA-PSS verification described in RSA PKCS#1
[1], section 8.1.2.

Table 9.10: Service Operators Certificate verification

Parameter Value
signer's RSA public key | subjectPublicKeylnfo of the Root certificate
message to be verified | TBSCertificate of the service operator certificate (see RFC3280 [19], section 4.1)
signature to be verified | signatureValue of the service operator certificate

6) Verify that the numerical representation of the service operator ID in the Subject matches the
service_operator_identity of the Revocation Signalling Data (RSD) file on the current multiplex.

10 Host Service Shunning

Host Service Shunning allows the Service Operator to inform the Host of services that require CI Plus protection
allowing the Host to prevent the display of content when the CICAM is not CI Plus conformant. Host Service
Shunning ensures that DVB CICAMs are not able to display content on services where they are not permitted.

10.1 CI Plus Protected Service Signalling

The CI Plus Protected Service Signalling is carried in the Service Description Table (SDT pcq,r) for the actual
multiplex, as specified in EN 300 468 [10]. A CI Plus protected service is signalled by the inclusion of a CI Plus
private data specifier and private ci_protection_descriptor in the service descriptor loop of SDT scy,. The
descriptor defines whether the service is CI Plus enabled and may optionally constrain the Host to operate with a
specific brand of CI Plus CICAM.

The CI Plus Protection Service Signalling is a quasi-static state attribute of the service and shall not change on
an event basis. A service may switch between clear and scrambled on an event basis. Host Service Shunning
checking is operative on all services, both FTA and CA scrambled, when any CICAM is present in a Host
device ensuring that service shunning broadcast signalling is always honoured.

© 2008, 2009, 2011, 2015 Cl Plus LLP

10.1.1 ClI Protection Descriptor

109

Cl Plus Specification v1.3.2 (2015-03)

The CI protection descriptor (See Table 10.1) provides a means of indicating the CI operating mode required by
a service. It shall be inserted at most once in the service descriptor loop of the SDT 5., and shall be preceded by

a CI Plus private data specifier descriptor according to EN 300 468 [10].

Table 10.1: Cl protection descriptor

Syntax No. of bits Mnemonic
ci protection descriptor () {
descriptor_ tag 8 uimsbf
descriptor length 8 uimsbf
free ci mode flag 1 bslbf
match brand flag 1 bslbf
reserved future use 6 bslbf
if (match brand flag == 1) {
number of entries 8 uimsbf
for (i=0; i<n; i++) {
cicam brand identifier 16 uimsbf
}
}
for (i=0; i<n; i++) {
private data byte 8 uimsbf
}
}

10.1.1.1 ClI Protection Descriptor

descriptor_tag: The descriptor_tag for the ¢i_protection _descriptor is 0xCE.

descriptor_length: The descriptor length is an 8-bit field specifying the total number of bytes of the data
portion of the ci_protection_descriptor following the byte defining the value of this field.

free_ci_mode_flag: This is a 1-bit field identifying the CI operating mode. When set to "0", indicates that all of
the component streams of the service do not require CI Plus protection. When set to "1", indicates that all of the
component streams of the service require CI Plus protection if they are not transmitted in the clear on the

broadcast network.

match_brand_flag: This is a 1-bit field signifying that the descriptor includes a list of cicam_brand _identifiers.
When set to "0", indicates that this service has no chosen CICAM brands. When set to "1", indicates that this
service has chosen to set CICAM brands. The match_brand flag is only interpreted when the free ci_mode flag

issetto"1".

reserved_future use: Reserved bits shall be "1".

number_of entries: This field specifies the number of cicam_brand_identifiers that are contained in the brand
identifier loop. When match brand_flag field has been set to 1, the number of entries shall be # 0.

cicam_brand_identifier: This is a 16-bit field that identifies the CICAM brands that may be used with the

service.

When no CICAM brand identifiers are present, any CI Plus CICAM may be used with the Host. When one or
more CICAM brand identifiers are specified, the Host shall only operate with a CI Plus CICAM device whose
Device Certificate cicamBrandld matches the cicam_brand identifier. If none of the cicam_brand identifiers
present are matched with the CICAM device certificate then the CICAM shall be shunned for this service. The

cicam_brand _identifier value 0x0000 is reserved and shall not be used.

private_data_byte: This is included for future extensions to Host Service Shunning. For this version of the
specification is undefined and if present shall be ignored.

© 2008, 2009, 2011, 2015 Cl Plus LLP

110 Cl Plus Specification v1.3.2 (2015-03)

10.1.1.2 Private Data Specifier Descriptor

The Private Data Specifier descriptor (see EN 300 468 [10], Private Data Specifier descriptor) shall precede the
ci_protection_descriptor in the SDT ac, descriptor loop. The private data specifier value is defined in the CI
Plus Licensee Specification [33].

10.2 Trusted Reception

The Host shall have only two CICAM transport stream routing modes:
1) by-pass mode; the MPEG-2 TS shall be routed directly to the Host demux.
2) pass-through mode; the MPEG-2 TS shall be routed through the CICAM to the Host demux.

There are two trusted reception modes for receiving SDT s¢ua. The first is where one or more non CI Plus
CICAMs are inserted in the Host; in this case the Host shall receive the MPEG2 TS in by-pass mode to
determine if CI Plus protection is required for this service. This is required because the data path through the
non CI Plus CICAM is not trusted.

The second is where the Host only has a CI Plus CICAMs inserted; in this case the Host may trust the MPEG2
TS being received from the CI Plus CICAM and pass-through mode may be used.

While receiving an MPEG-2 TS in one of the two trusted reception modes, the Host shall attempt to acquire the
SDT pctual- If the Host receives the MPEG-2 TS but the SDT aq 1S not acquired, after 5 seconds the Host may
switch to service shunning in-active. The Host shall be in receipt of a valid MPEG-TS before starting the 5
second timer to determine if SDT 4, 1S absent.

The conceptual hardware operation for Host by-pass and CICAM pass-through modes is depicted in Figure 10.1
which considers the transport stream source as switchable under Host control. The figure is informative and
other hardware solutions may be used that produce the same effect.

Host by-pass Source
Tuner > switch

Demux

CICAM pass-through

A 4

CICAM
1..n

Figure 10.1: Conceptual bypass operation (Informative)

The CI Plus Protected Service signalling of a service is quasi-static and the CI Plus state may be cached by the
Host. The Host shall periodically re-confirm the CI Plus service state by inspection of SDT a.,, Using a trusted
reception mode.

If the Host caches the CI Plus Protected Service signalling, it shall only cache it for a maximum of 7 days after
which the data shall be deleted and renewed by appropriate acquisition of SDT s The 7-day cache implies
that a Host may take up to 7 days to react to a change in the broadcast network CI Plus state.

10.3 Cl Plus Protection Service Mode

The CI Plus Protected Service modes are defined as:

© 2008, 2009, 2011, 2015 Cl Plus LLP

111 Cl Plus Specification v1.3.2 (2015-03)

Table 10.2: Cl Plus Protected Service modes

Signalling CICAM-type Service Shunning
Operating Mode
ci_protection_descriptor absent (See note 1) DVB Cl and ClI Plus in-active
ci_protection_descriptor present and free_Cl_mode is "0" DVB Cl and CI Plus in-active
ci_protection_descriptor present and free_Cl_mode is "1" DVB CI active

ci_protection_descriptor present, free_Cl_mode is "1" and

match_brand flag = "0" or number_of entries ="0" Cl Plus in-active

ci_protection_descriptor present, free_Cl_mode is "1",
match_brand_flag = "1" and number_of_entries # "0" and Cl Plus active
CICAM brand identifier not matched

ci_protection_descriptor present, free_Cl_mode is "1",

match_brand_flag = "1" and number_of_entries # "0" and Cl Plus in-active
CICAM brand identifier matched

Notes:

1. Failure to acquire the SDTacwal in a trusted reception mode then the Host may assume that the

ci_protection_descriptor is absent and shall assume an in-active service shunning operating mode.

10.4 Service Shunning

Each time the Host device selects any service the Host device shall use the stream or cached CI Plus state from
SDT pctual to determine how the CICAM shall operate with the selected service. An informative overview of the
operation is shown in Figure 10.2, caching may be optionally implemented by the receiver.

© 2008, 2009, 2011, 2015 Cl Plus LLP

112 Cl Plus Specification v1.3.2 (2015-03)

Start (1)

Select service (2)

Cached ; .
data present? No—p Service Shunning
(©) active (4)
Acquire SDT (5)

timeout
wamngi_for
SD

@)

shunning
data present?
(N

Service shunning
In-active (8)

Yes

v f tbrand >
es ata present?
(9)

brand id

matches? Service shunning
(13)

In-active (14)

Service shunning

Yes In-active (11)

Yes

Service Shunning
active (12)

Notel: Check at step (7): is CI_protection descriptor absent or (if present) is field "free_ci_mode flag" =1?

Note2: Check at step (9): is field "match_brand flag" = 1 and is field "brand_identifier length" > 0 (zero)?

Figure 10.2: Shunning Operation

Whenever the Host is operational (1) and selects any service (2). The Host checks if the cached CI Plus
Protected Service signalling data is present (3). If not the Host prepares for a Host shunning check and shall not
instruct the CICAM to descramble the service (4). The Host switches to a trusted reception mode and acquires
SDT cwal and determines the Host shunning state using the CI Protection descriptor if present (5). The Host
attempts to acquire the SDT s¢a, if the SDT p¢qqr is not acquired after 5 seconds then service shunning is In-
active (8). The Host checks whether the service shunning state is active (7). If the CI_protection_descriptor is
absent or (if present) the free CI_mode_flag is set to "0" then Service Shunning is In-active (8). If the CI
protection descriptor is present and free CI mode flag is set to "1" then the Host shall continue to check if
brand data is present (9). If the match brand flag is set to "0" or the list length is set to 0 (zero) then the Host
determines that the brand data is absent and continues to check if the CICAM operating in a CI Plus mode (10).
If the CICAM is operating in CI Plus mode then Service shunning is In-active for the service (11), the CICAM
is operating in a non CI Plus mode then service shunning is activated for the service (12). However, if in step 9
the match_brand flag is "1" and list length is not equal to "0" the Host checks if the identifier of the CICAM and

© 2008, 2009, 2011, 2015 Cl Plus LLP

113 Cl Plus Specification v1.3.2 (2015-03)

a cicam_brand_identifier signalled by the service match (13), if the identifiers do not match then service
shunning is Active (12). If a cicam_brand identifier does match the CICAM then service shunning is In-active
(14).

10.4.1 Service Shunning In-active

Service Shunning In-active is the condition where the active or current CICAM is allowed to descramble the
service. In this case the service may allow DVB CICAMs or the current CICAM is CI Plus conformant and the
brand_identifier matches the service operating requirements (if applicable). See Figure 10.2 for more on service
shunning in-active.

Whilst in a Service Shunning in-active operating mode the Host is required to appropriately reacquire SDT a¢qa
from the broadcast stream to obtain the CI Plus operating state if any cached CI Plus status is older than 7-days,
this may require the Host to interrupt the currently viewed service.

10.4.2 Service Shunning Active

Service Shunning Active is the condition where the active or current CICAM is not allowed to descramble the
service. In this case the CICAM may not be CI Plus compliant or the CICAM brand does not match the service
signalling. Service shunning may also be temporarily activated while the Host performs trusted SDT acquisition
and acquires the CI Protection descriptor for the selected service. See Figure 10.2 for more on service shunning
active.

Service Shunning Active shall be implemented by the Host initiating by-pass mode. If the TS is still routed to
the CICAM in this mode the Host shall not send a CA_PMT to the CICAM.

When the shunning state changes from "active" to "inactive", the Host shall immediately send a CA_PMT to the
CICAM.

11 Command Interface

This section explains the new resources in CI Plus. Changes to the existing application information resource are
also included in this section.

11.1 Application Information resource

11.1.1 Application Information Version 3

Application Information Resource version 3 (see Table L1 in Annex L for resource ID) adds new commands for
CICAM reset and Host PCMCIA bus data rate limits.

11.1.2 Request CICAM Reset

When a condition occurs that requires the CICAM to request a physical CICAM reset, it shall send a
request_cicam_reset APDU.

11.1.2.1 request _cicam_reset APDU

On receipt of this request, the Host shall physically reset the CICAM within 10 seconds. After sending the
request_cicam_reset command the CICAM shall not send any other APDUs to the Host.

Table 11.1: Request CICAM Reset APDU Syntax

Syntax No. of bits | Mnemonic
request cicam reset () {
request cicam reset tag 24 uimsbf
length field() = 0
}

request_cicam_reset_tag: The value for this tag may be found in Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 Cl Plus LLP

114 Cl Plus Specification v1.3.2 (2015-03)

length_field: Length of APDU payload in ASN.1 BER format, see EN 50221 [7], chapter 8.3.1.

Note: The CICAM may also request that the physical interface be re-initialized using the IIR bit of the
status register. Support for the IIR bit is optional in CI Plus and is explained in the following
section.

11.1.2.2 Reset request using the IIR bit

An additional bit called IIR (initialize interface request) is added to the status register, see Table 11.2 below.
The CICAM sets this bit to request a physical interface reset. After setting the IIR bit, the CICAM shall not send
any other APDUs to the Host. The CICAM clears the IIR bit when the Host sets the RS bit during the reset.

Table 11.2: Status Register including IIR

Bit| 7 | 6 |5/ 4 3|21]0
DA|FR|R]IR|R]|R|WE|RE

Note: DA, FR, WE and RE bits are unchanged, see EN 50221 [7], annex A.2.2.1.

11.1.3 Data rate on the PCMCIA bus

The CI Plus specification supports two different data rates on the PCMCIA bus: 72 Mbit/s and 96 Mbit/s.
CICAMs shall support 96 Mbit/s. Hosts shall support 72 Mbit/s, support for 96 Mbit/s is optional.

11.1.31 data_rate_info APDU

The Host sends a data_rate info APDU to inform the CICAM about the maximum data rate it supports.
Typically, a data_rate_info APDU is sent after the initial application_info_enq and application_info messages.
The CICAM shall not exceed an output data rate of 72 Mbit/s until it has received a data_rate_info message
from the Host. If data_rate_info APDU is not sent by the Host then the maximum data rate supported by the
Host is 72Mbit/s.

Table 11.3: data_rate_info APDU Syntax

Syntax No. of bits | Mnemonic
data rate info () {
data rate info tag 24 uimsbf
length field() =1
data rate 8 uimsbf
}

data_rate_info: The value for this tag is 0x9F8024.

data_rate: This value specifies the maximum PCMCIA data rate supported by the Host. Table 11.4 lists the
possible values.

Table 11.4: possible values for data_rate

maximum PCMCIA data rate value
72 Mbit/s 00
96 Mbit/s 01
reserved other values

11.2 Host Language and Country resource

The Host uses the Host language and country resource to inform the CICAM about its current language and
country settings. The CICAM may set its menu language to reflect the Host's setting.

The Host language and country resource is provided by the Host. The resource shall support one session per
CICAM. The resource ID for the Host language and country resource is listed in Table L.1, Annex L.

© 2008, 2009, 2011, 2015 Cl Plus LLP

115 Cl Plus Specification v1.3.2 (2015-03)

11.2.1 Host Language and Country resource APDUs

The following APDUs are used by the Host language and country resource. They are explained in detail in
subsequent sections.

Table 11.5: Host Language & Country APDUs

APDU Name Direction
Host country eng CICAM > HOST
Host country CICAM < HOST
Host language eng CICAM > HOST
Host language CICAM €« HOST

11.21.1 Host_country_enq APDU

The CICAM sends this APDU to the Host to query the current country setting. The Host replies with a
Host _country APDU.

Table 11.6: Host_country_enq APDU syntax

Syntax No. of bits Mnemonic
Host country enqg() {
Host country enqg tag 24 uimsbf
length field() = 0
}

Host_country_enq_tag: see Table L.1, Annex L.

11.21.2 Host_country APDU

This APDU is sent by the Host to inform the CICAM about the Host's current country setting. It is sent in
response to a Host country _enq from the CICAM.

The Host also sends this APDU asynchronously on a change in its country setting,.

On opening a Host language and country resource, the Host sends one Host_country APDU to the CICAM
conveying the current Host setting.

Table 11.7: Host_country APDU syntax

Syntax No. of bits Mnemonic
Host country() {
Host country tag 24 uimsbf
length field() = 3
iso 3166 country code 24 bslbf
}

Host_country_tag: see Table L.1, Annex L.

iso_3166_country code: This field contains the current Host country setting. The country code is a 24-bit field
that identifies the Host country using 3 uppercase characters as specified by ISO 3166-1 alpha 3, [17]. Each
character is coded as 8-bits according to ISO 8859-1 [15].

NOTE: The Host may pass a country code that the CICAM does not support or recognise, it is up to the
CICAM how to handle this condition. The CICAM may use the MMI to select a suitable
alternative.

11.2.1.3 Host_language _enq APDU

The CICAM sends this APDU to the Host to query the current language setting. The Host replies with a
Host language APDU.

© 2008, 2009, 2011, 2015 Cl Plus LLP

116 Cl Plus Specification v1.3.2 (2015-03)

Table 11.8: Host_language_enq APDU syntax

Syntax No. of bits Mnemonic
Host language enqg() {
Host language enqg tag 24 uimsbf
length field() = 0
}

Host_language enq_tag: see Table L.1, Annex L.
11.21.4 Host_language APDU

This APDU is sent by the Host to inform the CICAM about the Host's current language setting. It is sent in
response to a Host language enq from the CICAM.

The Host also sends this APDU asynchronously on a change in its language setting.

On opening the Host language and country resource, the Host sends one Host_language APDU to the CICAM
conveying the current Host language setting.

Table 11.9: Host_language APDU syntax

Syntax No. of bits Mnemonic
Host language () {
Host language tag 24 uimsbf
length field() = 3
iso_639.2 language code 24 bslbf
}

Host_language tag: see Table L.1, Annex L.

iso_639.2 language code: This field contains the current Host language preference setting. This is a 24-bit
field that identifies the language using 3 lowercase characters as specified by ISO 639 Part 2 [18]. Both ISO 639-
2/B and 1SO 639-2/T may be used. Each character is coded into 8-bits according to ISO 8859-1 [15].

NOTE: The Host may pass a language code that the CICAM either does not support or recognise, it is up
to the CICAM how to handle this condition. The CICAM may use the MMI to select a suitable
alternative.

11.3 Content Control resource

The Content Control (CC) resource implements the security protocols of CI Plus such as authentication, key
calculation and URI transmission.

The CC resource is provided by the Host. The CICAM may request a session to the CC resource only if the Host
announced the CC resource during the resource manager protocol (see EN 50221 [7], section 8.4.1.1). The Host
shall support only one session to the CC resource per CI Plus slot.

The resource ID for the CC resource is listed in Table L.1, Annex L.

11.3.1 Content Control resource APDUs

This section describes the general structure of each APDU that is part of the CC resource. Section 5 explains
how the messages are used to implement the security protocols of CI Plus.

Table 11.10 gives an overview of the APDUs used by the CC resource.

© 2008, 2009, 2011, 2015 Cl Plus LLP

117

ClI Plus Specification

Table 11.10: Content Control APDU Tag Values

APDU_Tag

Direction

APDU used for

cc_open req

CICAM > HOST

Host capability evaluation

cc open cnf

CICAM < HOST

Host capability evaluation

cc _data req

CICAM > HOST

Authentication
Auth key verification
SAC key calculation

cc_data cnf

CICAM < HOST

Authentication
Auth key verification
SAC key calculation

cc_sync_req

CICAM > HOST

SAC key calculation

cc sync cnf

CICAM < HOST

SAC key calculation

cc_sac_data req

CICAM <-> HOST

CC key calculation

URI transmission and acknowledgement
URI version negotiation

SRM transmission and acknowledgement
Content license exchange

cc_sac _data cnf

CICAM <> HOST

CC key calculation

URI transmission and acknowledgement
URI version negotiation

SRM transmission and acknowledgement
Content license exchange

cc_sac_sync req

CICAM > HOST

CC key calculation

cc sac sync cnf

CICAM < HOST

CC key calculation

cc PIN capabilities req

CICAM < HOST

Host requests PIN capabilities of CICAM

cc PIN capabilities reply

CICAM > HOST

CICAM PIN capabilities reply

cc PIN cmd

CICAM < HOST

Passing PIN code to CICAM

cc PIN reply

CICAM > HOST

Returning PIN code status

cc PIN event

CICAM > HOST

Notifying the Host that PIN is required

cc PIN playback

CICAM < HOST

Providing a playback PIN to the CICAM

cc PIN MMI req

CICAM < HOST

Request for PIN dialogue

The general structure of an APDU is described in EN 50221 [7], section 8.3.1. An APDU starts with a 24 bit tag

followed by a length field coded as ASN.1 BER.

The tag values of the Content Control resource APDUs are given in Table L.1, Annex L.

11.3.1.1

cc_open_req APDU

This APDU is sent by the CICAM to request the bitmask of the CC system IDs supported by the Host.

Table 11.11: cc_open_req message APDU syntax

v1.3.2 (2015-03)

Syntax No. of bits Mnemonic
cc_open req() A{
cc_open_req_tag 24 Uimsbf

length field()=0
}

cc_open_req_tag: see Table L.1, Annex L.

11.3.1.2

The Host sends this APDU to the CICAM to inform it about the CC system ID it supports.

cc_open_cnf APDU

© 2008, 2009, 2011, 2015 Cl Plus LLP

118 Cl Plus Specification v1.3.2 (2015-03)

Table 11.12: cc_open_cnf message APDU syntax

Syntax No. of bits Mnemonic
cc_open _cnf () {
cc_open_cnf tag 24 uimsbf
length field()
cc_system id bitmask 8 bslbf
}

cc_open_cnf tag: see Table L.1, Annex L.

cc_system_id_bitmask: Each of the 8 bits indicates support for one CC system ID. The CICAM may choose
the highest common version supported at both ends. The least significant bit is for system ID 1, there is no
system ID 0.

This specification describes CC system ID 1, irrespective of the content of the cc_resource version. Host and
CICAMs shall always perform a bitwise check on this field rather than a simple comparison.

11.31.3 cc_data_req APDU

A cc_data req message is used by the CICAM to transfer protocol related data to the Host and to request a
response from the Host. The data to be sent and requested for each protocol is explained in section11.3.3.
cc_data_req which is used for data that does not have to be authenticated or encrypted. For data that shall be
authenticated or encrypted a cc_sac_data req is used.

Table 11.13: cc_data_req message APDU syntax

Syntax No. of bits Mnemonic
cc data req() {
cc_data req_ tag 24 uimsbf
length field()
cc_system id bitmask 8 bslbf
send datatype nbr 8 uimsbf
for (i=0; i<send datatype nbr; i++) {
datatype id 8 uimsbf
datatype length 16 uimsbf
data type 8*datatype length bslbf
}
request datatype nbr 8 uimsbf
for (i=0; i<request datatype nbr; i++) {
datatype id 8 uimsbf
}
}

cc_data_req_tag: see Table L.1, Annex L.

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype nbr: the number of data items included in this message.

datatype_id: see Table H.1, Annex H, for possible values.

datatype_length: this value is the length of data_type to send in bytes.

data_type: this field is used for contents of the datatype id.

request_datatype nbr: the number of data items that the Host shall include in its response.

datatype_id: the list of data items requested in the Host's response, see Table H.1, Annex H.

11.3.1.4 cc_data_cnf APDU

A cc_data_cnf message is sent by the Host to transfer protocol related data to the CICAM. The exact data is
specified with the protocols in section 5.

© 2008, 2009, 2011, 2015 Cl Plus LLP

119 Cl Plus Specification v1.3.2 (2015-03)

cc_data_cnfis used for data that does not have to be authenticated or encrypted. If this is required, a
cc_sac_data cnf shall be used.

Table 11.14: cc_data_cnf APDU syntax

Syntax No. of bits Mnemonic
cc data cnf () {
cc_data cnf tag 24 uimsbf
length field()
cc_system id bitmask 8 bslbf
send datatype nbr 8 uimsbf
for (i=0; i<send datatype nbr; i++) {
datatype id 8 uimsbf
datatype length 16 uimsbf
data type 8*datatype length bslbf
}
}

cc_data_cnf tag: see Table L.1, Annex L.

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype_nbr: the number of data items included in this message.
datatype_id: see Table H.1 (annex H) for possible values.
datatype_length: the length of the piece of data in bytes.

data_type: this field is used for contents of the datatype id.

11.3.1.5 cc_sync_req APDU

This APDU object is issued by the CICAM at the end of a key calculation to signal that it is ready to use the
newly calculated key.

Table 11.15: cc_sync_req APDU syntax

Syntax No. of bits Mnemonic
cc_sync_req() |
cc_sync_req_tag 24 uimsbf

length field()=0
}

cc_sync_req_tag: see Table L.1, Annex L.

11.3.1.6 cc_sync_cnf APDU

This APDU is the Host's response to a cc_sync_req, it signals that the Host has finished its key calculation. For
details, see section 11.3.2 below.

Table 11.16: cc_sync_cnf APDU syntax

Syntax No. of bits Mnemonic
cc_sync_cnf () {
cc_sync_cnf tag 24 uimsbf
length field()=1
status_ field 8 uimsbf
}

cc_sync_cnf tag: see Table L.1, Annex L.

status_field: This byte returns the status of the Host. Table 11.17 lists the possible values.

© 2008, 2009, 2011, 2015 Cl Plus LLP

120 Cl Plus Specification v1.3.2 (2015-03)

Table 11.17: Possible values for status_field

status_field Value
OK 0x00
No CC Support 0x01
Host Busy 0x02
Authentication failed 0x03
CICAM Busy 0x04
Recording Mode error 0x05
Reserved 0x06-0xFF

11.3.1.7 cc_sac_data _req APDU

This APDU is used by the Host and CICAM to send protocol specific data and to request a response. In contrast
to a cc_data req, the data contained in this message is authenticated and encrypted. The SAC encapsulates the
input data as specified in Table 11.19 as payload in the SAC message.

Table 11.18: cc_sac_data_req APDU syntax

Syntax No. of bits Mnemonic
cc_sac data req() |
cc_sac data req tag 24 uimsbf

length field()
sac_message ()

}

cc_sac_data_req_tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

The payload encryption flag shall be 1.

The payload of this SAC message is defined in Table 11.19. For more details, see sectionl1.3.3.

Table 11.19: cc_sac_data_req payload

Syntax No. of bits Mnemonic
cc_system id bitmask 8 bslbf
send datatype nbr 8 uimsbf
for (i=0; i<send datatype nbr; i++) {

datatype id 8 uimsbf
datatype length 16 uimsbf
data type 8*datatype length bslbf
}
request datatype nbr 8 uimsbf
for (i=0; i<request datatype nbr; i++) {
datatype id 8 uimsbf
}

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype nbr: the number of data items included in this message.

datatype_id: see Table H.1, Annex H, for possible values.

datatype_length: the length of the data in bytes.

data_type: the message data.

request_datatype_nbr: the number of data items that the Host shall include in its response to this message.

datatype_id: the list of data items requested in the Host's response, see Table H.1, Annex H.

© 2008, 2009, 2011, 2015 Cl Plus LLP

121 Cl Plus Specification v1.3.2 (2015-03)

11.3.1.8 cc_sac_data_cnf APDU

This message is used by the Host and CICAM to send protocol specific data in response to cc_sac_data req()
when the data has to be authenticated and encrypted. Section 7 has a detailed description of the protocol data
carried in each message. The SAC encapsulates the input data as specified in Table 11.21 as payload in the SAC
message.

Table 11.20: cc_sac_data_cnf APDU syntax

Syntax No. of bits | Mnemonic
cc_sac data cnf () {
cc_sac_data cnf tag 24 uimsbf

length field()
sac_message ()

}

cc_sac_data_cnf tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

The payload encryption flag shall be 1.

The payload of the SAC messages is specified in Table 11.21. For more details, see section11.3.3.

Table 11.21: cc_sac_data_cnf payload

Syntax No. of bits Mnemonic
cc_system id bitmask 8 bslbf
send datatype nbr 8 uimsbf
for (i=0; i<send datatype nbr; i++) {

datatype id 8 uimsbf

datatype length 16 uimsbf

data type 8*datatype length bslbf
}

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype_nbr: the number of data items included in this message.
data_type id: see Table H.1, Annex H, for possible values.
datatype_length: the length of this piece of data in bytes.

data_type: the actual data.

11.3.1.9 cc_sac_sync_req APDU

This APDU is used during CC key calculation. The CICAM sends this to indicate that it has finished calculating
the new CC key.

Table 11.22: cc_sac_sync_req APDU syntax

Syntax No. of bits | Mnemonic
cc_sac_sync_req() {
cc_sac _sync req tag 24 uimsbf

length field()
sac_message ()

}

cc_sac_sync_req_tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

© 2008, 2009, 2011, 2015 Cl Plus LLP

122 Cl Plus Specification v1.3.2 (2015-03)

The payload_encryption flag shall be 1.
The payload of this SAC message is empty.
11.3.1.10

This APDU is used during CC key calculation. The Host uses this to respond to a cc_sac_sync_req from the

cc_sac_sync_cnf APDU

CICAM.

Table 11.23: cc_sac_sync_cnf APDU syntax

Syntax No. of bits | Mnemonic
cc_sac _sync cnf () {
cc_sac_sync_cnf tag 24 uimsbf
length field()
sac_message () 8 uimsbf
}

cc_sac_sync_cnf tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

The payload encryption flag shall be 1.

The payload of this SAC message is a status field. Possible values for status_field are listed in Table 11.27.

Table 11.24: cc_sac_sync_cnf Status

status_field Value
OK 0x00
No CC Support 0x01
Host Busy 0x02
Not Required 0x03
Reserved 0x04-0xFF

11.3.2 Content Control Resource PIN APDUs

This section specifies the Content Control resource PIN APDUs which offers the capability of PIN entry,
confirmation of PIN for unattended recording and PIN entry for play back at a later date.

11.3.21 cc_PIN_capabilities APDUs

The cc_PIN capabilities APDU enables the Host to determine how parental control PIN codes for FTA and
CICAM (CAS controlled) content are to be managed.

Table 11.25: cc_PIN_capabilities_req APDU Syntax

Syntax No. of bits | Mnemonic
cc_PIN capabilities req() {
cc_PIN capabilities reqg tag 24 uimsbf
length field() =0
}

cc_PIN_capabilities_req_tag: see Table L.1 in Annex L.

The cc_PIN capabilities _reply is returned in response to the cc PIN capabilities_req and shall also be sent to
the Host unsolicited whenever the PIN capabilities change including when the effective age rating at which the
CICAM starts managing the PIN code is changed in the CICAM.

© 2008, 2009, 2011, 2015 Cl Plus LLP

123

ClI Plus Specification

Table 11.26: cc_PIN_capabilities_reply APDU Syntax

Syntax No. of bits | Mnemonic

cc_PIN capabilities reply ()

cc PIN capabilities reply tag 24 uimsbf

length field()

capability field 8 uimsbf

pin change time utc 40 bslbf

rating 8 uimsbf
}

v1.3.2 (2015-03)

cc_PIN_capabilities_reply_tag: see Table L.1 in Annex L.
capability_field: this byte returns the capability code of the CICAM management, see Table 11.27.
Table 11.27: capability_field Values

capability field Value
CICAM has no capability to handle PIN 0x00
CICAM only handles CAS controlled content PIN 0x01
CICAM handles both CAS controlled content PIN and non CAS controlled content PIN 0x02
CICAM only handles CAS controlled content PIN (with CICAM cached PINs) 0x03
CICAM handles both CAS controlled content PIN and non CAS controlled content PIN (with CICAM 0x04
cached PINs)
Reserved 0x05-0xFF

The interpretation of the capability field values are described in more detail in section 5.11.1.

pin_change_time_utc: returns the time when the CICAM PIN was last changed. This is a 40-bit field which
specifies the date and time in MJD and UTC when the PIN was last changed (See start_time field of the EIT in
EN 300 468 [10]). This field is encoded as 40-bits giving the 16 LSBs MJD followed by 24-bits coded as 6
digits in 4-bit BCD. This field shall be specified as zero if the PIN is not handled or when it has never been
changed. The Host may use the ‘change time’ to warn the end-user that any unattended recording programmed

may fail when it was programmed before and scheduled after the time indicated by the pin_change time utc
field.

rating: This 8-bit field is coded as DVB rating (3+years). Rating is defined in EN 300 468 [10] parental rating
descriptor. This is the current rating as set in the CICAM. This field allows the Host to exert parental control
when the Host rating is set at a lower level than the CICAM rating. The Host may use the cc PIN. MMI req()
APDU for this purpose depending on the CICAM PIN capabilities. The CICAM shall not request a PIN entry
for an age rating less than this value.

11.3.2.2 cc_PIN_cmd APDU

The cc_PIN_cmd() APDU is used by the Host to send the CICAM PIN to the module. The CICAM PIN is
validated by the CICAM and a cc_PIN_reply() APDU is sent back to the Host. The Host uses the reply to check
if its cached CICAM PIN is correct.

Table 11.28: cc_PIN_cmd APDU Syntax

Syntax No. of bits | Mnemonic
cc PIN cmd() {
cc_PIN cmd tag 24 uimsbf
length field()
for (i=0; i<n; i++) {
PINcode data bytes 8 uimsbf
}
}

cc_PIN_cmd_tag: see Table L.1 in Annex L.

PINcode data_bytes: payload for the PIN code, one byte is used for each pin code digit in ASCII format.

© 2008, 2009, 2011, 2015 Cl Plus LLP

124 Cl Plus Specification v1.3.2 (2015-03)

11.3.2.3 cc_PIN_reply APDU

The cc_PIN reply() APDU is used to inform the Host that either the CICAM PIN entered by the user is correct
or incorrect.

Table 11.29: cc_PIN_reply APDU Syntax

Syntax No. of bits | Mnemonic
cc PIN reply() |
cc_PIN reply tag 24 uimsbf
length field()
PINcode status field 8 uimsbf
}

cc_PIN_reply_tag: see Table L.1 in Annex L.
PINcode_status_field: this byte returns the status of the PIN code CICAM management, see Table 11.30.

Table 11.30: PINcode_status_field Values

PINcode_status_field Value
Error - Bad PIN code 0x00
Error - CICAM Busy 0x01
PIN code correct 0x02
PIN code unconfirmed 0x03
Video Blanking Not Required 0x04
Error - Content still CA scrambled 0x05
Reserved 0x06-0xFF

Where the status values are defined as follows:

Error - Bad PIN code: the PIN entered by the end-user is incorrect. When this status is received as part of a
cc_PIN event() the PIN code used for recording is incorrect and the CICAM may not descramble the content.
When this status is received as part of a cc_PIN_reply() the PIN code used for viewing is incorrect and the Host
shall continue blanking the AV.

Error - CICAM Busy: the CICAM is busy.

PIN code correct: the PIN entered by the end-user is correct. When this status is received as part of a

cc_PIN event() the PIN code used for recording is correct and the CICAM continues descrambling the content.
When this status is received as part of a cc_ PIN_reply() the PIN code entered by the user is correct and the Host
should stop blanking the AV.

PIN code unconfirmed: when multiple CA Systems are present and it is not known which would be used for
the event to be recorded. This error response occurs when the Host sends a cc PIN_cmd() to the CICAM when
booking a recording if the CA system associated with the event is not known. The Host may optionally inform
the user that the PIN code used to book the recording has not been verified by the CICAM. This status may also
be used by a CICAM which does not support cached PIN to notify a PIN event when it is unable to confirm the
PIN sent in the record start protocol.

Video blanking not required: confirms that a PIN is not required by the CICAM to view the content, e.g. the
Host is not required to blank the AV for CAS Controlled content. The cc_ PIN_event() should be stored with the
associated content for enforcement of parental control during playback. When the CICAM sends this status it
shall not display a PIN related MMI.

Error - Content still CA scrambled: this status value is only received via the cc PIN event() APDU. This
error response occurs when the CICAM is not able to descramble the content, meaning that the content is not
available for playback. The Host may use this status to inform the user of the recoding failure and is not requred
to store this PIN event with the content.

© 2008, 2009, 2011, 2015 Cl Plus LLP

125 Cl Plus Specification v1.3.2 (2015-03)

11.3.24 cc_PIN_event APDU
The cc_PIN_event() APDU is sent by the CICAM for CA protected content only and performs two operations:

e To notify the Host of a parental rating change.
e To confirm the validity of the PIN sent in the record start protocol.

The CICAM shall send the cc PIN_event() APDU to the Host whenever the parental rating changes, this
includes the transition where a PIN is required and a PIN is no longer required. i.e. parental rating has been
removed. The CICAM shall send a rating of 0x00 to inform the Host that the PIN is no longer required. If the
CICAM has reported a PIN capability of ‘0°, during the cc PIN_capabilities exchange, see section 11.3.2.1,
then the CICAM shall not send cc PIN_event() APDUs to the Host.

The contents of the cc PIN event() shall be “recorded” with the content to identify changes in parental rating.
To ensure that the Host is able to accurately place parental control boundaries on playback then the CICAM
determines the time of the boundary and passes the time to the Host. The time is defined as UTC and positions
the PIN event at an absolute point in time within the live broadcast. The UTC time of reception of the APDU by
the Host is different from the UTC time contained within the APDU. On playback then the Host is required to
process the parental control at the content position specified by the time contained within the PIN event.

Table 11.31: cc_PIN_event APDU Syntax

Syntax No. of bits | Mnemonic

cc PIN event() {

cc_PIN event tag 24 uimsbf

length field()

program_ number 16 uimsbf

PINcode status field 8 uimsbf

rating 8 uimsbf

pin event time utc 40 uimsbf

pin_event time centiseconds 8 uimsbf

private data 8x15 uimsbf
}

cc_PIN_event_tag: see Table L.1 in Annex L.
program_number: the program number of the associated Record Start protocol for this recording.

PINcode_status_field: This 8-bit field returns the status of the previously submitted PIN code as defined in
Table 11.30.

rating: This 8-bit field is coded as DVB rating (3+years). Rating is defined in EN 300 468 [10] parental rating
descriptor. It represents the rating of the broadcasted content item that triggered the cc_PIN_event() APDU.

pin_event_time_utc: This field returns the time when the parental rating changed requiring the entry of a PIN.
This is a 40-bit field which specifies the date and time in MJD and UTC when the parental rating changed (See
start_time field of the EIT in EN 300 468 [10]). This 40-bit field is coded as 16-bits giving the 16 LSBs of MJD
followed by 24 bits coded as 6 digits in 4-bit BCD.

pin_event_time_centiseconds: This field contains the fractional part (seconds/100) of the time of the change in
parental rating requiring the entry of a PIN.

private_data: These private data bytes provide the CICAM with the option to include additional CAS specific
information stored with the parental control rating in the recording. The private data is returned to the CICAM
on playback using the cc_ PIN playback() APDU.

11.3.2.5 cc_PIN_playback APDU

This APDU is sent to the CICAM during the playback of a recording when the Host encounters a recorded PIN
event, i.e. the parental rating of the content has changed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

126

Cl Plus Specification v1.3.2 (2015-03)

Table 11.32: cc_PIN_playback APDU Syntax

Syntax No. of bits | Mnemonic
cc_PIN playback() {
cc_PIN playback tag 24 uimsbf
length field()
rating 8 uimsbf
private data 8x15 uimsbf
}

cc_PIN_ playback tag: see Table L.1 in Annex L.

rating: This 8-bit field is coded as DVB rating (3+years). Rating is defined in EN 300 468 [10] parental rating
descriptor.

private_data: These bytes contain the private data that was delivered to the Host in the cc_ PIN_event() APDU.

11.3.2.6 cc_PIN_MMI_req APDU

This APDU is sent to the CICAM to request a MMI for PIN entry. The PINcode data bytes loop allows the
Host to provide the Module with either the FTA PIN (managed by the Host) or the CICAM PIN (managed by
the CICAM). The result of the PIN entry is returned to the Host by the cc PIN reply() APDU. See section
5.11.3.

Table 11.33: cc_PIN_MMI_req APDU Syntax

Syntax No. of bits | Mnemonic
cc_PIN MMI reqg() {
cc PIN MMI req tag 24 uimsbf
length field()
for (i=0; i<n; i++) {
PINcode data bytes 8 uimsbf
}
}

cc_PIN_MMI req_tag: see Table L.1 in Annex L.

PINcode data_bytes: Payload for the PIN code, one byte is used for each pin code digit in ASCII format.

11.3.3 Content Control Protocols

This section explains the payload of the APDUs for each security protocol of CI Plus.

11.3.3.1

After the session to the CC resource has been established, the CICAM requests the bitmask of the CC system
IDs that the Host supports. It should be noted that the Host advertises supported versions of the Content Control
resource using the resource manager and the CICAM shall use the highest available Content Control resource
signalled by the Host when establishing a CC session.

Host Capability Evaluation

Table 11.34: Host Capability Evaluation

Step Action APDU Content

1 CICAM requests the Host's CC
system ID bitmask

cc_open_req

2 Host sends its CC system ID cc_open_cnf cc_system_id_bitmask:
bitmask e bit 0 set indicates support for Cl Plus

11.3.3.2 Authentication

Authentication is described in section 6.2 and an overview is shown in Figure 6.2, it uses cc_data req and
cc_data cnf messages.

© 2008, 2009, 2011, 2015 Cl Plus LLP

127

Table 11.35: Authentication

Cl Plus Specification v1.3.2 (2015-03)

Step Action APDU Content
1 CICAM sends a nonce to | cc_data_req send_datatype_nbr =1
the Host i datatype_id datatype_len
0 19 (nonce) 256 bits
request_datatype nbr =4
i datatype id
0 13 (DHPH)
1 17 (Signature_A)
2 15 (Host_DevCert)
3 7 (Host_BrandCert)
2 Host sends a nonce, its cc_data_cnf send_datatype nbr =4
DH public key, signature, i datatype_id
Host Device Certificate 0 13 (DHPH) 2048 bits
Data and Host Brand 1 17 (Signature_A) 2048 bits
Certificate 2 15 (Host_DevCert) variable length
3 7 (Host_BrandCert) variable length
3 CICAM sends DH public | cc_data_req send_datatype nbr =4
key, signature, CICAM i datatype_id datatype_len
Device Certificate Data 0 14 (DHPM) 2048 bits
and CICAM Brand 1 18 (Signature_B) 2048 bits
Certificate 2 16 (CICAM_DevCert) | variable length
3 8 (CICAM_BrandCert) | variable length
request_datatype nbr =1
30 [status_field
4 Host sends a cc_data_cnf send_datatype_nbr =1
confirmation i datatype_id datatype_len
0 30 (status_field) 8 bits
(see Note 2)
Notes
1. Refer to Annex H for an overview of the parameters involved.
2. The Host may set this to OK or Authentication failed, see Table 11.17.

11.3.3.3

Authentication Key verification

Authentication Key Verification is performed at start-up and after completing the authentication protocol (see
sections 6.2 and 11.3.3.2). The CICAM checks if both sides have the same stored authentication key (AKH and
AKM).

Table 11.36: Authentication Key Verification

Step Action APDU Content
1 CICAM requests the cc_data_req request_datatype nbr =1
authentication key from i datatype_id
the Host 0 22 (AKH)
2 Host sends its cc_data_cnf send_datatype _nbr =1
authentication key i datatype _id datatype_len
0 22 (AKH) 256 bits
Note: Refer to Annex H for an overview of the parameters involved.
11.3.34 CC key calculation

This protocol is used for calculating new CC key material, see section 8 for details.

All messages of this protocol are protected by the SAC.

© 2008, 2009, 2011, 2015 Cl Plus LLP

128 Cl Plus Specification v1.3.2 (2015-03)

Table 11.37: CC key calculation
Step Action APDU Content
1 CICAM sends CICAM_ID | cc_sac_data_req send_datatype nbr =3
and a nonce i datatype_id datatype_len
0 6 (CICAM_ID) 64 bits
1 12 (Kp) 256 bits
2 28 (key register) 8 bits
request datatype nbr =2
i datatype id
0 5 (HOST_ID)
1 30 (Status_field)
2 Host responds with cc_sac_data_cnf send_datatype nbr =2
HOST_ID and a nonce i datatype_id datatype_len
0 5 (HOST_ID) 64 bits
1 30 (Status_field) 8 bits
(see Note 2)
3 CICAM tells the Host that | cc_sac_sync_req
is has finished calculating
the new CC key.
4 Host tells the CICAM that | cc_sac_sync_cnf | Status_field (see Table 11.17)
is has finished calculating
the new CC key.
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: Host may set this to OK or Host Busy or No_CC_support, see Table 11.17.
3: All sac messages are encrypted and authenticated.
11.3.3.5 SAC key calculation

This protocol is performed when new key material must be calculated for the SAC, see Figure 7.3.

Table 11.38: SAC key calculation

Step Action APDU Content
1 CICAM sends CICAM_ID | cc_data_req send_datatype nbr =2
and a nonce i datatype_id datatype_len
0 6 (CICAM_ID) 64 bits
1 21 (Ns_module) 64 bits
request_datatype nbr =2
i datatype id
0 5 (HOST_ID)
1 20 (Ns_Host)
2 Host responds with cc_data_cnf send_datatype _nbr =2
HOST_ID and a nonce i datatype_id datatype _len
0 5 (HOST_ID) 64 bits
1 20 (Ns_Host) 64 bits
3 CICAM tells the Host that | cc_sync_req
it has finished calculating
the new SAC key
material.
4 Host tells the CICAM that | cc_sync_cnf status_field (see Table 11.20)
it has finished calculating
the new SAC key
material.
Note: Refer to Annex H for an overview of the parameters involved.
11.3.3.6 URI transmission and acknowledgement

This protocol transmits a set of Usage Rules Information (URI) and receives the Host's acknowledgement, see
section 5.7.5.

© 2008, 2009, 2011, 2015 Cl Plus LLP

129 Cl Plus Specification v1.3.2 (2015-03)

Table 11.39: URI transmission and acknowledgement

Step Action APDU Content
1 CICAM sends the cc_sac_data_req send_datatype nbr =2
URI to the Host i datatype_id datatype_len
0 25 (uri_message) 64 bits
1 26 (program_number) 16 bits
request _datatype nbr =1
i datatype_id
0 27 (uri_confirm)
2 Host sends a cc_sac_data_cnf send_datatype nbr =1
acknowledgement to i datatype_id datatype_len
the CICAM 0 27 (uri_confirm) 256 bits
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.

11.3.3.7 URI version negotiation

After the SAC keys have been calculated, the CICAM requests a list of URI versions that the Host supports. The
Host sends back a version bitmask. Each bit corresponds to one version which is set when the version is
supported; the least significant bit indicates support for version 1. The next most significant bit indicates support
for version 2. For more details, see section 5.7.4.

Table 11.40: URI version negotiation

Step Action APDU Content
1 CICAM requests the cc_sac_data_req request_datatype nbr =1
bitmask of supported i datatype _id
URI versions from the 0 29 (uri_versions)
Host
2 Host sends the cc_sac_data_cnf send_datatype nbr =1
bitmask of supported i datatype id datatype len
URI versions 0 29 (uri_versions) 256 bits
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.

11.3.4 Content License Exchange

When an item of content to be recorded has a URI with an EMI value of Ob11, the CICAM optionally provide
one or more licenses during the recording. The Host shall associate this license with the item of content for the
lifetime of the recording. If a license exists for an item of content, the license shall be checked by the original
CICAM when the content is played back to see if the entitlements rights still exist to view the content. A license
supplied by the CICAM contains CAS specific data which is stored by the Host with the content. When the
content item is played back then the Host shall transfer the license back to the original CICAM without any
change.

The licenses are always exchanged via the SAC using the protocols below.

11.3.41 CICAM to Host License Exchange Protocol

If a license is required to be associated with an item of content then at the start of recording the CICAM sends
the Host the license using the SAC. The process uses the CICAM to Host License Exchange protocol and is
shown below including the response.

The message exchange shall be performed in accordance with a URI Protocol behaviour of section 5.7.5. The
CICAM shall set a 1 second timeout and the Host shall confirm the URI and license within the timeout, failure
to respond constitutes a failure of the copy protection system and the CICAM shall disable CA descrambling of
copy protected content (i.e. EMI != 0,0) for the associated MPEG program until the protocol completes

© 2008, 2009, 2011, 2015 Cl Plus LLP

130 Cl Plus Specification v1.3.2 (2015-03)

successfully. When the protocol completes then the CICAM shall wait for one second before the exchange is re-
initiated.

The Host shall exert the URI copy control settings of the message and control its outputs based on the valid URI
immediately.

Table 11.41: CICAM to Host License Exchange Protocol

Step Action APDU Content
1 CICAM supplies the |cc_sac_data_req send_datatype nbr=3 or4
Host with content i datatype_id datatype_len
license 0 26 (program_number) (see note 3) 16 bits
1 34 (license_status) (see note 4) 8 bits
2 25 (uri_message) 64 bits
3 33 (cicam_license) variable
request datatype nbr =1
i datatype id
0 35 (license_rcvd_status)
2 Host confirms receipt | cc_sac_data_cnf send_datatype _nbr =1
i datatype_id datatype len
0 35 (license_rcvd_status)(see note 5) | 8 bits
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: The program_number matches the Record Start message’s program_number.
4: Table 11.45 contains the allowed values and meaning of this field.
5. Table 11.42 contains the allowed values and meaning of this field.

Table 11.42: license_rcvd_status Values

license_rcvd_status Value
OK 0x00
Host Busy 0x01
Invalid Data 0x02
Host Error 0x03
Reserved 0x04-0xFF

11.3.4.2 Playback License Exchange Protocol

When an item of content which has a license associated with it, at played back, the Host shall supply the
CICAM with the original license. The CICAM processes the license to establish whether the Host still has rights
to play the content. A new license and URI are returned to the Host to replace the original URI and license
values in the recording in case the information contained has changed, e.g. play count. The Host shall exert the
URI copy control settings of the message and control its outputs based on the valid URI immediately.

The size of the cicam_license and Host_license shall be identical. i.e. the playback license received from the
CICAM shall be identical in size to the original Host_license that was sent to the CICAM on playback.

© 2008, 2009, 2011, 2015 Cl Plus LLP

131 Cl Plus Specification v1.3.2 (2015-03)

Table 11.43: Playback License exchange protocol

Step Action APDU Content
1 HOST supplies the cc_sac_data_req send_datatype nbr =2
CICAM license i datatype_id datatype_len
0 26 (program_number) 16 bits
1 36 (Host_license) variable
request_datatype nbr=4
i datatype_id
0 26 (program_number)
1 34 (license_status)
2 25 (uri_message)
3 33 (cicam_license)
2 CICAM response cc_sac_data_cnf send_datatype _nbr =4
with new license and i datatype_id datatype_len
new URI 0 26 (program_number) 16 bits
1 34 (license_status) (see note 3) 8 bits
2 25 (uri_message) 64 bits
3 33 (cicam_license) variable
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.45 contains the allowed values and meaning of this field.

11.3.4.3 License Check Exchange Protocol

When the Host needs to interrogate the CICAM about the current status of a content license associated with a
recording it follows the protocol below.

The response from the CICAM contains information regarding the status of the license sent in the request. The
response is for information only, e.g. to provide more detail on content availability when displaying a recording
library.

Table 11.44: License check exchange protocol

Step Action APDU Content
1 HOST supplies the cc_sac_data_req send_datatype nbr =1
CICAM license i datatype_id datatype_len
0 36 (Host_license) variable
request_datatype nbr =2
i datatype id
0 34 (license_status)
1 37 (play_count)
2 CICAM response cc_sac_data_cnf send_datatype_nbr =2
with license status i datatype_id datatype_len
and play count 0 34 (license_status) (see note 3) 8 bits
1 37 (play_count) 8 bits
Notes
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.45 contains the allowed values and meaning of this field.

© 2008, 2009, 2011, 2015 Cl Plus LLP

132 Cl Plus Specification v1.3.2 (2015-03)

Table 11.45: license_status Values

license status Value
OK 0x00
Descrambling not possible, no entitiement (record only) 0x01
Descrambling not possible, undefined error (record only) 0x02
Entitlement rights expired (playback & status check) 0x03
Play count exceeded (playback & status check) 0x04
Retention limit exceeded (playback & status check) 0x05
Invalid license (playback & status check) 0x06
Reserved 0x07-OxFF

11.34.4 Record Start Protocol

The Host signals the start of a CA protected service recording to the CICAM via the protocol below using the
SAC. This exchange also informs the CICAM of the current operating mode of the Host.

Where the CICAM has PIN capabilities or EMI = 1,1 then no CA protected content shall be recorded until the
Record Start protocol, described below, has completed successfully with a record_start_status value of ‘OK’.

Where the CICAM does not support PIN capabilities and in addition, EMI != 1,1 or the Host is buffering the
content the record start status may be ignored by the Host. In this case the Host may record the content but may
experience parental control interruptions.

Where the Host is in a “Unattended Recording” or “Watch_and Buffer” operating mode then the PINcode data
parameter is used to provision the CICAM with the CICAM PIN. The CICAM PIN shall only be used to enable
uninterrupted recording when a future parental control event may occur. The CICAM PIN shall not be used to
enforce parental control on playback and live viewing; in such a case the user shall be asked to enter the
CICAM PIN by means of the High-Level or Application MMI.

Table 11.46: Record Start Protocol

Step Action APDU Content
1 Host informs CICAM | cc_sac _data_req send_datatype _nbr=2or 3
of start of recording. i datatype_id datatype_len
0 38 (operating_mode) 8 bits
1 26 (program_number) 16 bits
2 39 (PINcode data) variable (optional)
request_datatype nbr =1
i datatype_id
0 40 (record_start_status)
2 CICAM sends a cc_sac_data_cnf send_datatype _nbr =1
acknowledgement to i datatype_id datatype len
the Host 0 40 (record_start_status) | 8 bits
(see note 4)
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.47 defines the allowed values of operating mode.
4: Table 11.17 defines the allowed values of this field .

Table 11.47: operating_mode Values

operating_mode Value
Watch and Buffer 0x00
Timeshift 0x01
Unattended _Recording 0x02
Reserved 0x03-0xFF

The operating modes are described as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

133 Cl Plus Specification v1.3.2 (2015-03)

Watch_and_Buffer — the user is watching live content that is also being recorded. At reception of the Record
Start message the CICAM shall cache the CICAM PIN in order to allow for uninterrupted recording when the
parental control rating changes. The CICAM shall continue to display a MMI requesting the user to enter the
CICAM PIN when parental control is required to be enforced. The CICAM shall continue to descramble if the
cached CICAM PIN is correct and the Host shall Blank the video and audio upon the reception of the

cc_PIN event() where the PINcode_status_field equals “0x00” until the next cc_ PIN reply() APDU where the
PINcode_status_field equals “0x02”.

Timeshift — the user is watching previously recorded content while the Host continues recording the live
content. The CICAM shall not provide a MMI for CICAM PIN entry and shall use the cached CICAM PIN to
continue to descramble the content for the purpose of uninterrupted recording. The Host shall use the

cc_PIN playback() APDU while watching buffered recorded content to inform the CICAM of the parental
control rating of the content being played back. The Host shall blank the video and audio until reception of
cc_PIN reply() APDU where PINcode status_field equals “0x02” or “0x04”.

Unattended_Recording — the user has programmed the Host to record content in an unattended mode. Prior to
programming the recording the Host may validate the cached CICAM PIN using cc PIN _cmd() APDU. At the
start of the recording the Host includes the CICAM PIN in the Record Start message to the CICAM. During the
recording the CICAM informs the Host of the parental control rating using the cc_ PIN_event() APDU for use at
play back by the Host.

11.3.4.5 Change Operating Mode Protocol

The message protocol below is used when the Host changes the operating mode and is comparable to the Record
Start message. The Change Operating Mode message is used in use-cases where no new License is required by
the Host, e.g. when the operation mode changes from “Watch _and Buffer” to “Timeshift”.

Table 11.48: Change Operating Mode Protocol

Step Action APDU Content
1 Host informs CICAM | cc_sac_data_req send_datatype nbr =2
of change of i datatype_id datatype len
operating mode. 0 38 (operating_mode) 8 bits
1 26 (program_number) 16 bits
request_datatype nbr =1
i datatype _id
0 41 (mode_change_status)
2 CICAM sends a cc_sac_data_cnf send_datatype nbr = 1
acknowledgement to i datatype id datatype_len
the Host 0 41 (mode_change_status) | 8 bits
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.47 defines the allowed values of operating mode.
4: Table 11.17 defines the allowed values of this field.

11.3.4.6 Record Stop Protocol

The Host uses this protocol to inform the CICAM that the recording has stopped and that all PIN related
information cached by the CICAM shall be deleted.

© 2008, 2009, 2011, 2015 Cl Plus LLP

134

ClI Plus Specification v1.3.2 (2015-03)

Table 11.49: Record Stop Protocol

Step Action APDU Content
1 Host informs CICAM | cc_sac_data_req send_datatype _nbr =1
recording has i datatype_id datatype len
stopped. 0 26 (program_number) 16 bits
request _datatype nbr =1
i datatype id
0 42 (record_stop_status)
2 CICAM sends a cc_sac_data_cnf send_datatype _nbr =1
acknowledgement to i datatype_id datatype_len
the Host 0 42 (record_stop_status) | 8 bits
(see note 3)
Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.17 defines the allowed values of this field.

11.3.5 SRM file transmission and acknowledgement

This datafile transfer protocol transmits data files such as SRM data files and receives the Host status and
acknowledgement. This protocol utilises the CI Plus SAC APDUs to send the data files from the CICAM to the
Host. The data file is identified by a datatype id (refer to Table H.1 in Annex H for the datatype id indicating
an SRM file). Details are explained in table 11.50.

The Host shall determine the SRM type from the datatype id. Where the Host does not support a given SRM
then the Host shall respond with "Not required" acknowledgment which indicates to the CICAM that the Host
does not support an output type matching the SRM data and requires no further data of this type. On receiving a
“Not required” response the CICAM shall not send the Host any further SRM messages of this SRM type for the
duration of the authenticated session.

Table 11.50: SRM data file transmission and acknowledgement

Step Action APDU Content
1 CICAM sends the cc_sac_data_req send_datatype nbr = 1
SRM to the Host i datatype id

0

31 (HDCP.srm)
43-49 (XXXX.srm) Note 4

request_datatype n

br=2

datatype _id

0

30 (status_field)

1

32 (datatransfer_confirm)

2 Host sends a cc_sac_data_cnf send_datatype nbr =2

acknowledgement to i datatype_id datatype len

the CICAM 0 30 (status_field) 8 bits

(See Note 3)
1 32 (datatransfer_confirm) | 256 bits

Notes:
1: Refer to Annex H for an overview of parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Host may set this to OK, Host Busy or Not Required, see Table 11.24.
4. For CI Plus specification v1.4 and above then datatype_id 43-49 inclusive are SRM messages. A Host

complying with v1.4 shall correctly handle all such datatype_ids that are designated as SRM messages.
Refer to Table H.1 in Annex H for the SRM datatype ids.

11.4

Specific Application Support

CI Plus offers a Specific Application Support (SAS) resource similar to the one defined in the OpenCable™
Specifications, CableCARD™ Interface 2.0 Specification [27]. This resource offers a transparent pipe that
allows an application on the Host to access functionality on the CICAM.

© 2008, 2009, 2011, 2015 Cl Plus LLP

135 Cl Plus Specification v1.3.2 (2015-03)

For the SAS resource to be useful, a protocol has to be defined on top of this transparent pipe. Each of these
protocols is assigned a private Host application_ID to uniquely identify it.

The SAS resource is applicable to the MHP CA APIs permitting a data exchange between the MHP Application
environment and the CAS resident on the CICAM as depicted in Figure 11.2.

CI Horizontal MHP API Broadcast
CICAM TV/STB xlet
Native
CA System SAS Link CA Application

M API

Figure 11.1 Example Application Environment for SAS
The SAS resource message protocol for the MHP CA API is defined in Annex M.

The SAS resource APDU and message syntax of the OpenCable™ Specifications, CableCARD™ Interface 2.0
Specification [27], section 9.17, shall be defined and used by this profile.

The CICAM shall open a SAS session at start-up. When the Host requires a connection to an application part on
the CAM, it sends a SAS_connect_rqst() APDU according to section 9.17.1 of [27] to an unused SAS session.
This APDU includes the requested private Host application ID. If the CICAM supports the requested
application id, it associates this SAS session with the application id and sends a SAS connect cnf() APDU in
response. The CICAM shall then open another SAS session for subsequent connects by the Host so that at least
one open SAS session is available that is not associated with an application id.

The Host shall keep track of the associations between each SAS session and an application id. When the Host
wants to connect to an application id, it shall use an open SAS session that is not yet associated to an application
id.

A CICAM may support multiple clients connected to the same application id at the same time.

11.4.1 Application Life-cycle

Each Host application that requires access to the SAS resource shall create a new SAS connection and the
application life-cycle of the SAS resource is defined as follows:

1) Application starts up on the Host.

2) Host application initiates a connection to the SAS session with a SAS connect_rgst() APDU when a
connection is required.

3) CICAM processes the request and responds with a SAS _connect_cnf() APDU.

e Ifthe connection was accepted then the CICAM shall create a new SAS session ready for any
subsequent new connection.

e Ifthe connection was not accepted then the session remains open ready for a subsequent
connection request.

4) Host application and CICAM communication via the connected SAS session.

5) The Host application terminates and the SAS session is closed by the Host.

11.4.2 Data Transfer

For data transfer CI Plus only uses the asynchronous mode as defined in the OpenCable Interface Specification
2.0 [27], Synchronous mode is not supported.

© 2008, 2009, 2011, 2015 Cl Plus LLP

136 Cl Plus Specification v1.3.2 (2015-03)

12 Cl Plus Application Level MMI
12.1 Scope

TS 101 699 [8] section 6.5 specifies the concept of an application domain MMI. The Application Domain MMI
enables an unspecified presentation engine to be used (if present) potentially enabling a sophisticated CICAM
application presentation and interaction to be realised when compared with the conventional High Level

Application MMI.

Module L — HOST
Files
Displa
. o CI Plus P yl
Process using Application Application ||
MMI MMI Resource Presentation
. Engine User
File Action
Requests
N~——1

Figure 12.1: Operation of the application MMI resource and CI Plus Presentation Engine

This section specifies the CI Plus Application profile to be implemented in a CI Plus Host and identifies the
minimum functionality that the Host shall support.

The inclusion of a mandatory standard CI Plus presentation engine enables the module to present text and
graphics on the Host display without necessitating any further extensions to the MMI resources which might
otherwise constrain the module application. The scope of a conformant CI Plus Host is depicted in Figure 12.2.
The CI Plus presentation engine enables the module to present information with the look and feel specified by
the service operator rather than being constrained to the High Level MMI for which there is limited presentation

control and interaction.

-

T CIPlus s

/ \
/ CI Plus Browser Y
’ . . \
! Application MMI Y
\
II \
1 \
- aem T~ \
' .-~ DVBCI ~~. |
1 . N 1
1 4 . N 1
')/ High Level . 1
\ , ‘\]
Vo MMI v
\ : !]
\\ \ ,' /I
[N 1o
Y A
AN ’ 7
AN s
N \\ s
AN ’ ,/

Figure 12.2: Scope of Cl Plus

The CI Plus Application MMI is based on the UK-DTT MHEG-5 [23] engine specification and is subset to
provide sufficient functionality to enable a module application to present text and graphics with minimal control
over the broadcast stream. All content to the CI Plus presentation engine shall be supplied to the Host directly
from the CICAM through the Application MMI resource; the CICAM itself may optionally source file data
internally from the CICAM and/or directly from the broadcast stream.

The CI Plus Application MMI may operate in a Host that supports other application environments e.g. MHEG-
5, MHP, etc. The Host implementation of the CI Plus Application MMI may elect to support the interface using
any existing MHEG-5 application environment or with a separate implementation instance. The CI Plus

© 2008, 2009, 2011, 2015 Cl Plus LLP

137 Cl Plus Specification v1.3.2 (2015-03)

Application MMI shall take precedence over any existing application environment and may optionally be
presented on the Host native graphics plane, application plane or another display plane that may exist between
the Host display and application, this is shown as a number of conceptual planes in Figure 12.3.

Background

Video Planes

Optional Application Plane(s)
CI Plus Application MMI Plane
Native Graphics Plane(s)

- >

Viewer

<
<«
d
<«
<
<
4

Yv

ANNNY
AN\Y

Conceptual Viewing Planes

Figure 12.3: Conceptual Display Planes (Informative)

Figure 12.3 is informative only and includes both logical and physical planes, the Host implementation shall
determine the most suitable physical mapping for a given Host architecture. The Application MMI shall support
full video transparency enabling text and graphics to be overlaid over the video (and possibly any native
application). The Application MMI has a native SD resolution of 720x576 pixels and shall be scaled to full
screen to match the current video aspect ratio in both SD and HD environments.

It is mandatory for the Application MMI to provide limited control over the MPEG decoders which enable the
broadcast video and audio of the current service to be presented, additionally a full frame I-frame may be used
to provide rich graphics backgrounds. The MMI Application may deny the application MMI control of the
MPEG decoder if a resource conflict results.

The Application MMI profile includes an optional extension for dynamically loadable TrueType and OpenType
outline fonts which permit international character sets to be used by the application. Dynamically loadable fonts
may not be available in all Hosts and the application may check the Host support from within the application.

CI Plus specification v1.3 extends the Application MMI which includes feature support for VOD type
applications.

12.2 Application MMI Profile

The CI Plus Application shall conform with the MHEG-5 profile version 1.06 [D-Book 5.0, Sections 12-18][23]
with some reduced functionality for a CI Plus compliant Host.

12.2.1 Application Domain

This specification is an application domain in the terms set out in Annex D of ISO 13522-5 [16] and D-Book
5.0 [23], Section 13. The CI Plus application domain is referred to "CIEngineProfilel".

12.2.2 Set of Classes

The set of classes is defined in D-Book 5.0 [23], 13.3 with the exceptions stated in Table 12.1:

© 2008, 2009, 2011, 2015 Cl Plus LLP

138 Cl Plus Specification v1.3.2 (2015-03)

Table 12.1: Class exceptions to D-Book 5.0

Class Notes
Font Required (see note)
Dynamic Line Art Not Required
HyperText Not Required
Note: See D-Book [23] and Section 12.5.1 Downloadable Fonts.

Receivers may optionally support "Not Required" classes but they shall not be used by a CI Plus Application
unless referenced in the context of a different application domain or the application has confirmed the class
exists.

12.2.3 Set of Features

The set of features is defined in D-Book 5.0 [23], section 13.4 with the following exceptions in Table 12.2:

Table 12.2: CIEngineProfile1 GetEngineSupport behaviour exceptions to D-Book 5.0

Feature Notes
Caching Not Required
Video Scaling Not Required

Scene Aspect Ratio Not Required
UniversalEngineProfile | Shall adhere to D-Book and also support the Cl Plus profile value

A full MHEG profile typically includes the stream object providing control of the audio and video components.
To maintain the current video and audio an application typically creates a stream object containing active audio
and video set to the default components. The application may then change the component tags to select the
audio and video components. For the CI Plus profile the application is only allowed to use the default audio and
video components. The CI Plus application is allowed to stop and start the stream in order to display an I-frame
if it has permission using the resident program RequestMPEGDecoder.

The default components are taken to be whatever components are currently active on the receiver. The loading
of a CI Plus application with default components set shall not change them. The current components may have
been set by another application environment, such as MHP, and shall not be interfered with by the CI Plus
application.

12.2.31 CI Plus Engine Profile

UniversalEngineProfile shall respond with a true response to a string argument of "CIPLUS001" which
identifies the MHEG engine as being CI Plus Profile 1 compliant.

12.2.3.2 Not required features

Features identified as not required in this profile may be optionally implemented by Hosts conforming to this
profile. This permits the CI Plus profile to co-exist with other MHEG-5 broadcast profiles.

CI Plus Applications shall not use any features identified as not required unless the application first checks that
they are supported by the engine using the UniversalEngineProfile() or any other standard method to determine
the capabilities of the environment.

The engine may only provide optional features from another profile(s) which have been certified i.e. features of
the New Zealand MHEG profile may be active if the Host is certified for New Zealand.

12.2.3.3 Stream Objects

The application shall start with the default components active by specifying a stream object containing active
audio and video objects set to the default component. Should the CI Plus application wish to stop the stream
then it shall first gain permission using the resident program RequestMPEGDecoder, see section 12.3.6.

Permission from RequestMPEGDecoder is required as other application environments may be running that are
currently using the MPEG decoder.

© 2008, 2009, 2011, 2015 Cl Plus LLP

139 Cl Plus Specification v1.3.2 (2015-03)

Any application that does not start with an active stream object with default components shall behave in an
undefined way.

Any attempt to stop the video object or the whole stream without permission shall behave in an undefined way.

Once permission has been granted, control of the MPEG decoder shall persist according to the normal resident
application rules or until the CI Plus application releases it using RequestMPEGDecoder. Before releasing the
MPEG decoder the application shall return the MPEG decoder to its normal state by removing any I-frame from
the screen and restarting the stream objects with default audio and video component tags.

This mechanism ensures that the application operates in a predictable manner even if another application
environment is active.

The CI Plus profile does not require stream objects to generate stream events.

12.2.3.4 RTGraphics / Subtitles

On launching the CI Plus Application MMI the subtitle state shall be determined from the CICAM Request Start
message defined in section 12.6.2. Where subtitling is stopped to enable the launch of the CI Plus Application
MMI then subtitling shall be re-enabled automatically when the CI Plus Application terminates.

12.2.4 GetEngineSupport

The GetEngineSupport "feature" strings of D-Book 5.0 [23] section 13.4.1 with the exception in table 12.3:

Table 12.3: GetEngineSupport "feature” strings

String Constraint
Standard Short

MultipleAudioStreams(N) MAS(N) May return "true" for N<1

MultipleVideoStreams(N) MVS(N) May return "true" for N<1

VideoScaling(CHook,X,Y)[a] VSc(CHook,X,Y)[a] | May return "false" for all combinations of CHook, X & Y

VideoDecodeOffset(CHook,Level) | VDO(CHook,Level) | May return "false" for all combinations of CHook, X & Y

DownloadableFont(CHook) DLF(CHook) Shall return "true" for the values of CHook that are
supported by the Font class. Shall return "false" for all
other values of N

12.3 Content Data Encoding

The content data encoding is defined in D-Book 5.0 [23], section 13.5 with exceptions defined in this and
subsequent sections.

12.3.1 Content Table

In CIEngineProfilel the table 13.7 will be as per D-Book 5.0 [23] with the following exception:

Table 12.4: Content Table

Attribute Permissible Values
Font See 12.5.1 "Downloadable Fonts"

12.3.2 Stream "memory" formats

In CIEngineProfilel there is no requirement for stream memory formats, D-Book 5.0 [23] section 13.5.3.

12.3.3 User Input

The CI Plus Application shall have input focus and display priority if the CI Plus Application MMI co-exists
with any other application engine (i.e. running simultaneously).

The UK Profile authoring requirement to always start in user input register 3 in the first scene shall not apply to
the CI Plus application.

© 2008, 2009, 2011, 2015 Cl Plus LLP

140 Cl Plus Specification v1.3.2 (2015-03)

12.3.4 Engine Events

The minimum set of engine events that the engine shall support is defined in D-Book 5.0 [23] section 13.8, with
the exception that the following EngineEvents are not required by CIEngineProfilel.

Table 12.5: CIEngineProfile1 EventData exceptions to D-Book 5.0

EventData Value Notes
VideoPrefChanged 6 Not Required
NetworkBootInfo 9 Not Required

12.3.5 Protocol Mapping and External Connection

The protocol mapping and external connections of D-Book 5.0 [23] section 13.9 with the exception that Stream
Actions and Stream Events are not required by CIEngineProfilel.

12.3.6 Resident Programs

The Resident Programs of D-Book 5.0 [23] section 13.10 with the exception of the following Resident Programs
that are not required by CIEngineProfilel.

Table 12.6: CIEngineProfile1 Resident Program exceptions to D-Book 5.0

Resident Program Name Notes
Sl_Tunelndex Tin Not Required
S|_TunelndexInfo Tl Not Required
GetBootInfo GBI Not Required
VideoToGraphics VTG Not Required
SetWidescreenAlignment | SWA | Not Required
SetSubtitleMode SSM Not Required
RequestMPEGDecoder RMD | Note: Call only, See section 12.3.6.1.

© 2008, 2009, 2011, 2015 Cl Plus LLP

141 Cl Plus Specification v1.3.2 (2015-03)

12.3.6.1 RequestMPEGDecoder

Requests exclusive access to a MPEG decoder and video plane to display I-frames. The MPEG decoder shall be
available when no other application environment is active.

Synopsis RMD(result)
Arguments
in/out/ type name comment
in-out
in GenericBool | request | If 'true' then the MHEG application is requesting
exclusive use of the MPEG decoder and video plane.
If 'false' it is releasing use of said decoder.
output GenericBool | result If request is 'true' then:

. If the result is 'true’ then I-frames may be
used and shall remain available until the
application exits, a new application starts
(See D-Book 5.0 [23] section 13.10.12) or
RequestMPEGDecoder is invoked again
with request='false'.

. If the result is false then the MPEG decoder
is not available and I-frames may not be
used.

If request is 'false' then:

. result shall be 'false’, the MPEG decoder is

not available and I-frames may not be used.
Description If the CI Plus application requires to stop the broadcast stream and display an I-frame then

it must first get permission to use the MPEG decoder. When the application has finished
with the MPEG decoder it may release it by calling RequestMPEGDecoder with
request="false' however the application must have removed any I-frames from the display
and restarted the stream with default components otherwise the results will be
unpredictable.

12.4 Engine Graphics Model

The graphics plane is used to represent all visible's except MPEG I-frames. The CI Application menu shall have
a drawing area of 720x576 pixels. The graphics plane shall match the current video resolution and aspect ratio.
Where high definition video is present then the graphics plane shall be scaled to match the current video
resolution and aspect ratio.

The CI Plus Graphics plane shall be above the video(s) and any subtitling plane. Any intermediate planes
separating the CI Plus graphics plane and video (and subtitle) plane may optionally be disabled or made
transparent. i.e. in an application environment the application graphics plane may be visible if the CI Plus
Application display includes transparency.

The minimum colour palette and colour space representation is defined by D-Book 5.0 [23], section 14. It is
recommended that truecolour with a minimum of 16 bits is implemented.

12.4.1 LineArt and Dynamic LineArt

LineArt and Dynamic LineArt shall not be required by CIEngineProfilel, as defined in D-Book 5.0 [23], section
14.5.

12.4.2 PNG Bitmaps

PNG bitmaps shall conform to D-Book 5.0 [23], section 14.7.

© 2008, 2009, 2011, 2015 Cl Plus LLP

142 Cl Plus Specification v1.3.2 (2015-03)

12.4.3 MPEG Stills

MPEG stills or I-frames shall conform to D-Book 5.0 [23], section 14.8.

12.4.4 User Input

The User Input is defined in D-Book 5.0 [23], section 13.6. A CI Plus initiated application may start in any
register group setting including Register Group 5.

12.4.5 High definition graphics model.

High definition receivers (i.e. ones that are capable of decoding and presenting HD resolution video) shall
observe the Engine Graphics Model defined in clause 12.4 and 12.4.1 to 12.4.4 with the exceptions specified by
the HDGraphicsPlaneExtension and HDVideoExtension as defined in ETSI MHEG [38] clause 12.11 and
related clauses.

12.4.5.1 Discovery

CI Plus applications shall be able to determine the graphics capability of the receiver to which they are
delivered. Hosts supporting the HD graphics model shall support the “HDExtension” (“HDE”)
GetEngineSupport feature string as defined in ETSI MHEG [38] clause 11.4.1.

12.5 Engine Text

CIEngineProfilel has full conformance with D-Book 5.0 [23], section 15. except as documented in the
following sections. These replace sections 15.3.1 and 15.3.1.1 in D-Book 5.0.

The character repertoire of CIEngineProfilel shall minimally be the character repertoire of UKEngineProfilel
when the resident font is used. The MHEG application may use other characters that are available in an
alternative character set after first confirming the presence of the character setin rec://font/xxx, where
xxx is the required character set.

CIEngineProfilel has a font attribute class of "rec://font/CI1".

Downloaded fonts may have a wider character repertoire and all characters in a downloaded font shall be
supported.

12.5.1 Downloadable Fonts

Receivers may optionally support downloadable fonts using the MHEG-5 Font class. Support is indicated by a
positive response to DownloadableFont for the supported content hook. Only receiver fonts may be referenced
by name, downloaded fonts shall be referenced as an MHEG-5 Font object. The receiver shall support all
characters in a downloaded font and will not be limited to a country specific engine profile. The set of supported
characters in any receiver embedded font file may be limited to a country specific set of characters.

A receiver supporting Downloadable fonts shall minimally reserve 256K bytes of memory for dynamically
loaded fonts. Asian fonts, such as Chinese, require the receiver to reserve significantly more font resource
memory. CI Plus enabled receivers deployed in these areas shall determine the CI Plus memory requirement
based on the broadcast requirements of the local region.

Where downloadable fonts are supported by a Host then the Host is only required to support the download of a
single font. A Host may optionally support more than one downloadable font.

12.5.1.1 OpenType Fonts

The CHook value of 10 is defined as being an OpenType® font meeting version 1.4 of the OpenType
specification with TrueType™ outlines and as published on the following web sites:

<http://www.microsoft.com/typography/otspec/default. htm>

<http://partners.adobe.com/asn/tech/type/opentype/index.jsp>

© 2008, 2009, 2011, 2015 Cl Plus LLP

143 Cl Plus Specification v1.3.2 (2015-03)

TrueType Collections are not supported in this profile. A font file is considered to contain a single font. This
single font will be referenced as the default font style 'plain'. Where downloadable fonts are supported receivers
are required to support the following tables:

. tables related to TrueType outlines
. the kern table (format ‘0’ horizontal kerning only).
Support for tables that are not required is optional.

For OpenType fonts, the following table defines the values to be used for the font metrics parameters referenced
in D-Book 5.0 [23], section 15.5 "Text Rendering".

Table 12.7: OpenType font parameters

Parameter name Obtained from
metricsResolution, unitsPerEm field, defined in the Font Header (‘head’) table
outlineResolution

advanceWidth, advanceWidth values, defined in the Horizontal Metrics
charSetWidth (‘htmx') table. see note

xMin, yMin, yMax defined in the Font Header (‘head'’) table

Kern value, defined in the Kerning (‘'kern') table

Note: for monospaced fonts, only a single advance width may be defined.

12.51.2 Presentation

When a text object references a downloaded font the object shall be presented as defined in D-Book 5.0 [23]
section 14.10, "Appearance of Visible objects during content retrieval" until successful download of the font or
font download fails. Should the font download fail the receiver shall use the receivers default built-in font
instead. When the receivers built-in font is used the text object shall be rendered using the rules for that font
including the receivers defined Character repertoire.

12.51.3 Defensive Response

Font downloads may fail and applications may request invalid or unsupported features and characteristics. In
order to handle these events in a predictable and robust manner receivers shall implement the following
measures:

. The receiver shall use its inbuilt font in place of the download font when:
o The requested font is unavailable
o The content hook is unrecognised
o The font attributes are invalid
When the receiver font is used then the text box shall be rendered as though the receiver font had been specified.
. The only supported font style is 'plain'. If any other font style is specified it shall be treated as 'plain'.

. If the requested font size is not supported by the font then the next smaller size shall be used. If the
required font is smaller than the smallest available, then the smallest available size shall be used.

12.6 CI Application Life Cycle

This section covers the application life cycle. D-Book 5.0 [23] section 16 shall not be interpreted unless
specifically stated in this section.

12.6.1 Application Life Cycle

The Application Life Cycle is the method by which the CI application is signalled to launch or terminate.

© 2008, 2009, 2011, 2015 Cl Plus LLP

144 Cl Plus Specification v1.3.2 (2015-03)

12.6.1.1 Launching and Terminating the Cl Plus Application

The CI Plus Application for a CIEngineProfilel only Host shall be explicitly introduced by the CICAM by a
RequestStart. The Host may respond with a API busy response if it is unable to honour the request and the
CICAM may retry the request later.

CICAM applications may terminate for a number of reasons and the exit condition shall be reported to the
CICAM as follows:

. They execute a "Quit" action.

. They are killed by the Host following a channel change.

. They are killed because the CI module generates a RequestStart or AppAbortRequest message.
. The CI Plus Application cannot be presented when subtitles or RTGraphics are enabled.

The CI file system is mounted by activity of the CI module. The current output state of the video, audio and
optionally any other application, shall remain unchanged. Optionally the subtitles may be disabled and the
application launched and presented. The application graphics shall be scaled to match the current video screen
resolution.

12.6.2 Interaction with DVB Common Interface Module

The interaction with the DVB Common Interface Module shall adhere to D-Book 5.0 [23], section 16.11. The
Application Domain Identifier "CIMHEGP1" (0x43494d4845475031) shall be used in the RequestStart
message to identify that the required application domain is CIEngineProfilel.

The Application Domain Identifier may be optionally qualified with arguments that define the requirements of
the CI Plus Application environment. The options are specified at the end of the Application Domain Identifier
separated by a semi-colon (;) i.e. <applicationDomainlndentifier>[;<optionl>;<option2>;...;<option#>]
where the options are defined as follows:

Table 12.8: Application Domain Identifier Launch Options

Name Option Notes
Value
SSM SSM=0 | Subtitles (RTGraphics) shall be disabled before the CI Plus Application is started,
RTGraphics subtitles shall be returned to their existing running state when the Cl Plus Application
State terminates.

SSM=1 | Subtitles (RTGraphics) shall be displayed when enabled by any user preference, if the
Cl Plus Application and subtitles are not able to co-exist then the Cl Plus Application
shall not start.

SSM=2 | Subtitles (RTGraphics) shall optionally be displayed when enabled by any user
preference, if the Cl Plus Application and subtitles are not able to co-exist then
subtitles shall be disabled and the CI Plus Application shall launch. Where the subtitle
state temporarily over-rides the user preference and are disabled then the existing
subtitle state shall be restored when the application terminates. This option is the
default state that shall be assumed when the SSM option is omitted from the
application domain specifier.

12.6.2.1 MHEG Broadcast Profile

Where the broadcast profile of a given country supports a broadcast MHEG environment then the CICAM may
be tailored to a specific broadcast profile and start with the Application Domain Identifier of that profile rather
than the CI profile. See D-Book 5.0 [23], section 16.11.3.2. The broadcast profile application life cycle may be
honoured which may allow:

. A CI application is introduced by the CI module.

. A CI application is optionally introduced by a broadcast application.

© 2008, 2009, 2011, 2015 Cl Plus LLP

145 Cl Plus Specification v1.3.2 (2015-03)

i.e. The CICAM may use the broadcast profile MHEG rather than the CI Plus Application environment for an
operator specific CI Plus Application. The CICAM may continue to use the CI Plus Application MMI for
CICAM specific menus and messages.

12.6.2.2 MHP Broadcast Profile

Where the broadcast profile supports MHP then the CI Plus Application MMI shall take priority over the MHP
application environment and shall have input focus. The MHP graphics plane may be either be temporarily
removed or the CI Plus Application MMI shall appear in front of it. As the CI Plus Application MMI is
considered to be an extension of the native OSD then it is acceptable to present the CI Plus output on the native
Host graphics plane as an alternative to the native graphics interface (OSD).

12.6.2.3 File Request and Acknowledge

The maximum size of a file request or acknowledge FileNameLength is not specified, but shall be suitable for
the CI Plus browser memory resource.

12.6.2.4 Persistent Storage

The CI Plus engine shall minimally provide 1024 bytes of data as D-Book [23] section 16.7. Persistent Storage
may be implemented in volatile memory.

12.6.3 Host Resource Model
As D-Book 5.0 [23] sections 16.8 and 16.9 with the following limitations.
12.6.3.1 Memory Resource

Receivers shall minimally provide 512Kbytes of RAM for the CI Plus Application. Where the engine
supports High Definition graphics then the receiver shall minimally provide IMByte of RAM for the CI Plus
Application. Where the engine supports downloadable fonts then the receiver shall provide an additional
256kbytes of RAM for font handling as defined in 12.5.1.

12.6.3.2 Link Recursion Behaviour

The CI Plus engine shall allow at least 128 concurrent Actions and at least 1024 ElementaryActions pending
processing.

12.6.3.3 Timer Count and Granularity

The CI Plus engines shall allow at least 4 concurrent MHEG-5 timers to be active with an accuracy of +/-10ms.
When more than 4 timers are active then the accuracy may degrade in a platform specific manner.

Receivers shall support timer durations up to at least 1 hour.

12.6.3.4 Application Stacking

Application stacking is as section 16.9 of D-Book 5.0 except the application stack shall be capable of holding
references to at least 5 applications.

12.7 Name Mapping
12.7.1 Names within the Host

The names in a CIEngineProfile]l Host comprise:

© 2008, 2009, 2011, 2015 Cl Plus LLP

146 Cl Plus Specification v1.3.2 (2015-03)

Table 12.9: Cl Profile Names within the Host

Name Notes

rec://font/CI1 Identifies the built in font other font names may exist but are not mandated by CIEngineProfile1.
This font is defined for Western Europe and shall be identical to UK-DTT "UK1".

ram://<name> | Name space for persistent storage.

12.7.2 Name Space Mapping

When an application starts then it is assumed that a MMI session with the a DVB CI Module has been
established and the CI file system may be used to retrieve file objects containing CIEngineProfile]l MHEG-5
objects or data content such as text and bitmaps.

The MHEG object files are either Scene, Application or content data of an Ingredient object, where each Scene,
Application object or content data is stored in a separate file.

12.7.3 MHEG-5 Object References

The MHEG-5 object reference rules of D-Book 5.0 [23] section 18.3.1 apply with the exception of DSM-CC
objects.

12.7.4 Mapping Rules for Groupldentifier and ContentReference

The mapping rules for Groupldentifier and ContentReference of D-Book 5.0 [23] section 18.3.2 apply with the
following caveats:

12.7.41 Case sensitivity

The CI file system provides case sensitive file names.

12.7.4.2 Structure of file references

"DSM: " and "~" (the shorthand of "DSM: ") are not required in C/EngineProfilel. The CI root file system is
referenced as "CI:".

12.7.4.3 Caching

The default cache behaviour of "CI :" content is 'caching not allowed' (CCP0) and by default all file references
are requested via the CI interface. There is no requirement for a CIEngineProfilel to support
ContentCachPriority (CCP) with the CI file system.

A Host may optionally perform caching of the CI file system and may interpret the ContentCachePriority and
GroupCachingPriority which shall be used in accordance with D-Book [23]. Any Hosts implementing a caching
mechanism shall support the same cache behaviour as specified in the MHEG object carousel profile, except the
words “broadcast stream” and “broadcast carousel” are replaced by “CI file system”. Caching may be performed
using either the Application MMI resource v1 or v2 for greater efficiency (see 14.5).

The Content or Group Cache Priority shall be interpreted and applied to the CI file system according to Table
12.10.

© 2008, 2009, 2011, 2015 Cl Plus LLP

147 Cl Plus Specification v1.3.2 (2015-03)

Table 12.10: CICAM Caching Behaviour

Cache Semantics Cache Retrieval
Priority Method
Even values | Even non-zero values of cache priority (2, 4, 6, etc.) indicate that the Use locally cached
(excluding object may be fetched from the local cache without reference to the content if available and
zero) CICAM. The value hints that the data is static and the higher the value | not stale (or dirty)

the more useful the data is to cache.

Any content that is persistently cached through MHEG sessions shall
be considered dirty on starting any new MHEG session and shall be
reacquired using RequestType = FileHash or RequestType = File.

Odd values Odd values of cache priority (1,3,5, etc., including 127, the default) RequestType=FileHash
indicate that the Host must verify that the content is current before or
using data from the cache. The higher the value the more useful the RequestType=File

data is to cache.

Note: To verify that the content is current then a File request must be
sent to the CICAM i.e. the cache is only useful for Hosts that support
FileHash type requests.

Zero This is the default when no CICAM cache is implemented. RequestType=File
Caching is not allowed for this content, cached copies of the data, if
present, shall be invalidated and shall be explicitly retrieved from the
CICAM with RequestType=File.

RequestType=FileHash shall not be used for CPPO.

12.8 VOD extensions

The Application MMI extends the engine features to support the requirements of CI Plus Specification v1.3 and
includes additional resident programs to support VOD applications. VOD is provided using Host Control v2 and
a VOD application requires an enhanced key capture mechanism and a control for graphics display hiding. The
VOD extensions are a requirement for all Hosts implementing this (CI Plus) specification v1.3 or greater.

12.8.1 Resident Programs
The Resident Programs shall additionally include those listed in Table 12.11.

Table 12.11: Cl Plus VOD Resident Program extensions

Resident Program Name Notes
TestInputMask TIM VOD key handling — DTG White paper
SuppressMHEGGraphics | SMG | VOD display control — Cl Plus v1.3 Extension

An application may test for the presence of the VOD extensions by testing for the existence of the SMG resident
program.

12.8.1.1 Test Input Mask

The input key handling shall be extended with the Input Mask Extensions that provide the Application MMI
with access to the video control keys, this is detailed in document “DTG MHEG Spec Group White Paper:
MHEG InputMaskExtensions”.

The InputEventMask shall be provided in the Scene class.

The Elementary Action SetInputMask (NewInputMask) shall be supported.

12.8.1.2 Suppress MHEG Graphics

The SuppressMHEGGraphics resident program provides a control to toggle between the display of subtitles and
application graphics on Hosts that only support a single graphics plane. The resident program allows the
subtitles to be presented while an application continues to execute, in addition, allows subtitles to be suspended
and the application graphics to be restored to the application environment. Invocation of this resident
programme, on a Host that supports the simultaneous display of subtitles and MHEG graphics, does not

© 2008, 2009, 2011, 2015 Cl Plus LLP

148 Cl Plus Specification v1.3.2 (2015-03)

guarantee that the graphics plane is removed from the display and it is the responsibility of the application to
remove all visible objects.

Synopsis SMG (GraphicsState)
Arguments
In/out Type Name comment
in GenericBool GraphicsState If true then the Application MMI has relinquished the

graphics plane and subtitles may be displayed when
enabled. The graphics plane may be suppressed.

If false then the Application MMI requires the graphics
plane and subtitles shall be stopped and control of the
graphics plane shall return to the Application MMI by the
end of the resident program call.

Description On Hosts that support the simultaneous display of the Application MMI and subtitles this
resident programme shall have no effect. The Application MMI is not required to hide
graphical objects and graphical objects may remain visible.

On Hosts that do not support the simultaneous display of the Application MMI and
subtitles then where the Application MMI was launched with SSM=2 and the Application
MMI is displayed then the graphics plane shall be disconnected from the Application MMI
and shall be used to present subtitles, when subtitles are enabled and present in the stream.
The application may lose the graphics plane when SuppressMHEGGraphics(true) is
invoked even if subtitles are not enabled. When SuppressMHEGGraphics(false) is invoked
then subtitles shall be stopped and the graphics plane shall be returned to the application.

The resident program may be used by an application as follows:

1. Application MMI is launched with SSM=2 on a receiver that does not support the simultancous display
of application and subtitles. The user has enabled subtitles and subtitles are present in the stream.

2. The application starts and subtitles are suppressed.

3. The user navigates through the application and selects an option where no graphics are required (i.e.
the screen is transparently filled). The application hides all visible graphics components and calls
SuppressMHEGGraphics(true).

4. The graphics plane is disconnected from the application environment and subtitles are presented. There
is likely to be a short delay in subtitle presentation as the subtitle decoder is started.

5. The application continues to receive key presses and is able to communicate and load files from the
CICAM.

6. The user performs an action that requires the application to become visible. The application calls
SuppressMHEGGraphics(false). When the resident program returns subtitles are hidden and the
graphics plane is restored to the application. The application may make graphical components visible
and they shall appear.

Legacy products will not support the SuppressMHEGGraphics() resident program and subtitles will remain
disabled while the application runs.

12.9 MHEG-5 Authoring Rules & Guidelines

The authoring rules defined in D-Book 5.0 [23] section 19 apply but shall adhere to the CI Plus limits i.e.
applications are restricted to 512 K bytes. Noted that HD applications may be larger but the application shall
have determined that the engine supports HD before attempting to increase the application size up to 1 Mbyte.

CI Plus Applications shall be authored with consideration that they may be deployed in SD or HD environments
where the application graphics plane shall be subject to scaling.

The CICAM shall consider the subtitles (RTGraphics) state when launching a CI Plus Application. For some
Host implementations it may not be possible for the CI Plus Application and subtitles to co-exist at the same
time, in this case subtitles shall take priority where the CICAM attempts to install a background CI Plus
Application, enabling the user to maintain subtitles.

© 2008, 2009, 2011, 2015 Cl Plus LLP

149 Cl Plus Specification v1.3.2 (2015-03)

It is the applications responsibility to ensure that the downloadable font support is available on the Host when
used. OpenType fonts that use optional tables should be avoided by application authors as the results will vary
from receiver to receiver. The application shall only use a single downloadable font.

The font may fail to download. Should this occur then text that uses characters not in the receiver default
character set will be rendered incorrectly. The application should defend against this, for example by monitoring
the ContentAvailable event from the font object before activating the text object.

Text shall always be rendered left to right, top to bottom. In regions where the text flow is right to left then the
CI Plus Application engine will not word wrap correctly. MHEG applications may be authored with right
justification and the text authoring should insert manual line feeds at appropriate points to ensure correct text
flow and presentation.

CI Plus applications may exist in environments where they may compete with other application environments
for use of the MPEG decoder so while the use of I-Frames is desirable for CI Plus applications they may not
always be available. It is not intended for CI Plus applications to interfere with the broadcast stream. Care shall
be taken by the application author to ensure predicable results, in order to ensure this CI Plus applications shall
follow these rules:

. The application shall always start with an active stream with an original-content of "rec://svc/cur”. This
stream object shall have a multiplex of one audio object and one video object. Both the audio and
video objects shall have a component tag of -1. The video object shall have an orignalBoxSize 720
wide and 576 high. The video object shall have an XYPosition of 0,0.

. The application shall not specify a scene aspect ratio.

. The application shall not change the position, scale or decode offset of the live video, however the
application may change the position, scale and decode offset of [-Frames.

. Before stopping the stream object representing the broadcast stream the CI Plus application shall obtain
permission from the resident program RequestMPEGDecoder (section 12.3.5.1). Once permission has
been granted it remains granted for the duration of the resident program as defined in D-Book 5.0
section 13.01.12 or until the CI Plus application releases permission.

. Applications should not request use of the MPEG decoder more than necessary. If
RequestMPEGDecoder has returned false then it is likely to return false if it is called again.

. Once the broadcast stream object has been stopped an [-Frame may be presented.

. The CI Plus application may relinquish permission to use the MPEG decoder, before doing so, the CI
Plus application shall ensure the MPEG decoder is in the same state as it was before permission to use
MPEG decoder was granted. Any I-Frame shall be removed from the display and a stream object for
the broadcast stream started.

Any CI Plus application that does not follow these rules risks unpredictable behaviour.

While the initial scene of the application may start in any valid input register mode it is strongly recommended
that it starts in input register 3. Starting in input register 5, for example, has the generally undesirable effect of
restricting the users ability to change channel.

Application authors should take section 14.7 of D-Book 5.0 into consideration when producing PNGs.
Removing unused chunks from a PNG and reducing the colour depth can have a significant impact on the file
size and thus application load time.

13 Cl Plus Man-Machine Interface Resource
13.1 Low Level MMI

The low level MMI is optional and not required by the CI Plus implementation.

© 2008, 2009, 2011, 2015 Cl Plus LLP

150 Cl Plus Specification v1.3.2 (2015-03)

13.2 High Level MMI

This specification does not change the EN 50221 [7] section 8.6, High level MMI, but extends the specification
with an additional requirement:

. The Host shall be able to display 40 characters and 5 lines in addition of title, subtitle and bottom line.

Figure 13.1: High Level MMI Presentation

13.3 MMI Resources Association
The following table shows the MMI capabilities of the Host and CICAM on the DVB CI and CI Plus profiles.
Table 13.1: MMI Resource HOST / CICAM DVB-CI Version

Host
DVB-CI Cl Plus
CICAM | DVB-CI | - High level MMI: Mandatory | - High level MMI: Mandatory
- Low level MMI: optional - Appl. MMI "CI Plus browser": Optional
Cl Plus | - High level MMI: Mandatory | - High level MMI: Mandatory
- Appl. MMI "CI Plus browser": Mandatory

The High Level MMI and Application MMI are mutually exclusive and the CICAM shall not attempt to open a
session to both resources at the same time. Where the CICAM attempts to open both resources simultaneously
then the Host behaviour is undefined.

13.4 CICAM Menu

The following recommendation is made in respect to the CICAM menu on the Host.

° The maximum number of levels to access the CICAM menu is less than 3.

© 2008, 2009, 2011, 2015 Cl Plus LLP

151 Cl Plus Specification v1.3.2 (2015-03)

14 Other CI Extensions

14.1 Low Speed Communication Resource Version 3

Version 3 of the Low Speed Communication changes the messages and the protocol in order to increase data
throughput.

e The maximum size of send and receive buffers is increased to 2048 bytes.
e Host and CICAM use a fixed buffer pool of 16 buffers in each direction.
e Multiple buffer acknowledgement.

e Multiple buffer availability notification which is not acknowledged.

The minimum bit rate supported shall be 1 Mbps.

14.1.1 comms_cmd Modification

The changes in the comms_cmd() APDU are related to the Set Params command. The buffer_size is now
encoded as a 16-bit value. The buffer size and reception_timeout both have default values.

The CICAM shall send a Set Params command only when the network side is not connected or when a
network connection is established and no payload data has been transmitted yet.

Table 14.1: Comms Cmd Object coding

Syntax No. of bits | Mnemonic
comms cmd () {
descriptor tag 24 uimsbf
length field()
comms_command_id 8 uimsbf
if (comms command id == Connect on Channel) {
connection descriptor ()
retry count 8 uimsbf
timeout 8 uimsbf
}
if (comms command id == Set Params)
buffer size 16 uimsbf
reception timeout 8 uimsbf
}
if (comms command id == Get Next Buffer) {
comms_phase id 8 uimsbf
}
}

buffer_size: The maximum size, expressed in bytes, of the buffers exchanged in both directions. The maximum
value of buffer_size is 2048. The default value for the buffer size, when no Set Params command has been sent,
shall be 254 bytes.

reception_timeout: A reception timeout value, expressed in units of 10ms. If the Host has received one or more
bytes in the current buffer and the timeout has elapsed with no further bytes received, then the buffer is sent to
the CICAM. If the buffer fills to the limit set by the buffer size parameter with no timeout then the buffer is sent
immediately. The default value for reception_timeout is 10, i.e.100ms. A reception_timeout of 0 is illegal and
shall not be used.

retry_count: The number of times that the connection should retry before failing the connection. If the field
value is zero (0) then any failed connection shall not be retried. At most the Host attempts to establish the
connection retry_count+1 times.

timeout: This is the timeout in seconds in which a connection attempt is aborted if no positive indication of the
state of the connection is received within the timeout time. A timeout value of zero (0) means wait indefinitely.

Where a non-zero retry _count is specified and a connection fails then the Host shall wait for timeout seconds to
elapse before attempting to re-connect.

© 2008, 2009, 2011, 2015 Cl Plus LLP

152 Cl Plus Specification v1.3.2 (2015-03)

Example:

Consider the example where the comms_cmd (Connect_on_Channel) parameters are defined
retry count = 2and timeout = 5.

The Host behaviour when a connection cannot be established with these values is defined as follows:

Try to connect

wait 5s

Failed; try to connect again, (first retry)

wait 5s

Failed; try to connect again, (second retry)

wait 5s (if the connection fails immediately and does not timeout then do not wait before sending a response
to the CICAM)

Failed; send FAIL to CICAM

14.1.2 comms_reply Modification

With version 3 of the LSC resource, the Host shall not acknowledge availability of a buffer before sending it to
the CICAM. As a consequence, the Host shall never send comms_reply() with the comms_reply _id set to 05
(the former comms_reply id of Get Next Buffer Ack).

The comms_reply id values are defined in Table 14.2.

Table 14.2: comms_reply_id

comms_reply_id id_value
Connect_Ack 0x01
Disconnect_Ack 0x02
Set_Params_Ack 0x03
Status_Reply 0x04
Reserved 0x05
Send_Ack 0x06
Reserved Other values

The syntax of the comms_reply() message is unchanged from Table 54 of EN 50221 [7]. Zero (0x00) is the
standard OK return value, 0xff is the non-specific error. See Annex E.14.

The comms_reply() return value for Set Params_Ack is 0 when the Host accepts the buffer size requested by
the CICAM or Oxfe (buffer too big) when the Host cannot handle send and receive buffers of the size requested
by the CICAM. In this case, the buffer size and timeout remain unchanged and the CICAM may resend a

Set Params command with a smaller buffer size.

Set Params_Ack shall return Oxff when the CICAM requested a reception_timeout of 0. The previous
reception_timeout shall not be changed in this case. Set Params_Ack shall return 0xff in response to a
Set Params command that was sent after a network connection was established and data has been transferred.

14.1.3 CICAM Flow Control

With version 3 of the Low Speed Communication resource, the CICAM uses a fixed number of 16 buffers.

The availability of a set of consecutive buffers is indicated to the Host by issuing Get Next Buffer with the
comm_phase_id set to the identifier of the last buffer of the buffer set. The set of buffers is defined as the last
Get Next Buffer comm_phase id plus one (modulo 16), or zero when no Get Next Buffer has been issued
from session opening or connect on channel, to the current Get Next Buffer comm_phase id, inclusive.

When received data is available from the channel, the Host shall use the comms_rcv APDU with the
comm_phase_id set to the last comms _rcv APDU comm_phase id plus one (modulo 16), or zero when no
comms_rcv APDU has been issued from session opening or connect on channel. The buffer corresponding to
the comm_phase id is considered as no longer available until the CICAM issues a Get Next Buffer APDU
describing a set of buffers which includes the said buffer.

© 2008, 2009, 2011, 2015 Cl Plus LLP

153 Cl Plus Specification v1.3.2 (2015-03)

The Host shall stop issuing comms_rcv APDU when all the buffers available have been used. The Host shall
wait until the CICAM indicates availability of a new set of buffers before issuing a comms_rcv APDU, if
required.

CICAM Host

1

[1] comms_cmd(Get_Next_Buffer, comms_phase_id = 15)

I [2] read data
/3] comms_rcvicomms_phase_id = 0, data) I
[4] process data from Buffer 0
]

F[S] comms_cmd(Get_Next_Buffer, comms_phase_id = 0)

[6] read data

[7] comms_rcvcomms_phase_id = 1, data) I
/8] comms_rcvicomms_phase_id = 2, data)I
| /9] comms_rcv{comms_phase_id = 3, data)l
| [10] comms_rcvicomms_phase_id = 4, data)l
|_[1 1] process data from Buffer 1
k]
[12] comms_cmd(Get_Next_Buffer, comms_phase_id = 1)
[13] process data from Buffer 2
]
‘[14] comms_cmd(Get_Next_Buffer, comms_phase_id = 2)
[15] read data
[16] comms_rcvicomms_phase_id = 5, data) k J
L
[17] process data from Buffer 3
]
‘[1 8] comms_cmd(Get_Next_Buffer, comms_phase_id = 3))
[19] process data from Buffer 4 & 5
]
‘[20] comms_cmd(Get_Next_Buffer, comms_phase_id = 5))

Figure 14.1: CICAM Flow Control (Informative)

The Table 14.3 indicates availability of each of the 16 buffers, after several steps of the above flow control
figure.

© 2008, 2009, 2011, 2015 Cl Plus LLP

154 Cl Plus Specification v1.3.2 (2015-03)

Table 14.3: Buffer availability in example flow figure

Buffer Id STEPS

[11 [131 | [51 [[10] [[12] | [14] | [16] | [18] | [20]
0 O | X |O |O (0] (0] @) @) (0]
1 O |0 |0 | X (0] (0] 0] 0 (0]
2 O |0 |O |X X (0] 0 0 (0]
3 O |0 |0 |X X X X 0] (0]
4 O |0 |O |X X X X X (0]
5 O |0 |O |O o (0] X X (0]
6 O |0 |O |O (0] (0] (0] (0] o
7 O |0 |O |O (0] (0] 0 0 (0]
8 O |0 |O |O (0] (0] 0 0 (0]
9 O |0 |O |O (0] (0] 0] @) (0]
10 O |0 |O |O (0] (0] 0 0 (0]
11 O |0 |O |O (0] (0] 0 0 (0]
12 O |0 |O |O (0] (0] 0] 0] (0]
13 O |0 |O |O (0] (0] 0 0 (0]
14 O |0 |O |O (0] (0] 0] 0] (0]
15 O |0 |O |O (0] (0] 0] 0] (0]

“0O” means buffer available for the Host.

“X” means buffer not available for the Host.

The next available buffer to be used by the Host for data reception is marked with a bold “O”.
The transfer steps shown in Figure 14.1 are described below:

1) After a connection is successfully established on the channel, the CICAM issues Get Next Buffer with
comms_phase id set to 15, to indicate to the Host that Buffers 0 to 15 may be filled .

2) The Host receives data on the channel.
3) The Host sends the received buffer using the Comms Rcv object with comms_phase id set to 0.
4) The CICAM processes buffer 0.

5) The CICAM issues Get Next Buffer with comms phase_id set to 0, to indicate to the Host that Buffer
0 may be filled.

6) The Host receives data on the channel.

7) The Host sends part of the received data using the Comms Rcv object with comms_phase _id set to 1.
8) The Host sends part of the received data using the Comms Rcv object with comms_phase_id set to 2.
9) The Host sends part of the received data using the Comms Rcv object with comms_phase _id set to 3.
10) The Host sends part of the received data using the Comms Rcv object with comms_phase id set to 4.
11) The CICAM processes buffer 1.

12) The CICAM issues Get Next Buffer with comms phase id set to 1, to indicate to the Host that Buffer
1 may be filled.

13) The CICAM processes buffer 2.

14) The CICAM issues Get Next Buffer with comms phase id set to 2, to indicate to the Host that Buffer
2 may be filled.

15) The Host receives data on the channel.

© 2008, 2009, 2011, 2015 Cl Plus LLP

16)
17)
18)

19)
20)

155 Cl Plus Specification v1.3.2 (2015-03)

The Host sends the received buffer using the Comms Rev object with comms_phase id set to 5.
The CICAM processes buffer 3.

The CICAM issues Get Next Buffer with comms phase id set to 3, to indicate to the Host that Buffer
3 may be filled.

The CICAM processes buffers 4 and 5.

The CICAM issues Get Next Buffer with comms phase id set to 5, to indicate to the Host that
Buffers 4 and 5 may be filled.

14.1.4 Host Flow Control

With version 3 of the Low Speed Communication resource, the Host shall accept up to 16 buffers before flow
control is activated by the CICAM.

When the CICAM has to send data to the channel, the CICAM uses a comms_send APDU with
comms_phase id set to the last comms_send APDU comm_phase id plus one (modulo 16), or zero when no
comms_send APDU has been issued from session opening or connect on channel.

CICAM Host

L

[1] comms_send(comms_phase_id = 0, data)

[1] comms_send(comms_phase_id = 1, data)

[1] comms_send(comms_phase_id = 2, data)

[1] comms_send(comms_phase_id = 3, data)

[1] comms_send(comms_phase_id = 4, data)

[1] comms_send(comms_phase_id = 5, data)

[1] comms_send(comms_phase_id = 6, data)

[1] comms_send(comms_phase_id = 7, data)

[1] comms_send(comms_phase_id = 9, data)

[1] comms_send(comms_phase_id = 10, data

[1] comms_send(comms_phase_id = 11, data

[1] comms_send(comms_phase_id = 12, data

[1] comms_send(comms_phase_id = 13, data

[1] comms_send(comms_phase_id = 14, data

(
(
(
(
(
(
(
(
[1] comms_send(comms_phase_id = 8, data)
(
(
(
(
(
(
(

)
)
)
)
)
)

[1] comms_send(comms_phase_id = 15, data

[2] transmit data for

Phase Id0 & 1
]
[3] comms_reply(Send_Ack, return_value = 1)
[4] transmit data for
Phase Id 2 to 12
]
[5] comms_reply(Send_Ack, return_value = 12)
[6] comms_send(comms_phase_id = 0, data) (N
rd
[7] transmit data 13 to O
]

/8] comms_reply(Send_Ack, return_value = 0)

Figure 14.2: Host Flow Control with 16 buffers (Informative)

© 2008, 2009, 2011, 2015 Cl Plus LLP

156 Cl Plus Specification v1.3.2 (2015-03)

The acknowledgement of transmission through the channel of a set of consecutive buffers is indicated by the
Host by issuing a comms_reply APDU with comms_reply id=Send Ack and the return_value set to the
identifier of the last buffer of the buffer set. The set of buffers acknowledged for transmission is defined as the
last comms_reply APDU with comms_reply id=Send Ack return value plus one (modulo 16), or zero when no
comms_reply APDU with comms_reply id= Send Ack has been issued from session opening or connect on
channel, to the current comms_reply return_value, inclusive.

The CICAM shall stop issuing the comms_send APDU when all the buffers that have been sent to Host for
transmission to the channel are not acknowledged. The CICAM shall wait until the Host acknowledges
transmission of a new set of buffers before issuing further comms send APDU, if required.

The transfer steps shown in Figure 14.2 are described below:

1) After a connection is successfully established on the channel, the CICAM sends 16 buffers to the Host
with comms_phase id from 0 to 15.

2) The Host transmits the buffer 0 and 1 (with comms_phase id =0 and comms_phase id = 1).

3) The Host sends to the CICAM a comms_reply with comms_reply id= Send Ack and return_value = 1
to acknowledge the transmission of the set of buffers from comms_phase id = 0 to comms_phase id =
1.

4) The Host transmits the buffers 2 to 12.

5) The Host sends to the CICAM a comms_reply with comms_reply id = Send Ack and return_value =
12 to acknowledge the transmission of the set of buffers from comms_phase id =2 to
comms_phase id = 12.

6) The CICAM fills the buffer 0 and send it to the Host with comms_phase _id = 0.
7) The Host transmits the buffers 13 to 0.

8) The Host sends to the CICAM a comms_reply with comms_reply id = Send_Ack and return_value =0
to acknowledge the transmission of the set of buffers from comms_phase id = 13 to comms_phase _id
=0.

14.1.5 Requirement for Buffers

o Buffers of up to 2048 bytes in length shall be supported in both directions. The CICAM may select
a buffer size lower than 2048 if required by sending a Set Params command.

o The Host shall accept up to 16 buffers sent by the CICAM before flow control takes place.
e The maximum number of message bytes in comms_send() is 2048 bytes.

e The maximum number of message bytes in comms_rcv() is 2048 bytes.

14.1.6 Disconnection Behaviour

When a disconnection is initiated by the network endpoint, the Host shall transmit all pending receive buffers to
the CICAM and shall then send an unsolicited comms_reply() see last paragraph of EN 50221 [7] section
8.7.1.5. The Low Speed Communication session remains open and the CICAM may request another connection.

14.1.7 Data transfer

In order to transfer payload data between the CICAM and a network endpoint via the Host, an exchange of
APDU s between the Host and the CICAM is required as follows.

The CICAM breaks down its payload into chunks of buffer size bytes. Buffers that are completely filled are
sent with a comms_send_more() APDU, the last (partial or full) buffer shall be sent with comms_send last(). A
CICAM shall not send a partially filled buffer in a comms_send more() APDU.

© 2008, 2009, 2011, 2015 Cl Plus LLP

157 Cl Plus Specification v1.3.2 (2015-03)

The Host sends payload data received from the network to the CICAM using the comms_rcv_more() or
comms_rcv_last() APDUs. The Host breaks down its payload into chunks of buffer size bytes. Buffers that are
completely filled are sent with a comms_rcv_more() APDU immediately. A partially filled buffer on a timeout
or a close of the network endpoint shall be sent with a comms_rcv_last() APDU.

The Host delivers a byte stream from the network to the CICAM that is packetized into comms_rcv_more() and
comms_rcv_last() APDUs. The CICAM shall interpret the payload as a byte stream and shall not rely on the
payload size of APDUs or on the comms_rcv_more() / comms_rcv_last() tag for interpreting the payload. If an
application requires the splitting of the received payload byte stream into messages and the detection of message
boundaries, this mechanism shall be provided by the protocol that runs on top of the LSC resource.

14.2 Low Speed Communication IP Extension

The low-speed communications resource class as defined in EN 50221 [7] is enhanced to provide bi-directional
communications over an [P connection. This may be used to support Conditional Access functions and may be
used in conjunction with interactive services. Version 2 and above of the low-speed communications resource
supports an IP connection.

The Host IP stack shall comply with the following standards:
RFC768 (UDP)
RFC793 (TCP)
RFC791 (IPv4)

Support for [Pv6 and IPv4 multicast is optional on the Host.

IPv4 multicast implementations shall comply with RFC1112 (IGMPv1). IPv6 support on the Host shall be
compliant to RFC2460 (IPv6) and RFC4443 (ICMPv6).

For all multicast connections, the protocol type in the IP descriptor shall be UDP.

If the IP descriptor in the CICAM's comms_cmd APDU contains an invalid value or the requested connection
type is not available on the Host, the Host shall reject the connection attempt. This is performed by responding
with a comms_reply APDU with comms_reply_id set to Send_Ack and return_value set to 0 (see EN 50221,
section 8.7.1.5)

The Host supports only one connection per session, but the Host may support several sessions in parallel.
The communication messages are the same as described in EN 50221 [7] section 8.7.

The contents of the payload shall be in Network Byte Order.

© 2008, 2009, 2011, 2015 Cl Plus LLP

158 Cl Plus Specification

v1.3.2 (2015-03)

Header APDU Payload
CICAM
HOST
Header Payload
TCP or UDP
Header IP IP Payload

Figure 14.3: Transport packet format

On a TCP connection, the host may dispatch the payloads of a comms_send more() or comms_send last()
APDU s to the network immediately since TCP provides buffering and reliable transport. No data shall be lost

when using TCP.

On a UDP connection, the host shall buffer all incoming comms_send more() payloads until it receives a
comms_send last() or the size of all buffered payloads exceeds the size of all available send buffers. It shall

then write the data to the network in one step.

The host may read TCP data from the network in chunks of any length that is suitable for relaying the data in

comms_rcv_more() and comms_rcv_last() APDUs.

When reading UDP data from the network, the host should ensure that it reads complete datagram’s and no data

is discarded during the read. Each datagram read in this way should be split into comms_rcv_more() and

comms_rcv_last() APDUs.

14.2.1 Comms Cmd Modification

A new connection type is added to the connection descriptor object to provide the parameters for an IP

connection over the low speed communication resource.

Table 14.4: Connection Descriptor object coding

Syntax No. of bits Mnemonic
connection descriptor () {

connection descriptor tag /* see EN 50221 [7] */ 24 uimsbf
length field()
connection descriptor type 8 uimsbf
if (connection descriptor type == SI Telephone Descriptor) {

telephone descriptor() /* see EN 300 468 [10] */
}
if (connection descriptor type == Cable Return Channel Descriptor) ({

channel id 8 uimsbf

}

if (connection descriptor type == IP Descriptor) {
IP descriptor()

}

if (connection descriptor type == Hostname descriptor) {
Hostname descriptor ()

}

© 2008, 2009, 2011, 2015 Cl Plus LLP

159 Cl Plus Specification v1.3.2 (2015-03)

The "connection_descriptor" table is modified to include the descriptor type for the IP connection.

Table 14.5: Connection Descriptor Type

connection_descriptor_type Type value
S|_Telephone_Descriptor 01
Cable_Return_Channel_Descriptor 02
IP_Descriptor 03
Hostname_descriptor (v3 and above) 04
All other values reserved

14.2.11 Comms Cmd IP_descriptor
The IP descriptor syntax is specified in Table 14.7
Table 14.6: IP Descriptor

Syntax No. of bits | Mhemonic
IP descriptor() {
descriptor tag 8 uimsbf
descriptor length 8 uimsbf
IP protocol version 8 uimsbf
IP address 128 uimsbf
destination port 16 uimsbf
protocol type 8 uimsbf
}

descriptor_tag: the descriptor_tag for the IP_descriptor is 0xCF.

descriptor_length: the descriptor length is an 8-bit field specifying the total number of bytes of the data portion
of the IP_descriptor following the byte defining the value of this field.

IP_protocol_version: this field defines the IP protocol version.

Table 14.7: Protocol Versions

IP_Protocol_version Type value
reserved 0x00
IPv4 0x01
IPv6 0x02
All other values reserved 0x03-0xFF

IP_address: this field defines the IP address destination. In IPv4 the 12 first bytes are equal to "0".

destination_Port: this field defines the destination port to be use by the Host. The reception port is managed by
the Host.

protocol_type: this field is used to define the protocol to use; UDP or TCP.
Table 14.8: Protocol Types

protocol_type Type value
reserved 0x00
TCP 0x01
UDP 0x02
All other values reserved 0x03-0xFF
14.2.1.2 Comms Cmd Hostname_descriptor

Version 3 and above of the low-speed communications resource support the Hostname descriptor.

© 2008, 2009, 2011, 2015 Cl Plus LLP

160 Cl Plus Specification v1.3.2 (2015-03)

Table 14.9: Hostname Descriptor

Syntax No. of bits | Mhemonic
hostname descriptor() {
descriptor tag 8 uimsbf
descriptor length 8 uimsbf
protocol type 8 uimsbf
destination port 16 uimsbf
for (i=0; i<n; i++) {
hostname byte 8 uimsbf

}

descriptor_tag: the descriptor tag for the hostname descriptor is 0xCD.

descriptor_length: the descriptor length is an 8-bit field specifying the total number of bytes of the data portion
of the hostname_descriptor following the byte defining the value of this field.

protocol_type: this field is used to define the protocol to use; UDP or TCP.

destination_Port: this field defines the destination port to be use by the Host. The reception port is managed by
the Host.

hostname_byte: data bytes making up the Host name, i.e. FQDN. Refer to RFC1123 [40], section 2.1.

14.21.3 Maximum Number of Concurrent Connections

A CICAM may ask a Host to open additional Low Speed Communication sessions for concurrent
communication over two or more IP connections. Depending on the Host capabilities, the Host may accept or
refuse such additional connections. The refusal may manifest itself to the CICAM as an error on opening a new
session on the LSC resource or as comms_reply (Connect Ack) with a non-specific error (as per appendix
E.14.1).

The new session error typically occurs when the Host has insufficient memory available for buffering a new
connection. The comms_reply error occurs when the Host is not able to setup a connection for the requested
application—level protocol.

The CICAM must be robust and handle both error situations. The CICAM should manage the Host’s maximum
number of concurrent connections by closing connections that are not in use or by requesting a smaller buffer
size by sending a comms_cmd (Set_Params).

14.21.4 Set_Params behaviour

The comms_cmd() APDU are related to the Set Params command as described in section 14.1.1. This section
clarifies the Set Params behaviour required. The Set Params command shall be sent after a comms_cmd
(connect_on_channel) before any transfer is initiated as per R206-001:1998 [24], as shown below:

CICAM Commands Host

A session with the low speed (... open_session ...) If there is free resource then a
communication resource is €«> session is granted.
requested
Request for a connection on a comms_cmd Attempt to connect on the channel.
channel. (Connect_on_Channel)

>

comms_reply (Connect Ack) Connection completes with status.
Configure the reception parameters comms_cmd (Set Params)
and buffer size. >
comms_reply (Set Params Ack) | The communication parameters are
€« set up.

© 2008, 2009, 2011, 2015 Cl Plus LLP

161 Cl Plus Specification v1.3.2 (2015-03)

CICAM Commands Host
After a connection is successfully comms_cmd (Get Next Buffer, The Host receives data on the
established on the channel, the comms_phase_id = 15) channel.
CICAM issues Get Next Buffer >

with comms_phase id set to 15, to
indicate to the Host that Buffers 0
to 15 may be filled .

comms_rcv (comms_phase_id =0, | The Host sends the received buffer
data) using the Comms Rcv object with
3 comms_phase id set to 0.

14.2.2 Low-Speed Communications Resource Types Modification

New values of Low-speed communications resources types are added to support the IP connection.

9 | 8 | 7 | 6 | 5 | 4 | 3] 2 | 1] o0
device type device no.

Figure 14.4: Communications Resource Type Structure
The device type field is defined in Table 14.10.

Table 14.10: Communications Device Types

Description Value
Modems 0x00-0x3F
Serial Ports 0x40-0x4F
Cable return channel 0x50
reserved 0x51-0x5F
IP connection 0x60
reserved 0x61-0xFF
NOTE: Table supersedes 8.8.1.1 in EN 50221 [7]

The device no. shall be zero for device type IP connection.
14.3 CAM Upgrade Resource and Software Download
14.3.1 Introduction

CICAM software is becoming increasingly complex, in order to guarantee the functionality and security of a
CICAM in the field a software upgrade may be necessary. The firmware upgrade may be available on the
network using information contained in one or more transport streams.

DVB CICAMs are currently able to perform a software upgrade but the existing specification does not provide
any standardised interface between the Host and CICAM to coordinate a software download. This specification
introduces a standardised method of handling a CICAM software upgrade enabling the CICAM to negotiate
with the Host and CA System to effect an upgrade.

The resource interface is mandated by this specification and ensures that the software upgrade is not left to
proprietary methods of signalling. This section defines the signalling and synchronisation between the CICAM
and Host, the actual carriage and signalling of the CICAM software upgrade is not defined by this specification
and may use standardised broadcast software upgrade schemes such as DVB-SSU or a proprietary delivery
mechanism defined by the Operator or CA provider.

The CAM upgrade may initiate a tune operation by the Host under CICAM control as part of the upgrade
process using either the Host control tune() APDU or Host control tune_broadcast_req() APDU. The tune() and
tune broacast_req() APDUs are mandated by this specification.

14.3.2 Principles

The CICAM upgrade process considers different requirements from:

© 2008, 2009, 2011, 2015 Cl Plus LLP

162 Cl Plus Specification v1.3.2 (2015-03)

. CA provider.
. Service operator.
. Host (TV or recording device).

A typical conditional access CICAM provides two different modes of software upgrade operation called
"delayed" and "immediate" satisfying different requirements of the CA System:

Immediate mode is used when a software upgrade is required immediately. The CICAM ceases to process CA
protected services until an upgrade has successfully completed.

Delayed mode is used when a software upgrade may be deferred. The CICAM continues to process CA
protected services and allows the upgrade to be rescheduled to occur at a more appropriate time. A delayed
software upgrade may be determined in the CICAM by a version number difference or some other CA System
criteria. This may be determined by the Host, minimising service interruption, or controlled by the user.

The CICAM shall not make any request for a software upgrade unless a CA service has been selected by a
ca_pmt. The CICAM may be on a transponder that carries or signals software upgrade availability, unless a CA
service is currently selected the CICAM shall not initiate any upgrade interaction. The CICAM may silently
proceed to download the upgrade provided that there is no interruption to the transport stream and with the
knowledge that the transponder may be changed at any time.

14.3.3 CAM Upgrade Process

The basic software upgrade process is shown in Figure 14.5 as a sequence of steps:

- v
Step 1:
Wait for upgrade trigger < (1) start process >

Upgrade trigger in broadcast

(2) CICAM receives specific
signalling from broadcast

Step 2: 4

Wait for CA service (3) CICAM receives CA-PMT
selection with appropriate CA system ID
Step 3: A

Initiate CICAM upgrade (4) Open session for CICAM
resource and wait for upgrade resource

host response

(5) CICAM sends
firmware upgrade
message to host

v

(6) CICAM receives firmware
upgrade reply from host

Step 4:
Launch appropriate \ 4
upgrade process
(7) Is this
immediate
~.download ?_~
A A
(8) perform immediate (9) perform delayed
download process download process

Figure 14.5: CAM Upgrade Process

The process is defined as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

163 Cl Plus Specification v1.3.2 (2015-03)

1) Wait for a trigger signalling the availability of a new software upgrade for the CICAM. The CA
System and service operator determines how the Head-end system signals firmware upgrade
availability to the CICAM which shall be recognised in the broadcast.

2) Wait for the Host to perform a service selection to the CA Service, determined by the CA System Id in
the current ca_pmt.

3) The CAM upgrade resource is opened and the CICAM informs the Host of the software upgrade
availability including the upgrade mode. The CICAM waits for the Host reply to determine how the
upgrade shall proceed.

4) The Host response and download mode determines how the CICAM shall process the software
download which may be initiated.

14.3.3.1 Delayed Process

When a delayed upgrade is requested by the head-end, the delayed process is launched as soon as the CICAM
receives a response from the Host.

According to the Host response, the CICAM has the following states:

If the Host's response is "No" then CICAM closes the CAM_upgrade session and the CAM_upgrade process is
stopped.

If the Host's response is "Yes" then CICAM optionally opens a session on DVB Host Control to send a Tune
request message and to perform the software download on the CICAM

If the Host's response is "Ask" then the CICAM displays an MMI dialogue to inform the End User about this
CAM upgrade availability. The CICAM launches or stops the software download process depending on the
user's feedback (accept or decline).

© 2008, 2009, 2011, 2015 Cl Plus LLP

164 Cl Plus Specification v1.3.2 (2015-03)

?

< (1) Init delayed upgrade)

(2) Host

e answered? No
Ask user
(3) Display feedback MMI
A
(4) Wait for user) (9) close cam_upgrade
feedback Cancel session
Accept
(5) CICAM firmware upgrade

in progress 0%

v

(6) Tune to appropriate
frequency

v

(7) CICAM firmware upgrade
in progress n%

v

‘ (8) Update complete ‘

2

Figure 14.6: Delayed process

14.3.3.2 Immediate Process

When an immediate upgrade is requested by the head-end the CICAM stops CA descrambling until the upgrade
has been successfully acquired and installed, an outline of the process is shown in Figure 14.7.

The CICAM notifies the Host of the upgrade using the CAM_upgrade resource and awaits the response which is
processed as follows.

When the Host reply is "Yes" the CICAM initiates a software upgrade process immediately. This may require
that the CICAM opens a session to the Host Control Tune resource to perform a tuning operation to acquire the
upgrade.

When the Host reply is "Ask" the CICAM displays a MMI dialogue to inform the user about the upgrade
availability and request permission to perform the upgrade. The CICAM shall either continue with the upgrade
or stop the process depending on the user response (accept or decline). When the user has declined the upgrade,
the user will not be able to view any CA services as the CICAM requires the upgrade to descramble the service.
When the user has accepted the upgrade then the Host shall allow the software upgrade to complete. User
intervention shall be disabled until the upgrade has completed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

165 Cl Plus Specification v1.3.2 (2015-03)

((1) initimmediate upgrade)

v

‘ (2) stop descrambling ‘

(3) host
answered?

A

Yes

v

(5) Wait for user
feedback

(6) CICAM firmware upgrade
in progress 0%

v

(7) Tune to appropriate
frequency

¢ Cancel

(8) CICAM firmware upgrade
in progress n%

v

‘ (9) Update complete ‘

*

Figure 14.7: Immediate Process

14.3.4 CAM Upgrade Protocol
14.3.4.1 Delayed mode

For a delayed upgrade, the CICAM waits for the Host to select a CA Service with a ca_pmt which includes a
CA descriptor with a matching upgrade CA system ID. When such a service is selected the CICAM opens the
CAM upgrade resource, if it is not already open, and sends a cam_firmware_upgrade APDU to initiate a delayed
upgrade process.

The Host shall respond to the request with a cam_firmware upgrade reply including a status in the "answer"
parameter, the operating mode of the Host is likely to determine the response i.e. user control or unattended. The
CICAM shall use the Host answer to determine how to proceed with the upgrade process.

If the upgrade has been accepted the CICAM shall first send a cam_firmware upgrade progress message
indicating that a software upgrade process has started. The CICAM may then use the DVB Host Control APDUs
to send one or more tune() or tune_broadcast() requests to locate and select the download service, the progress
of the download shall then be communicated every 20 seconds with cam_firmware upgrade progress messages.
When the upgrade process has completed then the CICAM sends a cam_firmware upgrade complete APDU.

If the upgrade is not accepted it may be re-attempted next time the Host selects a CA Service with a ca_pmt
which includes a CA descriptor with a matching upgrade CA system ID. The CICAM shall not re-attempt an
upgrade before this time. The CICAM may choose to delay an upgrade attempt until some later time when the
Host again selects a CA Service with a ca_pmt which includes a CA descriptor with a matching upgrade CA
system ID.

The cam_firmware upgrade complete APDU indicates to the HOST whether a CICAM reset is required to
finish the upgrade process. On receipt of the cam_firmware upgrade complete APDU, the Host shall perform
any requested reset and may regain control of the tuner.

The Host shall prevent user interaction from affecting the download as soon as the first cam_firmware upgrade
progress APDU has been received until a cam_firmware upgrade complete. If the Host does not receive a

© 2008, 2009, 2011, 2015 Cl Plus LLP

166 Cl Plus Specification v1.3.2 (2015-03)

cam_firmware upgrade progress APDU for a period of 60 seconds then it may assume that the CICAM has
failed and attempt recovery of the Host.

The delayed upgrade sequence is shown in Figure 14.8.

- Step 2-
Wait for CA service
availability
TS CI Plus CI Plus
CAM HOST

-Step 3-
Launch the
CAM_Upgrade
process

CAPMT including the CAID
descriptor

- Step 1-
Software Download
Trigger from External
event

— Open-session request -1
f—— N
Open-session Confirm
-Step 4-
If Host’s Answer is Ask..
cam_firmware_upgrade —> Send MMI Msg to End user to
get feedback
f——

cam_firmware_upgrade_reply

MMI Message to ask User

-Step 5-
If User’s feedback is OK.
Tune to download service
using the Host control

resource protocol.

MMI_Reply Msg with User

f—— -
feedback —

cam_firmware_upgrade_progress 0% —

New firmware —¢—— Host Control resource —

version available—]
—>

— on the air — E cam7ﬁnnwarefupgradefoprogress _:E - Step 6-
10, 20, ...100 % —) Wait for the end of
process before
restarting

— camiﬁrmwareiupgradefcompleté

Figure 14.8: Delayed Upgrade protocol

14.3.4.2 Immediate mode

For an immediate upgrade, the CICAM shall block the descrambling of all CA System Id services until the new
firmware upgrade has been installed. When a user selects a CA scrambled service, the CICAM opens the CAM
upgrade resource, if it is not already open, and sends a cam_firmware _upgrade APDU to initiate an immediate
upgrade process.

On receipt, the Host responds with a cam_firmware upgrade reply indicating the Host availability with the
"answer" parameter. Depending on the response from the Host the CICAM shall either stop the upgrade
negotiation or proceed to initiate the upgrade process.

If the upgrade has been accepted the CICAM shall first send a cam_firmware upgrade progress message
indicating that a software upgrade process has started. The CICAM may then use the DVB Host Control APDUSs
to send one or more tune() requests to locate and select the download service, the progress of the download shall
then be communicated every 20 seconds with cam_firmware upgrade progress messages. When the upgrade
process has completed then the CICAM sends a cam_firmware upgrade complete APDU.

If the upgrade is not accepted it may be re-attempted next time the Host selects a CA Service with a ca_pmt
which includes a CA descriptor with a matching upgrade CA system ID. The CICAM shall not re-attempt an

© 2008, 2009, 2011, 2015 Cl Plus LLP

167 Cl Plus Specification v1.3.2 (2015-03)

upgrade before this time. The CICAM may choose to delay an upgrade attempt until some later time when the
Host again selects a CA Service with a ca_pmt which includes a CA descriptor with a matching upgrade CA
system ID.

The cam_firmware upgrade complete APDU indicates to the HOST whether a CICAM reset is required to
finish the upgrade process. On receipt of the cam_firmware upgrade complete APDU, the Host shall perform
any requested reset and may regain control of the tuner.

- Step 2-
Wait for CA service
availability

CI Plus CI Plus
INBAND
CAM HOST
— CAPMT including -Step 3-
CAID descriptor Launch the
CAM_Upgrade

process

- Step 1-
Software Download

Open-session request

Trigger from an
external event «— E—
Open-session Confirm
-Step 4-
If Host’s Answer is Ask.
[cam_firmware upgrade —_— Send MMI Msg to get user
confirmation.
— R

cam_firmware_upgrade_Reply

[MMI Message to ask User >

-Step 5-
If user feedback is OK.
Initiate the download and
select a service using the Host
control resource protocol

MMI_Reply Msg with User

| — —
feedback -

|— cam_firmware_upgrade progress 0% —

| New firmware —f— Host Control resource —p]
— version available—f§—— —
— ; —
on the air
[M cam_firmware upgrade progress — - Step 6-

Wait for the end of
process before
restarting

1, 10, 23,...100% JR—

— —

1
— camﬁﬁrmwareﬁupgradeﬁcomp1eteé

Figure 14.9: Immediate Upgrade protocol

The Host shall prevent user interaction from affecting the download as soon as the first cam_firmware upgrade
progress APDU has been received until a cam_firmware upgrade complete. If the Host does not receive a
cam_firmware _upgrade progress APDU for a period of 60 seconds then it may assume that the CICAM has
failed and attempt recovery of the CICAM.

14.3.4.3 Upgrade Interruption
The CICAM upgrade process may be interrupted for a number of reasons:
. CICAM Reset.

° Power off.

CICAM Reset
A CICAM upgrade process, irrespective of the mode, shall be fully reinitiated when the CA system ID service is
selected.

© 2008, 2009, 2011, 2015 Cl Plus LLP

168 Cl Plus Specification v1.3.2 (2015-03)

Power Off / Recovery

The Host and CICAM may be subject to a power off event at any time during the upgrade operation, The
CICAM shall be able to recover and initiate a upgrade on selection of a CA system ID service. The CICAM
shall not recover the upgrade that causes any interruption to the transport stream or user (via MMI Messages)
while not on a CA system ID service.

14.3.4.4 Reset Implementation

When CICAM has completed a firmware upgrade, it shall send the cam_firmware upgrade complete APDU
with the appropriate reset type.

14.3.4.5 Host Operation
1) The Host shall support the CAM_upgrade resource and DVB Host Control Resource management.

2) The Host operating mode shall determine the return status to the CICAM through the cam_firmware
upgrade_reply message.

3) The Host response to the cam_firmware upgrade reply message shall respect Table 14.12.

Table 14.11: Host upgrade response states

Delayed Process | Immediate Process
User Mode ASK ASK
Unattended Mode NO YES
Service Mode YES YES

4) Inanormal operating mode (user mode), the answer shall be ASK (0x02). This implies that the user is
going to watch a CA service and the CICAM provides an indication to the user of the upgrade
availability.

5) Inanunattended mode (i.e. recording), in a delayed upgrade the response is likely to be NO (0x00)
allowing the recording to continue without interruption, any upgrade would be postponed to a later
more convenient time. For an immediate upgrade then the response shall be YES (0x01) where the
upgrade would be initiated as soon as possible and may result in part of any programme being missed.

6) Inaservice mode (i.e. Host software upgrade, network evolution etc.) the response may be YES (0x01)
for all types of upgrade process and the CICAM may start the upgrade process immediately.

7) The CICAM shall manage progress notifications to the user making use of the MMI.

8) The Host shall manage the CICAM reset on completion of the upgrade and the Host shall resume
normal operation with the CICAM in all respects, including timeout and reset operation.

14.3.4.6 Upgrade Cancellation

If the CICAM cancels a firmware upgrade, then it shall send a cam_firmware upgrade complete APDU with
the reset type set to 0x02 "no reset required".

14.3.5 CAM_Upgrade Resource

The CAM_Upgrade resource enables the CICAM to coordinate the CICAM software upgrade process with the
Host. The messages allow the CICAM to initiate a download with some agreement from the Host device,
communicate the progress of the upgrade and finally indicate completion. The Host is provided with knowledge
of the upgrade urgency enabling the Host to determine when user intervention is required depending on its
current operating mode.

14.3.5.1 CAM_Upgrade Resource APDUs

The CICAM opens the CAM_Upgrade resource when a firmware upgrade is required. The CAM_Upgrade
resource supports the following objects:

© 2008, 2009, 2011, 2015 Cl Plus LLP

169 Cl Plus Specification v1.3.2 (2015-03)

Table 14.12: CAM_Upgrade APDUs

CAM Upgrade APDU Direction
cam firmware upgrade CICAM > HOST
cam firmware upgrade reply CICAM €< HOST

cam firmware upgrade progress | CICAM - HOST
cam firmware upgrade complete | CICAM = HOST

14.3.5.2 cam_firmware_upgrade APDU

The CICAM shall transmit the cam_firmware upgrade APDU to the Host to inform it about the upgrade process
mode required by the CA system or system operator. The object includes information of the download urgency
and estimated completion time.

Table 14.13: Firmware Upgrade Object Syntax

Syntax No. of bits | Mnemonic
cam_firmware_upgrade () {
cam_firmware upgrade tag 24 uimsbf
length field()
upgrade type 8 uimsbf
download time 16 uimsbf
}

cam_firmware upgrade_tag: see Table L.l in Annex L.

upgrade_type: this parameter identifies the type of CAM firmware upgrade requested:
0x00: Delayed Upgrade mode.

0x01: Immediate Upgrade mode.

download_time: The time in seconds, estimated to complete the firmware upgrade process. If the value is
0x0000 then the duration is unknown.

14.3.5.3 cam_firmware_upgrade_reply APDU

The Host response to the cam_firmware upgrade APDU. The CICAM shall not start the download operation
until it receives this reply.

Table 14.14: Firmware Upgrade Reply APDU Syntax

Syntax No. of bits | Mnemonic
cam_ firmware upgrade reply() {
cam_ firmware upgrade reply tag 24 uimsbf
length field()
answer 8 uimsbf
}

cam_firmware_upgrade_reply_tag: see Table L.1 in Annex L.
answer: The Host's answer has the following possible values:
. 0x00 means NO.
. 0x01 means YES.
. 0x02 means ASK the user. The CICAM shall open a MMI dialogue to get feedback from the user.

° 0x03-0xFF Reserved for future use.

© 2008, 2009, 2011, 2015 Cl Plus LLP

170 Cl Plus Specification v1.3.2 (2015-03)

14.3.54 cam_firmware_upgrade_progress APDU

After the CICAM has initiated its upgrade, it transmits the cam_firmware upgrade progress() APDU to the
Host to inform it about the software download progress. This message shall be sent periodically, every 20
seconds, from the CICAM to Host. The Host uses this object to ensure that the CICAM remains operational
during a software upgrade process. The CICAM shall ensure that the percentage value increases at least once
every 60s until the upgrade complete is issued otherwise the CICAM may be subject to a reset by the Host.

Table 14.15: Firmware Upgrade Progress APDU Syntax

Syntax No. of bits | Mnemonic
cam firmware upgrade progress() {
cam_firmware_upgrade_progres s tag 24 uimsbf
length field()
download progress status 8 uimsbf
}

cam_firmware upgrade progress_tag: see Table L.1 in Annex L.

download_progres_status: The percentage value of the CAM upgrade progress, in the range 0 to 100 (i.e. a
percentage complete).

14.3.5.5 cam_firmware _upgrade complete APDU

When the CICAM has completed its upgrade, it transmits the cam_firmware upgrade complete() APDU to the
Host. The object informs the Host that the upgrade has completed and whether the CICAM requires a reset. Any
Host Control resources used during the upgrade process shall be closed by the CICAM before issuing this
object.

Table 14.16: Firmware Upgrade Complete APDU Syntax

Syntax No. of bits | Mnemonic
cam firmware upgrade complete() {
cam_firmware upgrade complete tag 24 uimsbf
length field()
reset request status 8 uimsbf
}

cam_firmware upgrade complete tag: see Table L.1 in Annex L.
reset_request_status: This contains the status of the reset for the CICAM.

Table 14.17: reset_request_status types

Value Interpretation
0x00 PCMCIA reset requested — The Host sets the RESET signal active then inactive.
0x01 CI Plus CAM reset requested — Host sets the RS flag and begins interface
initialisation

0x02 No reset required — Normal Operation continues

0x03 — OxFF reserved

Note: If the CICAM wishes to cancel the firmware upgrade, it may send the
cam_firmware_upgrade_complete APDU with no reset requested. Normal operation shall
continue if the Host receives this APDU.

14.4 Application MMI Resource

The Application MMI Resource, TS 101 699 [8], is extended to permit an exchange of file and data in both
directions, this permits status information to be returned from the application domain to the module. These
extensions shall only be used by the CI Plus Application Domain to transfer file or private data pipe
information. The Application MMI resource version remains at 1 and the CI Plus extensions define the file
naming conventions that shall be used in the CI Plus Application Domain "CIEngineProfilel".

© 2008, 2009, 2011, 2015 Cl Plus LLP

171 Cl Plus Specification v1.3.2 (2015-03)

14.4.1 File Naming Convention

The Host shall always include “CI://” at the start of any file name used during Application MMI resource file
operations to ensure interoperability with existing CICAMs. Any path included in a file name shall be fully
resolved, it shall not contain relative path components e.g. “..”. To ensure interoperability with existing Hosts,
the CICAM shall resolve any of the following MHEG file references:

e /myDir/myFile

e //myDir/myFile

e /myFile

e //myFile

e CI:/myDir/myFile
e (CI://myDir/myFile
e CI:/myFile

e (CI://myFile

14.4.2 FileRequest

The FileRequest message is extended (see Table 14.18) to allow the transmission to the module of either a file
request as defined in TS 101 699 [8] or to establish a private data pipe between the Host and the module.

Applications may perform asynchronous file requests of type File and multiple FileRequests may be issued by
the Host without waiting for a FileAcknowledge (i.e. the file requests are not serialised). The CICAM shall
queue the requests and return a FileAcknowledge for each FileRequest. The CICAM shall minimally be capable
of managing 8 outstanding FileRequests at any one time.

For messages of type File the FileResponse shall return the data as soon as it becomes available which may
result in FileResponse messages being received in a different order than originally requested. Messages of type
Data shall preserve order and shall be handled sequentially by the CICAM and return a FileAcknowlegde in the
same order as the FileRequest.

Table 14.18: FileRequest Message

Syntax No. of bits | Mnemonic
FileReqg () {
FileReqTag 24 uimsbf
length field()
RequestType 8 bslbf
if (RequestType == 0) {
for (i=0; i< (n-1); 1i++) {
FileNameByte 8 bslbf
}
}
if (RequestType == 1) {
for (i=0; i<(n-1); 1i++) {
DataByte 8 bslbf
}
}
}

RequestType: An 8-bit field that defines the type of request being made by the Host. The RequestType values
are defined in Table 14.19.

Table 14.19: FileRequest RequestType values

RequestType Value
File 0x00
Data 0x01
Reserved for future use | 0x02-0xff

© 2008, 2009, 2011, 2015 Cl Plus LLP

172

FileNameByte: A byte of the filename requested.

DataByte: A byte of the data to be sent to the Module.

14.4.3 FileAcknowledge

The FileAcknowledge is extended (see Table 14.20) to permit the module to return either the requested file
bytes or data pipe to the Host for CI Plus Application MMI messages.

Table 14.20: FileAcknowledge Message

Cl Plus Specification v1.3.2 (2015-03)

Syntax No. of bits | Mnemonic
FileAck() {
FileAckTag 24 uimsbf
length field()
Reserved 7 bslbf
FileOK 1 bslbf
RequestType 8 bslbf
if (RequestType == File) {
FileNameLength 8 uimsbf
for (i=0; i<FileNamelLength; i++) {
FileNameByte 8 bslbf
}
FileDataLength 32 uimsbf
for (i=0; i<FileDatalength; i++) {
FileDataByte 8 bslbf
}
}
if (RequestType == Data) {
for (i=0; i<(n-1); 1i++) {
DataByte 8 bslbf
}
}
}

FileOK: A 1-bit field is set to "1" if the file is available or this is an acknowledgement response to a
FileRequest message with a RequestType of data, otherwise it shall be "0".

RequestType: An 8-bit field that defines the type of request being made by the Host. The RequestType values

are defined in Table 14.21.

Table 14.21: FileAcknowledge RequestType Values

RequestType Value
File 0x00
Data 0x01
Reserved for future use | 0x02-0xff

FileNameLength: The number of bytes in the filename.

FileNameByte: The name of the file requested by the Host. This allows the Host to asynchronously request
multiple file transfers before the acknowledgement is received as the acknowledgment identifies the file of the
original request. The file name returned shall be the same as that supplied in the original FileRequest.

FileDataLength: The length of the contents of the file in bytes.

FileDataByte: A byte of the file data that has been retrieved. Note that APDUs are NOT limited to 65535 bytes.

See Annex E.9.

DataByte: A byte of the data that has been sent to the Host.

© 2008, 2009, 2011, 2015 Cl Plus LLP

173 Cl Plus Specification v1.3.2 (2015-03)

14.4.4 AppAbortRequest

The Host or the module may pre-empt the CI Plus application domain which may be torn down immediately
without waiting for a AppAbortAcknowledge. The Host shall send an AppAbortRequest APDU to the
CICAM when the application closes, this includes, but is not limited to, when the application engine is denied
permission to start by the Host, application fails to start, application exits through an error or when the
application naturally exits. The AppAbortRequest abort codes for the CI Plus Application domain are defined in
Table 14.22.

A CICAM is recommended to explicitly terminate any existing running application with a AppAbortRequest
before starting a new application with RequestStart as the order of a AppAbortRequest (existing application
closing) and RequestStartAck (new application starting) cannot be guaranteed by the Host.

Table 14.22: Application Abort Codes

AbortReqCode Meaning

0x00 Reserved for future use.

0x01 User Cancel — The user has initiated termination of the application domain.

0x02 System Cancel — The system has pre-empted the application domain to perform another task.
0x03-0xff Reserved for future use.

14.5 Application MMI Resource v2

The Application MMI Resource, TS 101 699 [8] protocol is extended to permit the caching of content in the
Host device to speed up CI application execution. These extensions shall only be used by the CI Plus
Application Domain to transfer file or private data pipe information with version 2 of the Application MMI
resource.

The caching mechanism is provided by a new RequestType called FileHash which allows the Host to compute a
MDS5 hash of the file content and enables the Host to request a file from the CICAM with both the filename and
a Host computed content hash. On receiving the FileHash request the CICAM uses the file hash to determine if
the file content has changed, if the CICAM computed file hash is the same as the hash in the request message
then the file content is not returned to the Host and an indication is provided in the response message that the
file content remains unchanged. If the file hash is different then the CICAM returns the new file contents.

This file hash mechanism allows the communication bandwidth between the Host and the CICAM to be reduced
when existing content has already been acquired thereby speeding up the application execution.

The Application MMI Resource v2 also includes a mechanism for the RequestType to be extended in the future
without necessitating a version increment of the resource.

A CICAM is required to support vl and v2 of the Application MMI Resource. A Host is required to support the
Application MMI resource v1 and may optionally support v2 in addition to v1. Unless otherwise stated, the
behaviour of Application MMI resource v1 is identical to Application MMI resource v2 for RequestType File
and Data.

14.5.1 FileRequest v2

The FileRequest message is extended (see Table 14.23) to included support for hashed file transfers The syntax
is identical to version 1 for RequestType File and Data.

Applications may perform asynchronous file requests of type File and FileHash. Multiple FileRequests may be
issued by the Host without waiting for a FileAcknowledge (i.e. the file requests are not serialised). The CICAM
shall queue the requests and return a FileAcknowledge for each FileRequest. The CICAM shall minimally be
capable of managing 8 outstanding FileRequests at any one time.

For messages of type File and FileHash the FileResponse shall return the data as soon as it becomes available
which may result in FileResponse messages being received in a different order than originally requested.
Messages of type Data shall preserve order and shall be handled sequentially by the CICAM and return a
FileAcknowlegde in the same order as the FileRequest.

© 2008, 2009, 2011, 2015 Cl Plus LLP

174 Cl Plus Specification v1.3.2 (2015-03)

Table 14.23: FileRequest Message

Syntax No. of bits | Mnemonic
FileReqg() {
FileReqTag 24 uimsbf
length field()
RequestType 8 bslbf
if (RequestType == File) {
for (i=0; i< (n-1); 1i++) {
FileNameByte 8 bslbf
}
}
if (RequestType == Data) {
for (i=0; 1i<(n-1); i++) {
DataByte 8 bslbf
}
}
if (RequestType == FileHash) {
FileHash 128 bslbf
for (i=0; i<(n-17); 1i++) {
FileNameByte 8 bslbf
}
}
}

RequestType: This 8-bit field defines the type of request being made by the Host. The RequestType values are
defined in Table 14.24. The Host shall not send any request type other than File (0x00), Data (0x01) or FileHash
(0x02) unless compatibility with the CICAM has been confirmed, refer to section 14.4.4, Request Type
Discovery v2.

Table 14.24: RequestType values

RequestType Description Value
File A file is being requested without any version control. 0x00
Data A data item is being requested, 0x01
FileHash A file is being request with a hashed version field. 0x02
ReqTypes A list of supported RequestType is being requested 0x03
Reserved for future use Reserved for future use 0x04-0x7f
User defined User defined 0x80-0xff

FileNameByte: A byte of the filename requested or a data pipe byte to send to the module. The interpretation of
the byte is determined by the RequestType.

DataByte: A byte of the data to be sent to the module.

FileHash: This 128-bit field is set to the MD5 hash of the contents of the file on the Host with the filename sent
as part of this message. The MD5 algorithm is as defined in RFC 1321.

14.5.2 FileAcknowledge v2

The FileAcknowledge is extended (see Table 14.25) to permit the module to return either the requested file
bytes or data pipe to the Host for CI Plus Application MMI messages. An extended status of the original request
is included in v2 of the response.

© 2008, 2009, 2011, 2015 Cl Plus LLP

175

Table 14.25: FileAcknowledge Message

Cl Plus Specification v1.3.2 (2015-03)

Syntax No. of bits | Mnemonic
FileAck () {
FileAckTag 24 uimsbf
length field()
Reserved zero 6 bslbf
RequestOK 1 bslbf
FileOK 1 bslbf
RequestType 8 uimsbf
if (RequestType == File) ||
(RequestType == FileHash) {
FileNameLength 8 uimsbf
for (i=0; i<FileNameLength; i++) {
FileNameByte 8 bslbf
}
FileDataLength 32 uimsbf
for (i=0; i<FileDatalength; i++) {
FileDataByte 8 bslbf
}
}
if (RequestType == Data) {
for (i=0; i< (n-1); i++) {
DataByte 8 bslbf
}
}
if (RequestType == ReqTypes) {
for (i=0; i< (n-1); 1i++) {
ReqTypeByte 8 uimsbf
}
}
}

Reserved_zero: This 6-bit field is reserved for future use and shall be set to zero.

RequestOK: This 1-bit field is interpreted in the context of a RequestType only according to Table 14.26. The
field shall be set to "0" when the field value is unused.

Table 14.26: RequestOK status Values

Request Request RequestOK=0 RequestOK=1
Type
0x00 File Unused, field value ignored.
0x01 Data Unused, field value ignored.
0x02 FileHash The request failed the file was not found | The request succeeded, the FileOK field
or the request was invalid. indicates whether the file has changed
or not.
0x03 ReqgTypes Unused, field value ignored.
0x04-0xff | Reserved Unused, field value ignored.

FileOK: This 1-bit field is interpreted in the context of a RequestType only according to Table 14.27. The field
shall be set to "0" when the RequestType is unknown.

© 2008, 2009, 2011, 2015 Cl Plus LLP

176 Cl Plus Specification v1.3.2 (2015-03)

Table 14.27: FileOK status Values

Request Request FileOK=0 FileOK=1
Type
0x00 File The file was not found or is not available. | The requested file is available and the

contents are included in this
acknowledgement message.

0x01 Data The data was not found or is not This is a successful acknowledgement
available. response and data contents may be
included in this acknowledgement
message.
0x02 FileHash When RequestOK=1 the file contents The file contents have changed and do
have not changed and match the file not match the requested file hash. The
hash. new file contents are included in this
When RequestOK=0 the request failed. | acknowledgement message.
0x03 ReqTypes An error occurred during the request. This is a successful acknowledgement

response and the message contains a
list of supported RequestTypes of the
CICAM.

0x04-0xff | Reserved Command unknown or failed. Reserved shall not be set

RequestType: This 8-bit field defines the type of request being made by the Host. The RequestType values are
defined in Table 14.24.

FileNameLength: The number of bytes in the filename.

FileNameByte: The name of the file requested by the Host. The return of the requested file name allows the
Host to asynchronously request multiple file transfers before the acknowledgement is received as the
acknowledgment identifies the file of the original request. The file name returned shall be the same as that
supplied in the original FileRequest.

FileDataLength: The length of the contents of the file in bytes. This field shall be set to zero on a RequestType
of FileHash when the file exists on the CICAM and the host FileHash is identical to the file hash of the CICAM
i.e. where the return status information is RequestOK=1 and FileOK=0.

FileDataByte: A byte of the file data that has been retrieved. Note that APDUs are NOT limited to 65535 bytes.
See Annex E.12.

DataByte: A byte of the data that has been sent to the Host.

ReqTypeByte: This 8-bit field contains the supported RequestType of the CICAM. Each RequestType
supported by the CICAM shall be included in the response and shall be presented in ascending numerical order.

14.5.3 RequestType Discovery v2

Version 2 of the Application MMI resource allows the Host to query the RequestTypes that are supported by the
CICAM to allow additional RequestTypes to be added to the Application MMI resource without necessitating a
version increment of the resource. A Host shall only use RequestTypes File, Data, FileHash and ReqTypes.
RequestTypes other than File, Data, FileHash and ReqTypes may only be used by the Host after first querying
the CICAM to confirm the presence of the required RequestType. The RequestType may not be used by the
Host if it is not reported by the CICAM. A CICAM shall be robust in the presence of a unknown RequestType
and shall always return a FileOK status of “0".

To query the CICAM supported RequestTypes then the Host sends a FileRequest() message with a RequestType
ReqTypes (0x03). The CICAM shall respond with a FileAcknowledge() message with a RequestType ReqTypes
(0x03), FileOK field set to "1" and the ReqTypeByte field shall include each RequestType that is supported by
the CICAM sorted in ascending order. i.e. if the CICAM supports File, Data, FileHash and ReqTypes then the
ReqTypeByte field shall be 4 bytes long and contain the bytes 0x00, 0x01, 0x02 and 0x03.

EXAMPLE: 4 bytes (hex) CICAM supports the 4 basic resource v2 types of File (0x00), Data (0x01),
00010203 FileHash (0x02) and ReqTypes (0x03) only.

© 2008, 2009, 2011, 2015 Cl Plus LLP

177 Cl Plus Specification v1.3.2 (2015-03)

5 bytes (hex) CICAM supports 5 protocols. The basic resource v2 types of File (0x00),
0001020304 Data (0x01), FileHash (0x02) and ReqTypes (0x03) in addition to a yet
undefined type 0x04.

14.6 DVB Host Control resource
14.6.1 DVB Host Control Version 2

The DVB Host Control resource class as defined in EN 50221 [7] is enhanced so that it is no longer limited to
tuning to a DVB triplet known by the Host (Host Control version 1). See Annex E.16 for clarification of Host
Control version 1 Tune behaviour. Version 2 of this resource adds new commands for the CICAM to address
another type of tuning operation:

e Host Control 2: Request the Host to tune to a service which is not part of the Host channel line-up (the
service has not been detected by the Host during service discovery), the service selected is based on:
o The physical description of the Transport Stream that carries the service.
o The service identification (e.g. service id).

14.6.2 DVB Host Control Version 2 APDUs

The DVB Host Control Version 2 resource supports the following objects:

Table 14.28: DVB Host Control Version 2 APDUs

DVB Host Control Version 2 APDU Direction
tune CICAM > HOST
replace CICAM > HOST
clear replace CICAM > HOST
ask _release CICAM €« HOST
tune broadcast req CICAM > HOST
tune reply CICAM €« HOST
ask release reply CICAM > HOST

14.6.2.1 tune_broadcast_req APDU

The CICAM sends this APDU to request the Host to tune to a service, based on the physical description of the
transport stream that carries the service and the service identification. The Host replies with tune reply() APDU.

Table 14.29: tune_broadcast_req APDU Syntax

Syntax No. of bits | Mnemonic
tune broadcast req() {
tune broadcast req tag 24 uimsbf
length field()
reserved 7 uimsbf
pmt flag 1 uimsbf
service id 16 uimsbf
reserved 4 uimsbf
descriptor loop length 12 uimsbf
for (i=0; 1i<N; i++) {
descriptor ()
}
if (pmt flag==1) {
program map section ()
}
}

© 2008, 2009, 2011, 2015 Cl Plus LLP

178 Cl Plus Specification v1.3.2 (2015-03)

pmt_flag: The pmt_flag is a 1-bit field indicating whether the tune broadcast req contains a PMT. A value of
"0" indicates that the request does not contain a PMT and that the Host shall fetch the PMT of the service
service id from the Transport Stream. A value of "1" indicates that the request contains a PMT which shall be
used by the Host to perform elementary stream selection.

service_id: This is a 16-bit field which serves as a label to identify the required service from any other service
within the tuned Transport Stream. This is the same as program number in the PMT. If the service id is zero
then the pmt flag shall also be zero and the Host shall tune to the frequency but shall not select a service, a
ca_pmt will not be sent.

descriptor_loop_length: This 12-bit field gives the total length in bytes of the following descriptors loop.

descriptor(): The descriptors are coded as defined in EN 300 468 DVB Specification for Service Information
(SI) in DVB Systems [10]. Table 14.34 indicates which descriptors may be available in the loop.

program_map_section(): A Program Map Table as specified in ISO/IEC 13818-1.

The program number in the PMT shall be identical to the service id specified in the tune broadcast req()
APDU. On a mismatch of these values then the tune shall fail and the tune reply() shall return status 0x04, “bad
or missing parameters”. The Host shall only use this program_map_section() if the CICAM sending the APDU
has already been authenticated, otherwise the tuning request shall be ignored and the tune reply() shall return
status 0x04, “bad or missing parameters”.

14.6.2.2 tune_reply APDU

This APDU is the Host response to a tune_broadcast _req() or tune() as defined in section 8.5.1.1 of EN 50221
[7]. It provides the CICAM with the status of the tune request.

Table 14.30: tune_reply APDU Syntax

Syntax No. of bits | Mnemonic
tune reply () {
tune reply tag 24 uimsbf
length field()
status_ field 8 uimsbf
}

status_field: This 8-bit field specifies the tuning status according to Table 14.31.

Table 14.31: tune_reply status values

status_field Value

Status OK — Successful tuning (see note 1) 0x00
Error - Unsupported delivery system descriptor 0x01
Error - Tuner not locking 0x02
Error - Tuner Busy 0x03
Error - Bad or missing parameters. (see note 2) 0x04
Error - Service not found 0x05
Error — undefined 0x06
Reserved 0x07-0xFF
Notes:
1: Following a successful tuning operation the Host shall return a ca_pmt() extracted

from the applicable PMT.
2: If a mandatory descriptor is missing in the tune request, then this error shall be

returned. Mandatory descriptors are listed in Table 14.34.

14.6.2.3 ask_release APDU

Host Control version 2 uses the ask release() APDU. The syntax of this APDU is exactly as defined in section
8.5.1.4 of EN 50221 [7] and its behaviour is altered to enable the CICAM to retain control of the tuner if
required. On receiving a ask_release APDU the CICAM may query the user to confirm the action using the high
level or application MMI. The CICAM replies to the Host with the tuner release status with the

ask release reply APDU.

© 2008, 2009, 2011, 2015 Cl Plus LLP

179 Cl Plus Specification v1.3.2 (2015-03)

14.6.2.4 ask_release_reply APDU

This APDU is the CICAM reply to a ask release(). This APDU indicates whether the CICAM confirms or not
that the tuner shall be released and the session closed.

Table 14.32: Tune Release Reply APDU Syntax

Syntax No. of bits | Mnemonic
ask release reply() {
ask release query tag 24 uimsbf
length field()
release reply 8 uimsbf
}

release_reply: This 8-bit field gives the tuning status according to Table 14.33.

Table 14.33: Tune Release Reply values

release_reply Value
Release OK — Host regains control of the tuner 0x00
Release Refused — CICAM retains control of the tuner 0x01
Reserved 0x02-0xFF

14.6.3 PMT Management

For Video-on-demand (VOD) deployments, typically in cable networks, then the VOD components are
delivered on the broadcast channel as elementary stream components only and the broadcast channel may not
deliver PSI and SI components. In this scenario then the PMT shall be delivered by the CICAM in the APDU
and is constructed from information retrieved by the CICAM from the broadcast head-end equipment, typically
via the Low Speed Communications resource.

Application authors of any VOD application shall note that in the absence of any SI in the stream then the
tuning operation incurs a 5 second delay while a Host shunning check is performed to acquire the SDT actual
which will fail and time out. The Host check for the SDT cannot be disabled as this compromises the security
afforded by the Host on a network.

When the CICAM requests the tuning on a broadcast channel it may provide the PMT of the service within the
APDU. The APDU PMT shall be used by the Host and the Host shall not attempt to acquire a PAT or PMT
from the broadcast network.

14.6.4 Descriptors

The tune broadcast req() APDU contains a loop of descriptors which are used by the Host to provide
information about the tuned service.

When the CICAM requests the Host to tune with tune broadcast req() the CICAM shall provide the Host with a
single tuning location delivered by one or more delivery system descriptors. If the descriptor loop contains more
than one tuning location the Host shall consider the first one and ignore the rest.

The CICAM may optionally provide the Host with additional information about the requested tuned service.
The information provided may be used by the Host in order to provide the user with service and event
description. e.g. to populate the channel banner and info dialogues. The exact mechanism by which the Host
delivers this information into its DVB stack is not specified, and is receiver specific, the Host could for example
construct an internal EIT ¢ with this information for the currently selected service.

Table 14.34 specifies the list of DVB descriptors that may appear in the descriptor loop of a tuner request.

© 2008, 2009, 2011, 2015 Cl Plus LLP

180 Cl Plus Specification v1.3.2 (2015-03)

Table 14.34: descriptors allowed in tune_broadcast_req APDU

Descriptor DVB Tag Value Comment
terrestrial_delivery_system_descriptor 0x5A Mandatory descriptors; a single destination
T2_delivery_system_descriptor 0x7F, 0x04 See Note | frequency shall be specified by delivery
satellite_delivery _system_descriptor 0x43 system descriptor suitable for the current
S2 satellite_delivery system descriptor 0x79 network.
cable delivery system_descriptor 0x44
C2_delivery_system_descriptor 0x7F, 0xOD See Note
service_descriptor 0x48 Additional optional information for the
short_event_descriptor 0x4D receiver to describe the service.
component descriptor 0x50
parental_rating_descriptor 0x55
content_descriptor 0x54

Note:

The T2_delivery_system_descriptor and the C2_delivery_system_descriptor are extended DVB
descriptors, see EN 300 468 [10], sections 6.2.16 and 6.3.

14.6.5 Host Tuning protocol

Figure 14.10 provides an overview of the Host behaviour upon reception of a DVB Host Control Version 2 tune

request.

1)
2)

3)

4)
5)

6)

7)

8)

9)

10)
11)
12)
13)
14)
15)

16)

17)

The Host receives a tune_broadcast_req().

The Hosts checks the availability and consistency of the parameters. If one or more parameters is not
consistent or is missing then the Host continues at step 11.

The Host checks that the delivery system is supported. If the delivery system descriptor is not
supported then the Host continues to step 12.

The Host tunes the tuner passing through the described transport stream.

The Host confirms that the tuning operation is successful and a valid signal is received. If the tuning
failed then the Host continues to step 13.

If the service_id is zero then the Host does not search for a PMT and continues to step 14. If the
service_id is not zero then the Host continues to step 7.

The Host determines if a PMT was passed in the request, if the PMT is not present then is shall be
acquired from the broadcast stream. If a PMT is not available then the Host continues to step 15.

The Host sends the tune_reply() to the CICAM with status 0x00 (OK).

The Host uses the PMT in order to select the elementary streams.

The Host sends a ca_pmt() to the CICAM.

The Host sends a tune_reply() with status 0x04 (Bad or missing parameters).

The Host sends a tune_reply() with status 0x01 (Unsupported delivery system descriptor).
The Host sends a tune reply() with status 0x02 (tuner not locking).

The Host sends a tune_reply() to the CICAM with status 0x00 (OK).

The Host acquires the PAT from the transport stream. On acquiring the PAT the Host locates the PMT
PID matching the program number with the service id field in the tune broadcast request APDU. The
corresponding PMT is then acquired from the transport stream.

The Host checks that the PMT has been successfully loaded. If the PMT is not loaded then the Host
continues to step 17.

The Host sends a tune_reply() with status 0x05 (service not found).

© 2008, 2009, 2011, 2015 Cl Plus LLP

tune_broadcast_req() received

< (1) Start)

(2) Parameters

181

OK?

Cl Plus Specification v1.3.2 (2015-03)

(11) Host sends tune_reply()
with status 0x04
(Bad or missing parameters)

Failed tuning)

yes

(4) Host Tunes to the
described transport stream

(5) Tune

(12) Host sends tune_reply()
with status 0x01
(unsupported delivery system)

Failed tuning)

successful?

(6) Service_id is

(13) Host sends tune_reply()
with status 0x02
(tuner not locking)

Failed tuning)

zero

no

(7) PMT in tune

"

(14) Host sends tune_reply()
with OK status 0x00

O A

Successful tuning)

request ?

yes

(8) Host sends tune_reply()
with OK status 0x00

v

(9) Host performs PMT
component selection

v

(10) Host sends ca_pmt()

(Successful tuning)

(15) Host fetches PMT from
tuned transport stream

(16) PMT found?

4

P
C

(17) Host sends tune_reply()
with status 0x05
(Service not found)

C Failed tuning)

Figure 14.10: Tuning process with Host Control Version 2 (informative)

© 2008, 2009, 2011, 2015 Cl Plus LLP

182 Cl Plus Specification v1.3.2 (2015-03)

14.6.6 Host Control release requests

When a session is opened with the DVB Host Control resource and the Host detects user interaction which
would result in tuning to another service, the Host shall seek permission from the CICAM to release the tuner
for Host use.

Figure 14.11 provides an overview of the Host behaviour when it detects user interaction while a DVB Host
control session is opened.

1)
2)
3)
4)
5)
6)

7)
8)

The CICAM has opened a session with the DVB Host Control resource.

The Hosts detects user interaction that would normally result in tuning to a new service.
The Host sends a ask release() to the CICAM to request that the tuner is released.

The CICAM receives the ask release() and processes it.

The Host receives an ask _release reply() from the CICAM in response to the query.

The Host checks whether the CICAM accepts the ask_release(). This may involve the CICAM use of
MMI to query the user. If the CICAM does acknowledge, then the Host goes to step 7). If the CICAM
does not acknowledge, then the Host goes back to step 1).

The Host receives a close session from the CICAM.

The Host tunes to the user selected service.

?

C (1) DVB Host Control session opened }

(2) Host detects user
interaction

v

(3) Host sends ask_release()

v

(4) CICAM processes the
release request no

!

(5) Host receives
ask_release_reply()

(6) Rel
Acknowledged ?

yes

h 4

(7) Host receives close
session from the CICAM

(8) Host performs user
interaction

Figure 14.11: Tuning process with Host Control Version 2

© 2008, 2009, 2011, 2015 Cl Plus LLP

183 Cl Plus Specification v1.3.2 (2015-03)

14.7 Operator Profile
14.7.1 Introduction

The broadcast profiles in the vertical market segment are typically encumbered by the deployment of existing
proprietary receivers that utilise private signalling to convey information from the broadcast Head-end to the
receivers in the field. As an established network then it is very difficult for the service operator to modify the
network to cater for the introduction of horizontal market receiver devices using the Common Interface without
disturbing the network and the existing receiver base.

The private signalling on these networks requires that horizontal market receivers are tailored to understand any
proprietary signalling before they are able to be utilised on the network. Analysis of this private signalling
reveals that proprietary signalling is most diverse at the higher levels in the network profile while the signalling
at the service level and PSI level is generally consistent with standardised DVB signalling. The higher level
networking signalling of the network typically includes strict controls on the channel list and logical channel
numbering which may be based, in part, on the subscription and entitlement rights purchased by the user.

The Operator Profile resource attempts to resolve the network and receiver interoperability issues by providing a
CI Plus standardised broadcast profile and uses the CICAM to translate the network private signalling into a
uniform information structure allowing all CI Plus Host devices to perform a full installation and a channel
listing of all of the services required by the Service Operator.

14.7.2 Operational Overview

The Operator Profile resource enables the delivery of a Network Information Table (NIT) through the CICAM
which is used in preference to any broadcast network NIT. The NIT delivery mechanism enables the CICAM to
transform private network information and service operator specific signalling into a single format that is
delivered in a NIT that may be universally understood by all CI Plus Host devices that conform to this version
of the specification.

Service operators in the vertical market are unlikely to be able to significantly alter their existing SI/PSI
signalling because of legacy receivers that may already be deployed in the network. The Operator Profile
resource provides a mechanism for the higher level SI signalling to be configured, re-packaged and delivered to
a CI Plus Host locally without affecting the existing broadcast signalling of the network. Full control over the
NIT is provided by a CICAM NIT messaging mechanism which allows the broadcast SDT to be partially
reconfigured from the NIT using the ciplus_service descriptor. Some adjustment of the broadcast PSI and EIT
within the network may be required to allow full compatibility with a CI Plus Host, this generally means fuller
conformance with the standard DVB specifications. The operational behaviour of the existing network may be
provided to the Host via the operator_info() APDU which defines the operational environment allowing the
Host to compensate for operational variations in the different networks.

The Operator Profile resource provides two different modes of operation depending on the profile type which is
defined as follows:

e profile_type =0 — A non-profiled CICAM for a DVB network that follows normal DVB SI rules. The
network service list is determined from the broadcast Service Information by the Host. This profile
allows the CICAM to collect entitlement rights information. Additional information about the network
behaviour may be defined and conveyed to the Host in the resource.

e profile type =1 — Profiled operation where the Host constructs a local channel list explicitly for the
service operator and the CICAM delivers an alternative CICAM NIT to the Host which defines the
network. The Host does not interrogate the broadcast network to determine the logical channel line up.

Figure 14.12 shows the conceptual operation of the Operator Profile resource when running in a CICAM NIT
delivery mode.

© 2008, 2009, 2011, 2015 Cl Plus LLP

184 Cl Plus Specification v1.3.2 (2015-03)

CICAM Host
) CICAM
NIT e Host Digital Television
torage operator_stat- Middleware
us_req() Select 4 4
CAS/ CICAM

smartcard|

NIT or O

s

uild NIT

Oyu ax0jerddo
(Osmeys aojerado

I CICAM | £ C C
SDT Private ‘\ij NIT J SDT ... other J
sections » tables
. . AV
> De-multiplex De-multiplex ! decode
A
Network descrambler /
» CI Plus d bl
1 CI Plus scrambler us descrambler
A
A Host shunning A
TS in control ° TS or CI Plus Scrambled TS

Figure 14.12: Conceptual operation of the Operator Profile resource (Informative)

The transport stream TS in passes through the CICAM and is descrambled under Host control according to the
ca_pmt(). Optionally, the Service Information (SI) of the network is demultiplexed by the CICAM and used to
construct a new CICAM NIT which is passed to the Host via the operator_status() and operator_nit() APDUs.
The tables used by the CICAM to construct the CICAM NIT are determined by the service operator and may be
derived from the broadcast stream NIT, BAT, SDT or any other private table sections appearing on the network.
Entitlement rights of the CAS/Smartcard and service_type from the operator search_start() APDU are used to
determine which services may appear in the CICAM NIT. The CICAM NIT is a quasi-static structure and is
stored in persistent storage within the CICAM once the table has been built. The table is maintained by the
CICAM by monitoring the network in addition to the CAS/Smartcard entitlement rights and passing any
changes to the Host by managing the version number of the CICAM NIT.

The Host provides a dedicated channel list for each CICAM profile to which it has attached. Whilst operating on
a CICAM profile channel list then the CICAM NIT is always used in preference to any broadcast NIT which is
ignored. The CICAM NIT information is used to construct the channel list for the attached CICAM profile.
Changes in the profile are sent to the Host with an asynchronous operator_status() APDU which contains
version information of any updated CICAM NIT with a new table section version number and operates in the
same way as a NIT table section update in a conventional broadcast network.

The CICAM NIT fully describes the services appearing in the service operator channel list and sufficient
information is present in the CICAM NIT to enable the Host to build a complete channel list. The Host is not
required to interrogate the broadcast NIT, BAT or SDT for channel list construction or maintenance and all
information is provided in the CICAM NIT. The CICAM is required to construct and maintain the CICAM NIT
using the latest channel list information which may require the CICAM to monitor the SI tables of the network
dynamically.

Within the context of a CICAM profile then the native Electronic Programme Guide of the Host may be used to
display programme event information of the profile acquired through EIT, information from each multiplex,
acquired from the same multiplex when fully cross carried or acquired by tuning to a dedicated barker channel.
EIT,., may be delivered in a scrambled form across the network.

The CICAM and Host shall strictly adhere to the broadcast profile that is defined in Annex N to ensure full
interoperability with all CI Plus devices.

© 2008, 2009, 2011, 2015 Cl Plus LLP

185 Cl Plus Specification v1.3.2 (2015-03)

14.7.3 Host Operator Profile Handling

The CICAM Operator Profile resource with a non-zero profile_type requires the Host to create a separate logical
channel list for the service operator with a label described by the profile name field of the operator_info()
APDU. A selection mechanism shall be provided by the Host to move into different channel lists as shown in
Figure 14.13 where a CICAM has reported a profile with profile name "CICAM network 1".

Network Selection
CICAM network 1

CICAM network 2

Other Cable

Digital Terrestrial

Analogue TV

Figure 14.13: Example Network Selection User Interface with 2 CICAMs

The exact Host mechanism by which the different network profiles are selected, manipulated and finally deleted
is not defined by this specification. The installation procedure of a new CICAM advertising an Operator Profile
shall ideally be simple for the user and the Host shall automatically initiate and guide the user through the
installation procedure when a new CICAM with a profile that may be supported and populated is inserted into
the Host.

The Host shall retain the network profile of the CICAM until such time that the CI Plus CICAM authentication
pairing is removed or the user explicitly removes the profile. The Host shall retain the profile through a CICAM
un-plug operation allowing a limited number of different CICAMs to be cycled without losing the stored
channel list information.

The CICAM Operator Profile information shall comprise an independent logical channel list which shall honour
the NIT signalling of the CICAM network for profile type 1. A mechanism shall be provided by the Host to
move from one Operator Profile to another.

14.7.4 Operator Profile Resource exchange

This section describes the APDU exchange between the Host and the CICAM.

14.7.4.1 Initialisation

The operator_status() APDU shall be automatically reported at start up by the CICAM and shall contain the
profile information cached in the CICAM which shall be made available immediately. If the CICAM is un-
initialised then the initialised flag shall be "0" to indicate that an immediate search operation is required to

initialise the CICAM.

14.7.4.1.1 Non-profile CICAM

A CICAM that reports profile type zero (0) does not support a separate logical channel list and operates as a
conventional DVB CICAM and is considered to be non-profiled. The Host is expected to understand the
information that is broadcast on the network and either the network is fully DVB conformant or the Host has
been specifically customised to operate with the network, the operator info() APDU provides some information
to the Host about the network environment.

© 2008, 2009, 2011, 2015 Cl Plus LLP

186 Cl Plus Specification v1.3.2 (2015-03)

The CICAM flags are interpreted in an identical way to a profiled CICAM and the CICAM may request a tune
etc. which may be used to acquire information from the network and control the Host. Typically the CICAM
starts in an initialised state as there is no additional information to be propagated to the Host.

14.7.4.1.2 Profiled CICAM

A CICAM that reports profile type one (1) requires Host support for an operator profile and the Host is
expected to create a separate logical channel list for the service operator according to the rules outlined in
Annex N.

The Host shall ideally automatically install the profile on insertion of CICAM and build the logical channel list
with minimal user intervention. The profile and logical channel list shall be persistent in both the CICAM and
the Host and shall not be automatically erased if the CICAM or SmartCard is removed on a temporary basis. It
is suggested that the profile is retained until the user explicitly deletes it or any CI Plus authentication pairing
between the CICAM and the Host is discarded.

The CICAM shall retain the profile information in persistent memory (including the CICAM NIT or information
to rebuild the CICAM NIT). The CICAM shall ensure that the caching update mechanism is robust and is able
to support a power-off operation at any stage in the writing operation without losing any existing cached
information until the new information has been completely written. This prevents the profile information from
being lost and randomly reverting to an un-initialised state.

14.74.1.3 Profile Discovery

A profiled CICAM is likely to start in an un-initialised state and the Host is required to determine the delivery
system of the CICAM. This may be determined by querying the CICAM as shown in Figure 14.14.

CICAM Host
operator_status (1) | Host is not required to process the operator_status
At start up then the CICAM sends the current » immediately. The Host shall determine if this is a
profile status used by the CICAM. profile that is already installed or process any new
profile when it is ready. This may be used as a trigger
to automatically install the CICAM profile
P operator_info_req(2) Host reque§ts the quasi-stati; irlformation about the)
CICAM returns the profile information to the N operator_info(3) netyvork using the operator_info_req() APDU. This is
Host on request. — > valid for type 0 and type 1 profiles.

operator_search_start(4)

gl
CICAM performs the profile search and tunes l operator_tune (5) o Host initiates a search if the operator status is un-
around. Once the search is complete then the NIT » initialised.
profile is updated. The CICAM shall keep the user < operator_tune_status(6) The Host tunes on behalf of the CICAM.
informed of progress using the Application MMI e _ _op_er_atgrztu_ne_(sl ————)) .
or high level MMI of the CICAM when the Host operator_tune_status(6) The CICAM has finished searc}nng when the
is in an interactive mode. = -—-——— e S e - - = - - operator_search_status APDU is returned.
operator_search_status (7) o
" it 8 ” The Host requests the CICAM NIT and constructs the
The CICAM returns the latest CICAM NIT when < operator_ni _.req() channel list using this table information for type=1
requested by the Host. operator_nit (9) > If the process is successful then the service operator

profile is installed as a separate sandbox logical
channel list with the text label specified in the
operator status APDU.

Figure 14.14: Profile Discovery APDU sequence

The CICAM reports the current profile on opening the session.

The Host queries the CICAM for the general profile information for the service operator and the

network using a operator_info_req() APDU.

3. The CICAM reports the profile information to the Host in the operator info() APDU. The version
number of the operator information is maintained in the operator status() APDU and the Host may
detect a change in the information from the version number without interrogating the Operator Profile
information again.

4. The Host installs the profile, if the profile is uninitialised then a profile search is initiated to search for
the profile information using the operator _search_start () APDU.

5. Onreceiving an operator_search_start () APDU then the CICAM shall direct the Host tuning
operations and display the on-going search status via the CICAM MMI. The CICAM may request zero
or more tune operations to the required multiplex(es) with a operator_tune() APDU.

6. On receipt of a operator tune() then the Host tunes to the required multiplex and acknowledges the

tune with a operator tune status() APDU that contains the status of the tune. If the CICAM requires

the Host to find the next digital location then the CICAM may issue another operator_tune() APDU

N =

© 2008, 2009, 2011, 2015 Cl Plus LLP

187 Cl Plus Specification v1.3.2 (2015-03)

which performs a channel search using the locations described in the APDU and is acknowledged by
the Host with a operator tune_status() APDU when the search completes.

7. Once the CICAM has completed the profile search then any NIT is internally updated on the CICAM
with the new network information and the NIT version is updated. The operator_search_status() APDU
is sent and shall include the status and any new NIT version number. The error_flag is set appropriately
if the system_descriptor of the search is not supported. Any Application or high level MMI shall be
removed before the operator_search_status() APDU is sent.

8. Ifthe profile search has no errors then the Host may install the profile based on the CICAM NIT
information, the Host shall request the NIT using the operator_nit_req() APDU.

9. The CICAM shall return the latest version of the NIT to the Host with the operator nit() APDU.

If the profile cannot be found by the CICAM then the initialised flag and error flag shall be set in any
operator_status_body() indicating that the Operator Profile is in error. The error_flag for a failed profile search
shall be persistent. The error flag shall only be cleared by a Host initiated operator search or reset or by some
other external interaction with the CICAM e.g. MMI option to reset or CICAM detection that it has been
unplugged and re-plugged.

147414 Start-up Considerations

The Operator Profile session shall be opened within 30 seconds of power-on of the CICAM to afford the Host
an opportunity to include the Operator Profile in any installation procedure. A profiled CICAM should advertise
the presence of an Operator Profile in the CIS information to inform the Host that an Operator Profile is present
and the Host may then wait for the CICAM to create the Operator Profile resource before proceeding with any
installation process.

On first installation then it is likely that the Operator Profile resource should be processed before the Host and
CICAM are able to connect to the network and subsequently acquire the time and date. The CICAM shall ensure
that any Content Control resource authentication procedure is only initiated once the CICAM and Host have
both acquired a valid date and time. i.e. the Operator Profile resource is processed before any Content Control
authentication is performed.

14.7.4.2 Moving between profiles

The Host is required to inform the CICAM when it enters and leaves a profile type 1 environment. A Host
enters a operator environment by sending a operator_status_req() APDU, the CICAM may assume that the Host
is actively running in the profile until a operator_exit() APDU is received. On entering the operator profile
environment then the following behaviour is required:

e The CICAM shall actively maintain the operator profile environment.

e The CICAM may assume that transport streams passing through the CICAM are part of the operator
profile environment.

e The Host shall maintain the profile environment using the operator_status() APDU.

The Host may leave an operator profile for another profile or any of its private channel lists. When the Host
leaves the profile then the following behaviour is required:

e The CICAM shall not assume that transport streams passing through the CICAM are part of the
operator profile environment.

e The CICAM shall continue to handle the ca_pmt() and descramble content when it is able to.

e The Host is not required to maintain the profile environment or process the operator_status() APDU.

The Host may subsequently return to the operator profile environment again by issuing a operator_status_req()
APDU. The APDU sequence is depicted in Figure 14.15.

© 2008, 2009, 2011, 2015 Cl Plus LLP

188 Cl Plus Specification v1.3.2 (2015-03)

CICAM Host

At start-up then the operator_status() APDU is operator_status (1) o
dispatched. { > Host notifies the user of the entitlement change.

P operator_status_req(2)
The operator profile is activated on a - operator_status (3) o The Host moves to the operator profile environment
operator_status_req(). = »
CICAM understands that not all transport streams P operator_exit(4) Host informs the CICAM that it has left the operator
passing through the CICAM belong to the < environment.
onerator environment

P operator_status_req(5) Host informs: the CICAM that it has entered the
The operator profile is activated on a - operator_status (6) operator environment.
operator_status_req(). = >

Figure 14.15: Entering and Leaving a profiled environment

The behaviour of the system is defined as follows:

1. The CICAM reports the operator_status() APDU automatically at start-up.

The Host moves into the operator profile environment and sends a operator_status_req() APDU.

3. The CICAM is operating within the operator profiled environment and acknowledges the Host with a
operator_status() APDU.

4. The Host leaves the operator profile environment, by sending a operator_exit() APDU, and may be
operating in a different operator profile or with a different delivery system using a different channel
list.

5. The Host moves back to the operator profiled environment and sends a operator_status_req() APDU.

6. The CICAM is again operating within the operator profiled environment and acknowledges the Host
with a operator_status() APDU.

14.7.4.3 Entittement Change

The entitlement_change flag of the operator_status _body() is set when the CAS entitlement has changed. A
change in entitlement may be signalled as a result of the user updating their subscription. A change in
subscription may make more/less services accessible and may require an update to the Host channel list. On
detecting a change in entitlement then the Host updates the channel list where necessary and then acknowledges
the CICAM that the entitlement has been processed when the CICAM shall clear the entitlement change flag.
The entitlement_change flag shall not be used to simply indicate a change in the service line-up. A change in
the service line-up is indicated by a change in the nit_version field of the operator_status_body() which the Host
shall process in the same manner as a NIT table update in a conventional broadcast network.

The entitlement_change flag shall be processed by the Host as quickly as practically possible so to install any
new services corresponding to the entitlement change. This may require notifying the user that an entitlement

change has occurred and then immediately passing tuning control to the CICAM to acquire the service line up
changes form the network.

The flag states of the operator_status body() indicate how the Host should process the entitlement change.
14.7.4.3.1 Simple entitlement change

In the simple case then the entitlements are updated, which may entail a change to the CICAM NIT table. The
Host updates the channel list with any CICAM NIT change and then acknowledges the CICAM that the
entitlement has been processed. The APDU exchange is shown in Figure 14.16.

CICAM Host
CICAM detects entitlement change and re- operator_status (1)
evaluates the CICAM NIT if necessary and then = >
reports the change to the Host. { .
L operator_nit_req(2)
CICAM sends the latest version of the NIT to the - operator_nit (3) o Host requests the CICAM NIT and updates the
Host when requested. (Profiled CICAMs only) = » channel list. (Profiled CICAMs only)
CICAM removes the entitlement change flag operator_entitlement_ack(4) Host informs the CICAM that the entitlement change
when the Host has acknowledged it. < - — has been processed and the channel list has been
operator_status(5) g updated
> X

Figure 14.16: Simple Entitlement Change APDU sequence

The behaviour of the system is described as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

189

1. The CICAM detects a change in the entitlement rights and updates the NIT if necessary. The change is
reported in an operator_status() APDU with the entitlement change flag field set. The
refresh_request flag may be unset indicating that the CICAM has already captured the entitlement
change and the NIT is ready, no search is required.

2. The CICAM NIT of a profiled CICAM may have changed, indicated by a version number update, and
if so the Host prepares to update the channel list by requesting the new CICAM NIT from the CICAM
(this may require permission from the user to process the entitlement change immediately).

3. A profiled CICAM then sends the new CICAM NIT to the Host. The Host processes the CICAM NIT
and updates the channel list.

4. The Host processes the entitlement change and acknowledges the CICAM by sending a
operator_entitlement_ack().

5. Onreceiving a operator_entitlement ack() to clear the entitlement request then the CICAM clears the
entitlement change flag and acknowledges the change of state with a new operator_status() APDU.

Note that the CICAM may not require an update to the CICAM NIT and the CICAM may signal an entitlement
change without updating the CICAM NIT version.

14.7.4.3.2 Entitlement change where a search is required

An entitlement change may sometimes require the CICAM to search the network to acquire a new service line
up change, in this case the CICAM may signal the entitlement change with a refresh request together in the
same APDU i.c. entitlement _change flag=1 and refresh_request flag=1. If the tuning operation is urgent then
the CICAM may signal the refresh request flag=2 indicating that the entitlement cannot be processed until the
Host has issued a search. The APDU exchange is shown in Figure 14.17.

Cl Plus Specification v1.3.2 (2015-03)

CICAM Host
operator_status (1) .
CICAM detects entitlement change and re- ~ Host notifies the user of the entitlement change and
evaluates the CICAM NIT if necessary and then confirms with the user that they wish to process the
reports the change to the Host. entitlement change immediately.
P operator_search_start(2)
< = = Host requests a profile search.
operator_tune(3) -
CICAM performs the profile search and tunes P operator_tune_status(4) w Host tunes on behalf of the CICAM.
am‘ﬁld‘. Oncg Ilhzsrerz;:'chcllscczﬂpl;t;tllzen lh; NIT D operator_tune (3) The CICAM has finished searching when the search
profrie 1s updated. “he shallkeep theuser] = | = = = = = = = = == = = = = = = = P status is returned. The entitlement change flag shall

still be set.

informed of progress using the Application or >

high level MMI in a Host attended mode. operator_search_status (5)

If profile_type is not 0 the Host requests any new

operator_nit_req(6)
CICAM NIT and updates the channel list.

operator_nit (7)

A profiled CICAM then returns the cached
CICAM NIT to the Host on request.

L
ol

Host acknowledges the entitlement change once the

operator_entitlement_ack(8)
channel list has been updated.

operator_status(9)

A

CICAM removes the entitlement change flag.

Figure 14.17: Search Entitlement Change APDU sequence

The behaviour of the system is described as follows:

1. The CICAM detects the change in the entitlement rights but is not able to determine if the channel list
is altered by the change without scanning the network. The change is reported in an operator_status()
APDU and the entitlement_pending_flag is set and the refresh_request flag is set to 1 or 2 depending
on the urgency of a network search.

2. The Host informs the user about the entitlement change, if the refresh request flag is set to 1 then the
user may be given an option to process the entitlement change immediately where the
refresh_request flag is 2 then the requirement to interrogate the network is more urgent then the user
may be not given any options to install later. When the Host is ready to process the entitlement change
a search is initiated to start the network scan and a operator search_start() APDU is sent and control
effectively moves to the CICAM.

3. Onreceiving a operator_search_start() then the CICAM may request one or more tune operations to the
required multiplex(es) with a operator tune () APDU. In a Host attended mode then the CICAM shall
keep the user informed of progress using the Application or high level MMI.

4. Onreceipt of a operator_tune () then the Host tunes to the required multiplex and acknowledges the
tune with a operator tune status() APDU that contains the status of the tune request.

© 2008, 2009, 2011, 2015 Cl Plus LLP

190 Cl Plus Specification v1.3.2 (2015-03)

5. Once the CICAM has completed the search then any cached NIT is updated with the new network
information, the version number updated and a operator_search_status() APDU is sent to the Host. The
entitlement change flag field shall remain set as the entitlement change has not been acknowledged by
the Host. Any Application or high level MMI shall be removed prior to sending the search status.

6. On receipt of the operator_search_status() APDU the Host determines if the NIT has changed using the
nit_version field. If the NIT version has been updated then the Host may request the new CICAM NIT
using the operator nit req() APDU.

7. The CICAM returns the updated NIT to the Host with the operator_nit() APDU and the Host updates
the channel list if the CICAM NIT has changed.

8. Once the channel list has been updated then the entitlement change is acknowledged to the CICAM by
sending a operator_entitlement _ack() APDU.

9. On receiving a operator_entitlement ack() to clear the entitlement request then the CICAM clears the
entitlement change flag and acknowledges the change of state with a new operator status() APDU.

14.7.4.4 Tuning and Scanning

There are a number of different tuning and scanning scenarios which are required by the operator profile, all
tuning scenarios are explicitly initiated by the Host using the operator_search_start() APDU. The Host may
choose to initiate a tuning sequence as a result of:

e A tune explicitly solicited by the CICAM with the refresh _request flag in the operator_status_body()
of a operator profile APDU.

e An unsolicited search by the Host, typically as part of the Host receiver network maintenance
performed in a stand-by state etc.

It is highly recommended that the Host provides the CICAM with an opportunity to update itself from the
network on at least a weekly basis as part of any Host initiated maintenance cycle by initiating an unsolicited
search operation. The CICAM may communicate a recommended date and time to perform a background scan
using a timed refresh request.

The CICAM has the capability to notify the Host that it requires a tune using the refresh request flag in the
operator_status_body() component of an APDU. The urgency of the tune request is determined from the state of
this field.

e Advanced warning (1) informs the Host that a tune is required in the near future. This notification
should not affect the user and shall ideally be serviced at the next opportune moment of the Host i.e. a
back ground scan when the user enters stand-by etc.

o Urgent request (2) informs the Host that an immediate tune is required. This is only signalled by the
CICAM in cases where some parts of the network or content, in the case of type 0 profiles, are not
accessible until the tune is performed. The Host is strongly recommended to initiate an immediate tune
after confirmation from the user.

e Timed request (3) informs the Host that a scheduled search is requested at a time and date in the future.
The Host shall perform the scheduled search if it is able to (i.e. is not powered off). If the search has
been missed then the CICAM shall not unnecessarily force the Host to perform an immediate scan but
ideally reschedule for a later date. This prevents unnecessary interruptions for the user.

A tune operation is considered more urgent if the entitlement_pending_flag is set in conjunction with the
refresh request flag as this indicates that the entitlement rights have been updated and a tune operation is
required to re-evaluate that entitlement. The Host may, in this case, choose to inform the user of an entitlement
change and request permission to initiate an immediate search to re-evaluate the network.

The refresh request flag may be set and cleared as part of the normal running of the system (i.e. when the user
is watching a service) as information is received from the current multiplex which may cause a pending request
to be added or removed if information updates have been received from the network.

14.7.4.4 1 Profile Search

A profile search APDU exchange is shown in Figure 14.18.

© 2008, 2009, 2011, 2015 Cl Plus LLP

191 Cl Plus Specification v1.3.2 (2015-03)

CICAM Host
operator_status (1) g
Optionally the CICAM may request a tune ~ The Host may initiate a profile search based on a
operation by setting the refresh_request_flag() and solicited CICAM operator_status()
sending a operator_status() APDU to the Host. refresh_request_flag or unsolicited as part of the Host
< operator_search_start(2) routine maintenance.
CICAM receives the profile search request and hl operator_tune (3) o
may tune around. Once the search is complete » Host tunes on behalf of the CICAM.
then the NIT is optionally updated and any refresh < operator_tune_status(4) . o
request is removed. The CICAM shall keep the operator_tune (3) The CICAM has finished searching when the search
user informed of the search progress in a Host === _o-pe-razo; Em-e -St;tlTS(z)_ e status is retu}'ned. The entitlement change flag may be
attended mode using the Application or high level {-=-=-=-=== e e m - - - set if the entitlement has changed. The refresh request
MM operator_search_status (5) | flag shall be updated.
»
A profiled CICAM then sends the latest CICAM P operator_nit_req (6) If profile_type is not 0 then the Host requests the
NIT on request from the Host. < s latest CICAM NIT if the version has changed which
operator_nit (7) o . . .
> may result in a update to the channel list as a result of
any NIT change.

Figure 14.18: Profile search APDU sequence
The behaviour of the system is described as follows:

1. The CICAM optionally detects the change in the network that requires it to perform a search operation.
The priority of the search request is determined and the refresh _request flag is set to the appropriate
value for that search priority. The change is reported in an operator_status() APDU and the
refresh_request flag is set to a non-zero value depending on the urgency of a tune.

2. When the Host is ready to process the profile search then the operator search start() APDU is sent to
the CICAM and control of the tuner and MMI is effectively passed to the CICAM.

3. Onreceiving a operator_search_start() with a profile search then the CICAM requests one or more tune
operations to the required multiplex(es) with a operator_tune () APDU. The progress of the search shall
be conveyed to the user using the Application or high level MMI where the Host is attended.

4. On receipt of a operator_tune () APDU then the Host tunes to the required multiplex and acknowledges
the tune with a operator_tune_status() APDU that contains the status of the tune.

5. Once the CICAM has completed the profile search then any NIT is updated within the CICAM with the
new network information, the CICAM NIT version is updated and a operator_search_status() APDU is
sent to the Host. The refresh request flag is reset. Any Application or high level MMI shall be
removed.

6. If the NIT version has changed in the operator_status_body() then the Host may request the new
CICAM NIT table with the operator_nit req() APDU.

7. On receipt of the operator_nit_req() APDU then the CICAM returns the latest cached CICAM NIT
sections to the Host in a operator_nit() APDU. The Host may use the CICAM NIT to update the
channel list.

14.7.4.4.2 Tuning Requests

The CICAM may only initiate a tuning request operator_tune () APDU in response to the Host
operator_search_start() APDU. Once the search has been initiated then the CICAM is permitted to initiate
multiple tuning requests. The tune operation may:

e Move to an explicit delivery system location.
e Request the Host to perform a scanning tune from based on a list of delivery system locations.

The explicit tune requires the Host to move the tuner to the location specified by the
delivery system descriptor, the Host is not required to select any service on this multiplex. Multiple tuning
locations may be specified and the Host shall process the locations sequentially in the order specified in the
APDU until a valid signal is found when it completes the tune request.

Within the context of a CICAM search then the Host shall allow the CICAM to use other APDUs to acquire
information including, but not exclusively, the Low Speed Communications resource. The CICAM shall ensure
that other APDUs opened in the context of the search are closed before the search completes. The CICAM is not
permitted to use the software upgrade APDU in the context of a search.

The operator tune() APDU command may also be used by the CICAM for service discovery and requires the
Host to scan the network sequentially using the delivery system descriptors to find a location that carries a
signal. The Host command completes when the next carrier is found or the list is exhausted. The Host returns

© 2008, 2009, 2011, 2015 Cl Plus LLP

192 Cl Plus Specification v1.3.2 (2015-03)

information about the tuned location to the CICAM. The information returned by the Host in any delivery
system descriptor definition shall be accurate as this information may be used to construct the CICAM NIT.

The Host completes a tuning request by sending a operator_tune_status() APDU to the CICAM which contains
information on the status of the tune operation. The Host shall return a delivery system_descriptor which shall
be fully and accurately populated describing the currently tuned location, some values of the

system_delivery descriptor may be derived from the tuner parameter signalling information carried in the actual
signal. The signal strength and quality information from the network interface shall be included in the APDU
expressed as a percentage relative values which should not be interpreted literally by the CICAM. The Host
shall not report non-viable signals to the CICAM as being present, the Host may report a frequency location
where a data carrier is detected by the network interface but the signal does not contain a valid transport stream
i.e. the Host is not required to determine that the signal actually carries a valid transport stream.

During a tuning operation then the CICAM shall be robust against data fluctuations and noise on the transport
stream bus. The Host may choose to, but is not required to, disconnect the transport stream interface for the
duration of a tune operation to further increase the robustness of the system. Where the transport stream is
disconnected by the Host for the duration of the tune then it shall be reconnected before issuing the
operator_tune_status() APDU to the CICAM.

The CICAM shall keep the user informed of the search progress in a Host attended mode using the MMI, ideally
the CICAM shall present an option to cancel in the MMI. If the user chooses to cancel the scan, the CICAM
shall cancel the tune and send an operator_search_status() to the Host with error_flag set to 0x3.

The Host may cancel the tune by sending a operator_search_cancel(), the CICAM shall cancel the tune and send
an operator_search_status() to the Host with the error_flag set to 0x3.

147443 CAM Upgrade Consideration

A CICAM firmware upgrade APDU sequence shall not be initiated in the middle of a operator_search_start()
sequence until the CICAM returns the final operator search_status() acknowledgement.

Where the Host initiates a periodical maintenance search in a stand-by mode, where the Host is unattended, then
the Host is required to provide the CICAM with a window of opportunity to make further Host requests. A grace
period of 30s after receipt of the operator_search_status() acknowledgement shall be provided by the Host
allowing the CICAM sufficient time to initiate a firmware upgrade APDU request before the Host returns to any
deep stand-by mode.

14.7.5 Operator Profile Resource

The Operator Profile resource enables the CICAM to coordinate the profile management with the Host. The
messages allow the CICAM to acquire and maintain the operator profile information with some agreement from
the Host device. The Host is informed of changes to the operator environment including changes in the service
line up and is advised when the CICAM needs to search the network to acquire the very latest information. The
CICAM is provided with the facility to tune and scan a network to acquire network information which is
facilitated by the Host.

The Host is only required to support a single Operator Profile session per CICAM. Where a CICAM has a
capability to support a multitude of different profiles then the CICAM shall determine which profile to map to
the session. The exact mechanism by which the CICAM determines the active profile to map is unspecified;
ideally the CICAM shall determine this automatically using the broadcast information, entitlement rights etc.

14.7.51 Operator Profile Resource APDUs

The CICAM opens the operator_profile resource immediately from start up and the resource remains open in
order to deliver any subsequent changes to the profile information.

© 2008, 2009, 2011, 2015 Cl Plus LLP

193 Cl Plus Specification v1.3.2 (2015-03)

Table 14.35: Operator Profile APDUs

Operator Profile APDU Direction Description

operator status req HOST - CICAM | Enter profile and/or request current profile
information.

operator status CICAM > HOST | The current profile status information.

operator nit req HOST > CICAM | Request the current CICAM NIT sections.

operator nit CICAM > HOST | The current CICAM NIT sections.

operator info req HOST > CICAM | Request the Operator information

operator info CICAM > HOST | The Operator information

operator search start HOST > CICAM | Host permission to initiate a network search.

operator search cancel HOST > CICAM | Cancel the current network search.

operator search status CICAM > HOST | CICAM notification that the search has completed.

operator exit HOST - CICAM | The Host has left the service operator profile.

operator tune CICAM > HOST | Request to tune to a specific multiplex location.

operator tune status HOST - CICAM | Host tune request has completed.

operator_entitlement_ack | HOST - CICAM | Confirmation that entittement change has been
enacted.

14.7.5.2 operator_status_req APDU

The Host sends this APDU to the CICAM when entering the service operator profile and to query the current
operator profile status. The CICAM replies with a operator_status() APDU. When the CICAM receives the
operator_status_req() then it may assume that the Host is operating in the operator profile context until such
time that a operator_exit() APDU is received when no further asynchronous operator profile APDU updates may
be reported to the Host until such time that the Host enters the profile again with a operator_status_req() APDU.

Table 14.36: operator_status_req APDU syntax

Syntax No. of bits | Mnemonic
operator status req() {
operator status req tag 24 uimsbf

length field()

}

Where the fields are defined as follows:

operator_status_req_tag: See Table L.1 in Annex L.

14.7.5.3 operator_status APDU

This APDU is sent by the CICAM to inform the Host about the CICAMs current operator profile settings. It is
sent in response to a operator_status_req() or operator_entitlement_ack() APDUs from the Host. The CICAM
also sends this APDU asynchronously on opening of the session or when there is a change in the
operator_status_body() that must be enacted by the Host.

The operator_status_body() should be considered to be quasi-static and contains information which represents
the operational state of the operator profile session. The CICAM shall only send an operator status APDU
when the operational state of the session changes.

On opening the Operator Profile resource the CICAM sends one operator_status () APDU to the Host conveying
the current profile setting.

Table 14.37: operator_status APDU syntax

Syntax No. of bits | Mnemonic
operator status() {
operator status tag 24 uimsbf

length field()
operator status body ()

}

© 2008, 2009, 2011, 2015 Cl Plus LLP

194 Cl Plus Specification v1.3.2 (2015-03)

Where the operator_status body() is defined as defined in Table 14.38. The operator_status_body() conveys
information about the state of the CA system in the context of CA services which are controlled by the CICAM.
The operator_status_body() contains flags and values that may cause the Host to perform some action. As a
general rule the Host and CICAM shall be sympathetic to the type of the currently selected service as follows:

e A Free-to-air service

o The CICAM shall not change the refresh request flag setting to urgent.

o The Host shall not unnecessarily interrupt or prevent the viewer from viewing the current
service. The Host shall process any urgent or expired timed request at the earliest opportunity
following the event when the user is not unnecessarily interrupted from viewing the current
service. The Host may choose to inform the user that the CA System requires some action and
allow the user to decide if this operation may be undertaken immediately or shall be deferred.
Any action, urgent or otherwise, may be deferred to prevent viewer interruption e.g. deferred
until the next channel change.

e A CA Service not owned by the operator profile CICAM — As Free-to-air service.
e A CA Service owned by the operator profile CICAM

o The CICAM may change the resfresh_request flag to any setting including urgent.

o The Host shall action the change of the refresh request_flag to urgent immediately which is
likely to interrupt the viewing of the current service. An outstanding urgent
refresh_request flag setting shall be actioned immediately on selection of the CA service.

Table 14.38: operator_status_body syntax

Syntax No. of bits | Mnemonic
operator status body () {
info version 3 uimsbf
nit version 5 uimsbf
profile type 2 uimsbf
initialised flag 1 bslbf
entitlement change flag 1 bslbf
entitlement valid flag 1 bslbf
reserved 1 bslbf
refresh request flag 2 uimsbf
error flag 4 uimsbf
delivery system hint 4 bslbf
refresh request date 16 uimsbf
refresh request time 8 uimsbf
}

Where the fields are defined as follows:
operator_status_tag: See Table L.1 in Annex L.

info_version: This 3-bit field is an identifier that uniquely identifies the version of the profile information
contained in the operator_info() APDU. The profile information version shall be incremented by 1, wrapping to
0, when the profile information changes and the Host is required to re-evaluate the profile container. The profile
information version shall only be incremented on gross profile changes including a profile name change, profile
type change etc. This field shall not be incremented on a nit_version change or any changes in the status flags
e.g. initialised flag, refresh request flag, etc.

nit_version: This 5-bit field is only interpreted in the context of a non-zero profile and is set to the current
version number of the NIT delivered by the CICAM. The Host shall monitor this field and shall respond to any
change in the same manner as a NIT table update in a conventional broadcast network.

When profile type is 0 then the field shall be zero and shall not be interpreted by the Host.

profile_type: This 2-bit field identifies the type of CICAM profile, the CICAM profiles are identified in Table
14.39.

© 2008, 2009, 2011, 2015 Cl Plus LLP

195 Cl Plus Specification v1.3.2 (2015-03)

Table 14.39: profile_type values

Value Description
0 The CICAM does not support any profiles and descrambles elementary streams as per DVB CI.
1 Profile is a private network that uses a CICAM NIT and has a private profile logical channel list.
2-3 Reserved for future use.

initialised_flag: This 1-bit field contains the status of the profile initialisation for the specified profile. A value
of "0" indicates that the profile has not been determined by the CICAM and the Host shall initiate an
operator_search_start(). A value of "1" indicates that the profile has been determined by the CICAM. When this
flag is clear other flags of the operator status body shall not be interpreted by the Host.

entitlement_change_flag: This 1-bit field shall be set when an entitlement change has occurred which has not
been acknowledged by the Host. A value of "0", the default, indicates that there are no entitlement changes
pending, a value of "1" indicates that an unacknowledged entitlement change is pending.

entitlement_valid_flag: This 1-bit field shall be set when the entitlement is valid, the field is provided for
information only. A value of "1" indicates that entitlement rights have been gained and are valid. A value of "0"
indicates that there are no entitlement rights.

refresh_request_flag: This 2-bit field shall be set when the CICAM requires a tuning operation to visit another
multiplex in order to acquire further information about the profile or to check entitlement rights etc. The
refresh request flag shall be set to zero when the CICAM no longer requires a tuning operation.

The CICAM may only request a single refresh request which may be deferred, urgent or scheduled. The Host is
required to action the last received refresh request discarding any previous request.

Table 14.40: refresh_request_flag values

Value Description
0 The default state, indicates that the CICAM does not need to interrogate the network and is up to
date.
1 Advance warning to the Host that something in the network has changed and the CICAM

requires the Host to tune in order to perform an update check when convenient. The request
shall be deferred until the Host is ready to do the search without interrupting the user.

2 Urgent request from the CICAM that the network needs to be interrogated in order to acquire
information. An urgent request shall only be notified where the CICAM does not have full
functional capability until the network has been interrogated. The Host shall initiate a profile
search as soon as possible.

A Host on a Free-to-air or CA service not associated with the CICAM that owns the operator
profile is not required to process this flag immediately when processing the request will interrupt
or prevent the user from viewing the current service.

3 Scheduled refresh request from the CICAM that the network needs to be interrogated at a
specific update time. The Host shall initiate a profile search at or after the specified time. This
may require the Host to automatically wake from standby at the specified time to initiate the
search. If the search slot is missed, for example if the receiver is powered off at the mains or the
user is viewing a service at the scheduled time, then the Host shall initiate an operator search
request as soon as possible after the event. Where there is an outstanding expired schedule
refresh request then the CICAM shall wait for the Host to initiate an operator search before
rescheduling for a later time.

The scheduled refresh requires that the Host shall invoke the operator search on or as soon as
possible after the event has expired. When the operator profile search is invoked by the Host
then the CICAM may perform the search and/or reschedule another search for a later time/date
by updating the refresh request fields.

The state of the refresh_request flag (and time/date) shall be updated by the CICAM to reflect the next refresh
state required by the CICAM on completion of any operator search operation. The Host is notified of the new
refresh request flag setting in addition to the other flags of the operator_status body() in the
operator_search_status() APDU.

© 2008, 2009, 2011, 2015 Cl Plus LLP

196 Cl Plus Specification v1.3.2 (2015-03)

error_flag: This 4-bit field contains the status of the current active profile. The bits of the field shall be set
according to Table 14.41.

Table 14.41: error_flag values

Value Description
0 There are no errors.
1 Profile error. The CICAM has encountered an error and cannot acquire the profile, no profile
information is cached.
2 Unsupported delivery system. The CICAM does not support the delivery system descriptor(s)
reported by the Host.
3 Cancelled. The operator search has been interrupted and is incomplete.
4-15 Reserved for future use.

delivery_system_hint: This 4-bit field contains a hint of the delivery systems supported by the Operator Profile
and provides the Host with an assessment of the CICAM profile. This field shall be interpreted as a bitmask and
shall be set according to Table 14.42. This field shall not be set to zero.

Table 14.42: delivery_system_hint values

Bit Description

0b0001 This is a cable network and may be DVB-C and/or DVB-C2

0b0010 This is a satellite network and may be DVB-S and/or DVB-S2

0b0100 This is a terrestrial network and may be DVB-T and/or DVB-T2

0b1000 Reserved for future use.

The CICAM may support multiple delivery systems which shall result in multiple bits of this field being set. If
the Host does not support any of the reported delivery systems then the profile may be ignored by the Host.

refresh_request_date: This 16-bit field indicates the date of the next scheduled refresh cycle requested by the
CICAM. The date is specified as UTC Modified Julian Date (MJD) as defined in EN 300 468 [10], Annex C. A
value of 0x0000 indicates that no schedule refresh is requested.

refresh_request_time: This 8-bit field indicates the time of a scheduled refresh cycle requested by the CICAM.
The time is specified in UTC as an integer value in 6 minute intervals from midnight and is valid in the range
0..239. This field is only interpreted when the refresh_request date is non-zero. When the refresh_request flag
is zero then this field shall also be zero.
EXAMPLE: 0 00:00 — Midnight

44 04:24 — 24 minutes past 4 in the morning.

239 23:54 — 6 minutes to midnight.

14.7.5.4 operator_nit_req APDU

The Host sends this APDU to the CICAM to query the current Network Information Table (NIT). The CICAM
replies with an operator _nit APDU returning the CICAM NIT to the Host.

Table 14.43: operator_nit_req APDU syntax

Syntax No. of bits | Mnemonic
operator_nit_req() {
operator nit req tag 24 uimsbf

length field()

}

Where the fields are defined as follows:

operator_nit_req_tag: See Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 Cl Plus LLP

197 Cl Plus Specification v1.3.2 (2015-03)

14.7.5.5 operator_nit APDU

The CICAM sends this APDU to the Host in response to a operator nit req() APDU. The ADPU, if successful,
contains the latest CICAM NIT sections.

Table 14.44: operator_nit APDU syntax

Syntax No. of bits | Mnemonic
operator nit () {
operator nit tag 24 uimsbf
length field()
nit loop length 16 uimsbf
for (i=0; 1i<N; i++) {
nit section byte 8 uimsbf
}
}

Where the fields are defined as follows:
operator_nit_tag: See Table L.1 in Annex L.

nit_loop_length: This 16-bit field specifies the length in bytes of the following NIT section field containing the
CICAM NIT sections. The field may be zero (0) if there is no NIT.

nit_section_byte: A loop of one or more Network Information Table (NIT) sections that fully describe the
network. A NIT shall only be provided where the broadcast Network and/or Bouquet information is to be
ignored and is prepared by the CICAM. The NIT sections shall respect the broadcast signalling rules and shall
be a maximum size of 1024 bytes, shall appear in ascending section number order and shall each contain a valid
CRC-32. The NIT first loop may be split over multiple sections and shall adhere to the DVB splitting rules. The
NIT second loop may be split over multiple sections, the sections shall be sequentially numbered sections and
the appropriate delivery system descriptors and private data specifiers shall appear in each section.

When the NIT is returned to the Host then the NIT version shall typically match the version number in the last
reported operator_status() APDU. The NIT version shall only be different when the NIT has been updated and
the CICAM has not yet dispatched the operator_status() APDU containing the latest nit_version information.

The CICAM NIT shall contain all of the information that the Host requires to construct and maintain the logical
channel list of the operator profile. The Host is not required to interrogate the broadcast Service Information (SI)
for construction or maintenance of the profile channel list.

The first loop of the NIT may optionally contain a network name in a network name_descriptor in addition to
CI Plus private descriptors to provide an indication of the broadcast network operation and to assign content text
labels. The first loop may also optionally include other broadcast signalling information such DVB-SSU which
shall be signalled in accordance with the DVB standards.

The second loop of the NIT shall contain system_delivery descriptor(s) accurately specifying the network
location of the multiplex in addition to one or more ciplus_service descriptor(s) describing the text label and
service type of each service to be included in the profiled logical channel list. Services are assigned a logical
channel number and may be hidden.

The Host shall always honour private descriptor scope. The Host is not obliged to interpret any other private
descriptors encountered in any loop of the NIT and shall ignore and skip over any unknown descriptors.

Refer to Annex N for full profile information.
14.7.5.6 operator_info_req APDU

The Host sends this APDU to the CICAM to query the operator information. The CICAM replies with a
operator_info() APDU returning the quasi-static operator information to the Host.

© 2008, 2009, 2011, 2015 Cl Plus LLP

198 Cl Plus Specification v1.3.2 (2015-03)

Table 14.45: operator_info_req APDU syntax

Syntax No. of bits | Mnemonic
operator info req() {
operator info req tag 24 uimsbf

length field()

Where the fields are defined as follows:

operator_info_req_tag: See Table L.1 in Annex L.

14.7.5.7 operator_info APDU

The CICAM sends this APDU to the Host in response to a operator_info req() APDU. The APDU contains
important information for the Host for the correct interpretation and representation of the configuration of the SI
in the multiplexes of the network. It is important that any information provided in the APDU accurately matches
the actual network operation otherwise the behaviour of the Host may be adversely affected. The information in
this APDU shall be considered as quasi-static. The operator_info APDU is only interpreted for profile type 1
and type 0 for DVB-C/C2 networks. The operator_info APDU for type 0 is optionally interpreted for DVB-T/T2
and DVB-S/S2 networks.

Table 14.46: operator_info APDU syntax

Syntax No. of bits | Mnemonic
operator info () {
operator info tag 24 uimsbf
length field()
reserved 4 bslbf
info valid 1 bslbf
info version 3 uimsbf
if (info valid == 1) {
cicam original network id 16 uimsbf
cicam identifier 32 uimsbf
character code table 8 uimsbf
if (character code table == 0x1f) {
encoding type id 8 uimsbf
}
else if (character code table == 0x10) {
second byte value 8 uimsbf
third byte value 8 uimsbf
}
sdt running status trusted 1 uimsbf
eit running status trusted 1 uimsbf
eit present following usage 2 uimsbf
eit schedule usage 3 uimsbf
extended event usage 1 bslbf
sdt other trusted 1 bslbf
eit event trigger 1 bslbf
reserved 6 bslbf
ISO 639 language code 24 bslbf
profile name length 8 uimsbf
for (i=0; i< profile name length; i++) {
profile name byte; 8 uimsbf

}

Where the fields are defined as follows:
operator_info_tag: See Table L.1 in Annex L.

info_valid: this 1-bit field, when set to "1", indicates that the operator information is present. This bit shall only
be set to "1" when the operator information accurately reflects the contents of the broadcast network.

© 2008, 2009, 2011, 2015 Cl Plus LLP

199 Cl Plus Specification v1.3.2 (2015-03)

info_version: This 3-bit field is an identifier that uniquely identifies the version of the profile information
contained within this APDU. The profile information version shall be incremented by 1, wrapping to 0, when
the profile information changes and the Host is required to re-evaluate the profile container. The profile
information version shall only be incremented on gross profile changes including a profile_name change,
profile type change etc.

cicam_original_network _id: This 16-bit field unambiguously identifies the original network id identity of the
service operator according to the allocations found in ETSI TS 101 162 [32]. This may differ from the
original network id reported in the network due to the historical evolution of the network.

cicam_identifier: This 32-bit field identifies a particular hardware instance of the CICAM. The
cicam_identifier shall be unique enough to be used in conjunction with the CICAM_original network id to link
a CICAM with an operator profile. For example, the value may be constructed using any of the following:

e hash of the CICAM ID

e hash of the serial number of the CICAM device

e hash of the serial number field of the CICAM device certificate
e value determined by the CICAM manufacturer

The chances of two CICAMs with the same identity should be less than 1 in 10°. The Host may use this field
value in conjunction with other information about the CICAM to associate a profiled channel list to a given
CICAM.

character_code_table: This 8-bit field identifies the default character set encoding that has been used on the
network where the network operator has deviated from the DVB character encoding format defined by ETSI EN
300 468 [10], Annex A. The default is 0x00 representing the DVB Character code table 00 — Latin alphabet
defined by the superset of ISO/IEC 6937. Where a non-zero character code_table value has been specified by
this field then all of the text fields of the network, including text fields in the CI Plus private descriptors of the
NIT, which do not start with non-spacing, non-displayed data shall assume the character code specified by this
and/or its associated fields.

encoding_type id: This 8-bit field qualifies the character code table field when set to Ox1f and indicates the
encoding scheme of the string according to the allocations found in ETSI TS 101 162 [32].

second_byte value: This 8-bit field qualifies the character code table field when set to 0x10 and is the first
byte of the 16-bit value used to specify the character code table as defined in ETSI EN 300 468 [10], Annex A,
Table A .4.

third_byte value: This 8-bit field qualifies the character code_table field when set to 0x10 and is the second
byte of the 16-bit value used to specify the character code table as defined in ETSI EN 300 468 [10], Annex A,
Table A .4.

sdt_running_status_trusted: This 1-bit field is a hint to the Host that identifies if the running status field of
the SDT is accurate, is trustable and may be interpreted by the Host. When the field is set to "1" then the SDT
running status is trusted and the Host may indicate services that are not in a active running state. When the field
is set to "0" then the SDT running status shall be interpreted to be always in a running state. The default Host
operation is "0".

eit_running_status_trusted: This 1-bit field is a hint to the Host that identifies if the running_status field of
the EIT is accurate, is trusted and may be interpreted by the Host. When the field is set to "1" then the EIT
running status is trusted and correctly indicates whether services are in an active running state. When the field is
set to "0" then the Host shall assume that the EIT running status is always in an active running state. The default
Host operation is "0".

eit_present_following_usage: This 2-bit field describes the operating state of the EIT jresenfoliowing EVENt
information in the network according to the values in Table 14.47. The default Host operation is acquisition
from the local multiplex (1).

© 2008, 2009, 2011, 2015 Cl Plus LLP

200 Cl Plus Specification v1.3.2 (2015-03)

Table 14.47: EIT present/following operation values

Value Description
0 The EIT table is not present.
1 The EIT table is present on the network. The EIT table is not fully cross carried and is delivered

on the multiplex containing the service only. The Host is required to scan around the network to
acquire the complete set of EIT information. Networks that are partially cross carried shall use

this setting.

2 The EIT table is present on the network and is fully cross carried. The Host may remain on the
same multiplex to acquire the complete set of EIT information.

3 Reserved for future use.

eit_schedule usage: This 3-bit field describes the operating state of the EIT scheduled event information in the
network according to the values in Table 14.48. The default Host operation is acquisition from the local
multiplex (1) or Barker channel operation (3) when a EPG service linkage is present.

Table 14.48: EIT schedule operation values

Value Description
0 The EIT table is not present.
1 The EIT table is present on the network. The EIT table is not fully cross carried and is delivered

on the multiplex containing the service only. The Host is required to scan around the network to
acquire the complete set of EIT information. Networks that are partially cross carried shall use

this setting.

2 The EIT table is present on the network and is fully cross carried. The Host may remain on the
same multiplex to acquire the complete set of EIT information.

3 The EIT table is present on the network and is available from a barker channel. The Host is

required to move to the Barker channel to acquire a complete set of EIT information. The
location of the barker channel(s) is indicated by a linkage descriptor with linkage_type 0x02
(EPG Service) in the 1 loop of the NIT.

4 The Electronic Programme Guide information is delivered using an application.

5-7 Reserved for future use.

extended_event_usage: This 1-bit field identifies how extended event information is presented and identifies
whether the short event descriptor (0x4d) and extended event descriptor (0x4e) text fields are used mutually
exclusively. The values are defined in Table 14.49.

Table 14.49: EIT extended event semantics values

Value Description
0 The text of the extended_event_descriptor is different from the short_event_descriptor and shall
be concatenated together to provide extended event information.
1 The text of the extended_event_descriptor includes the text of the short_event_descriptor and

the descriptors are used mutually exclusively. The short_event_descriptor is used on its own to
provided a short description only, the extended_event_descriptor is used on its own to provide a
fuller text description.

sdt_other_trusted: This 1-bit field identifies the trusted state of SDT 4, tables in the network. The field shall
be set to "1" when the SDT is fully cross carried across the network and may be trusted by the Host for accurate
state information. The default is "0" and information in SDT .., is trusted only.

eit_event_trigger: This 1-bit field identifies if the EIT, s event transition across the network is accurate enough
to be used for event based recording. When the field is set to "1" then the EIT s event transition (when
ElTf110wing becomes EIT esent) is accurately transitioned and may be used as a trigger to start and stop recording
of an event. When the field is "0" then the EIT s transition is inaccurate and the Host may use another
mechanism to ensure that the whole event is recorded e.g. addition of a Smin lead-in and trailer time before and
after the event signalled time.

EIT, trigging requires that the service operator accurately aligns the broadcast content with the event delivery
and only allows events to transition when the programme content changes. This requires the service operator to

© 2008, 2009, 2011, 2015 Cl Plus LLP

201 Cl Plus Specification v1.3.2 (2015-03)

hold the current event when a programme is running late and to transition to the next event when a programme
is running early.

ISO_639 language code: This 24-bit field identifies the default language code of unlabelled text fields and
elementary stream components. The default language code shall be used by the Host to perform component and
text selection in the absence of any explicit signalling from the service operator. Language codes which are
undefined (including ‘und’ or ‘qaa’) shall be assumed to be the default language code specified by this field.

profile_name_length: This 8-bit field specifies the length in bytes of the following text field describing the
profile name. For profile type=1 this field shall always be non-zero and contain a valid profile name. The field
may be zero (0) if there is no profile name.

profile name_byte: This is a 8-bit field, a string of "char" fields specifies the profile name. Text information is
coded using the character sets and methods defined in ETSI EN 300 468 [10], Annex A. The profile name shall
be used to label a profile and shall be used in preference to any network name found in any broadcast
information or CICAM NIT.

14.7.5.8 operator_search_start APDU

The Host sends this APDU to the CICAM to initiate a profile search sequence. On issuing the APDU then the
Host relinquishes control and passes that control (MMI and tuning) to the CICAM. Within the context of a
search then the CICAM shall control the user interface through the Application or High level MMI and may
take control of the Host tuner in order to move within the Network to acquire profile information. When the
CICAM has completed the search then it shall respond to the Host with a operator_search_status() APDU.

Table 14.50: operator_search_start APDU syntax

Syntax No. of bits | Mnemonic
operator search start() {
operator search start tag 24 uimsbf
length field()
unattended flag 1 bslbf
service type loop length 7 uimsbf
for (i=0; i<N; i++) {
service type 8 uimsbf
}
delivery capability loop length 8 uimsbf
for (i=0; i<N; i++) {
delivery capability byte 8 uimsbf
}
application capability loop length 8 uimsbf
for (i=0; i<N; i++) {
application capability byte; 8 uimsbf
}
}

operator_search_start tag: See Table L.1 in Annex L.

unattended_flag: This 1-bit field specifies whether the Host is operating in an unattended mode (i.e. the user is
not present). A value of "1" indicates that the user is not present and the Host is not able to service any
interactive requests. When the Host is unattended then the CICAM shall refrain from using the High Level or
Application MMI which cannot be serviced. A value of "0" indicates that the user is present and interactive
displays may be utilised by the CICAM.

service_type loop length: This 7-bit field specifies the number of bytes immediately following this field
defining the list of service type’s the Host is able to present.

service_type: This 8-bit field specifies the type of service the Host is able to present. The service type values
are defined by the service type field in the service descriptor described in EN 300 468 [10].

EXAMPLE: 0x0102 MPEG-2 television (0x01) and MPEG-1, Layer-II radio (0x02)
services supported.
0x01020c¢c MPEG-2 television (0x01), MPEG-1, Layer-II radio (0x02) and data

© 2008, 2009, 2011, 2015 Cl Plus LLP

202 Cl Plus Specification v1.3.2 (2015-03)

services identified by the application_capability byte field (0x0c)
supported.

0x0102030al6 MPEG-2 television (0x01), MPEG-1, Layer-II radio (0x02), Teletext
(0x03), Advanced codec radio (0x0a) and Advanced codec SD video
(0x16) services supported

0x0102030a101619 MPEG-2 television (0x01), MPEG-1, Layer-II radio (0x02), Teletext
(0x03), Advanced codec radio (0x0a), MHP (0x10), Advanced codec
SD (0x16) and HD (0x19) video services supported.

delivery_capability_loop_length: This 8-bit field specifies the length in bytes of the delivery capability loop.

delivery_capability_byte: This 8-bit field describes the delivery system(s) which are supported by the Host.
Each delivery system supported by the Host is described by the EN 300 468 [10] delivery system descriptor
descriptor tag, any extended descriptor shall be preceded by the extended descriptor tag (0x7F). A Host may
choose to advertise all supported delivery system descriptors or the delivery system descriptors applicable to the
current operational mode of the Host.

EXAMPLE: 0x43 DVB-S. A Host with a satellite tuner only.
0x4379 DVB-S and DVB-S2. A Host with a satellite tuner supporting S and S2.

0x5a7f£0444 DVB-T, DVB-T2 and DVB-C. A Host with a multi-functional hybrid
terrestrial and cable tuner.

application_capability loop_length: This 8-bit field specifies the length in bytes of the application capability
loop.

application_capability byte: This 8-bit field describes zero or more applications that are supported by the
Host. Each application natively supported by the Host is described by ETSI TS 101 162 [32] data_broadcast id
value of 16-bits, multiple application environments are advertised by including multiple 16-bit values
corresponding to each supported application environment. A Host shall only advertise those applications types
which it is able to present. The versions of the application profiles are not specified and there is no guarantee
that a Host is able to support the version of any application environment.

EXAMPLE: 0x00£0 Host supports broadcast MHP
0x0106 Host supports broadcast MHEG-5 profile
0x01230107 Host supports broadcast HbbTV and Open TV

14.7.5.9 operator_search_cancel APDU

The Host sends this APDU to the CICAM to cancel a profile search sequence. On issuing the APDU then the
Host requests the CICAM to terminate the current profile search and responds with a operator_search_status()
APDU. The CICAM should attempt to stop the current profile search as quickly as possible, e.g. without waiting
for any outstanding operator_tune_status().

Table 14.51: operator_search_cancel APDU syntax

Syntax No. of bits | Mnemonic
operator search cancel() {
operator search cancel tag 24 uimsbf
length field() = 0
}

Where the fields are defined as follows:

operator_search_cancel_tag: See Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 Cl Plus LLP

203 Cl Plus Specification v1.3.2 (2015-03)

14.7.5.10 operator_search_status APDU

This APDU is sent by the CICAM to inform the Host that the profile search has been completed or cancelled.
The APDU content is identical to a operator_status() APDU with the exception of the APDU tag.

At the end of the operator search then the CICAM shall set the flag settings in the operator_status_body() to
accurately reflect the current CICAM state e.g. the refresh _request flag shall be cleared or initialised with the
next search request. The Host shall process the operator_search_status() APDU as an indication that the search
has terminated and shall additionally process all of the flags of the operator status body() to ascertain the
current state of the operator profile. The CICAM shall not issue a operator_status() APDU in addition to a
operator_search_status() APDU at the end of the search.

Table 14.52: operator_search_status APDU syntax

Syntax No. of bits | Mnemonic
operator search status() {
operator search status tag 24 uimsbf

length field()
operator status body ()

}

Where the fields are defined as follows:
operator_search_status_tag: See Table L.1 in Annex L.

operator_status_body(): See Table 14.38 in section 14.7.5.3.

14.7.5.11 operator_tune APDU

The CICAM sends this APDU to the Host to request a tuning operation in the context of the
operator_search_start() APDU under Host control when a profile search operation is requested. The APDU shall
not be used for tuning outside of this context. The Host replies with a operator tune status() APDU when the
tune operation has been completed. The APDU enables the CICAM to perform a direct tuning operation.

The Host is required to tune to the location specified by the delivery system_descriptor field and to leave the
transport stream of this location passing through the CICAM. Multiple locations may be specified by this APDU
and the Host shall attempt to tune to each location in the order that they are presented in the APDU until the
Host locates a valid data carrier signal when the search is terminated without processing any more of the
locations and a operator_tune_status() APDU is returned to the CICAM identifying the multiplex that has been
found.

The Host shall count the descriptors processed in the APDU descriptor loop and is required to return the
descriptor number of the next unprocessed descriptor to the CICAM in the operator _tune_status() APDU on
completion of the tune. The descriptor count commences from 0 which identifies the first descriptor of the loop.

The Host processing of the tune request is depicted in the following pseudo code:

// Initialise
tuner information = not found;
desc_num = 0;

// Loop over all of the descriptors in the APDU
while (descriptor([desc_num] is present in descriptor loop) {
current location info = descriptor [desc num];
desc_num++;
while (descriptor [desc_num] present and additionally describes the current location) {
current location_info += descriptor [desc_num];
desc_num++;

}

// Check the tuning parameters quit if these descriptors are not supported and

// the CICAM may then re-build the list excluding this delivery location.

if (current location_info has bad parameters OR is invalid OR is not supported) {
current_location info = descriptor information + error codes.
break;

// All of the descriptors that identify this tuning location have been found.

© 2008, 2009, 2011, 2015 Cl Plus LLP

204 Cl Plus Specification v1.3.2 (2015-03)

// Initiate a tune.
tune_status = tune (current_ location_info);

// If a data carrier is found then save the tuner information and quit loop.

if (tune_status == signal present AND signal viable AND is a data carrier) {
tuner information = current tuner location information;
break;

}

// If nothing has been found we have reached the end of the loop
if (tuner_information == not found) {
desc_num = Oxff;

}

// Stay at the tuned location and send the tune status back to the CICAM.
send APDU operator_ tune_status (desc_num, tuner_information)

The Host shall utilise any hardware assistance of the tuner to speed up the search and may skip over tuner
locations without initiating an explicit tune operation if the tuner location is considered to have been previously
searched by the hardware. This Host optimisation relies on the CICAM correctly grouping similar tuning
requests such that the Host is able to identify and trivially discard these locations.

Table 14.53: operator_tune APDU syntax

Syntax No. of bits | Mnemonic
operator tune () {
operator tune tag 24 uimsbf
length field()
reserved 4 bslbf
descriptor loop length 12 uimsbf
for (i=0; i<N; i++) {
descriptor () 8 uimsbf
}
}

Where the fields are defined as follows:
operator_tune_tag: See Table L.1 in Annex L.

length_field(): The APDU shall be limited to a maximum of 2048 bytes which allows 157
system_delivery descriptors with a length of 13 bytes.

descriptor_loop_length: This 12-bit field specifies the length in bytes of the descriptor() loop that follows this
field.

descriptor(): A loop of delivery system descriptors that describes the location of the CICAM tune request. The
descriptor loop shall contain one or more delivery system descriptors which are all from the same delivery
system. The CICAM shall produce a complete and optimal tuner parameter set in the delivery descriptor i.e.
frequencies shall be grouped etc. The Host shall attempt to tune to each specified location and locate a viable
signal with appropriate data carrier indication, as soon as the Host locates a carrier location, or the end of the
descriptor list is reached, then the tune operation is stopped and the status is reported to the CICAM with a
operator_tune_status() APDU.

14.7.5.12 operator_tune_status APDU

The Host sends this APDU to the CICAM in response to a operator_tune () or APDU operation after the Host
has tuned to the requested location.

© 2008, 2009, 2011, 2015 Cl Plus LLP

205 Cl Plus Specification v1.3.2 (2015-03)

Table 14.54: operator_tune_status APDU syntax

Syntax No. of bits | Mnemonic
operator tune status() {
operator tune status tag 24 uimsbf

length field()

descriptor number 8 uimsbf
signal strength 8 uimsbf
signal quality 8 uimsbf
status 4 uimsbf
descriptor loop length 12 uimsbf
for (i=0; 1i<N; i++) {

descriptor () 8 uimsbf

}

Where the fields are defined as follows:
operator_tune_status_tag: See Table L.1 in Annex L.

descriptor_number: This 8-bit field identifies the next unprocessed descriptor number in the operator_tune()
APDU which has not been processed by the Host, a value of 0xff indicates that the Host has reached the end of
the table. The descriptors are counted from 0, the descriptor number handling is described in the introductory
text for the operator tune() APDU.

Table 14.55: status values

Value Description
0 The tuning operation was successful and the Host has successfully tuned to the requested
location; the tuner is locked and a digital signal is available. The transport stream shall be
passing through the CICAM.
The descriptor_number field shall be the next unprocessed descriptor number.
The signal_strength field shall be non-zero.
The signal_quality_field shall be non-zero.
The descriptors() field shall contain the delivery_system_descriptor(s) that describe the current
fully qualified tuning location. This may be slightly different from the original CICAM delivery
descriptor if the information has been corrected by the Host tuner information.
1 The delivery system descriptor is not supported by the Host.
The descriptor_number field shall be the next unprocessed descriptor number.
The signal_strength field shall be 0.
The signal_quality_field shall be 0.
The descriptor_loop shall contain the descriptor(s) that are not supported
2 The delivery system descriptor parameters are invalid.
The descriptor_number field shall be the next unprocessed descriptor number.
The signal_strength field shall be 0.
The signal_quality_field shall be 0.
The descriptor_loop shall contain the descriptor(s) that are invalid.
3 The tuning operation failed. The Host has successfully tuned to the requested location and no
signal is present.
The descriptor_number field shall be 0xff as the descriptor list will have been exhausted.
The signal_strength field shall be 0.
The signal_quality_field shall be 0.
The descriptor_loop _length shall be 0.
4-15 | Reserved for future use.

Where the Host reports an unknown or illegal delivery system_descriptor then the Host shall stop the search
and return the erroneous system_delivery descriptor to the CICAM. The CICAM may then re-build the tuning
list with a new set of tuning locations which shall exclude descriptors of a similar type if the search is to
continue.

signal_strength: This 8-bit field specifies the signal strength as a percentage value in the range 0 to 100, where
0 represents no signal and 100 is a full strength signal. Note that an indication of signal strength is not a measure
of signal quality and the signal quality field shall be interrogated to assess the signal quality.

© 2008, 2009, 2011, 2015 Cl Plus LLP

206 Cl Plus Specification v1.3.2 (2015-03)

signal_quality: This 8-bit field specifies the quality of the signal as a percentage value in the range 0 to 100,
where 0 represents a signal with no viable quality and 100 is a perfect signal.

status: This 4-bit is the status of the tune request. The status values are defined in Table 14.54.

descriptor_loop_length: This 12-bit field specifies the length in bytes of the descriptor() loop that follows this
field.

descriptor(): A loop of delivery system descriptors that describes the currently tuned location of the Host that is
passing through the CICAM or descriptors causing an error. The descriptor loop shall contain a single delivery
system location only, which may be described by one or more descriptors.

14.7.5.13 operator_entitlement_ack APDU

The Host sends this APDU to the CICAM to acknowledge that any change in the entitlement has been processed
by the Host, which may have resulted in a change in the logical channel list etc. The CICAM shall send a
operator_status() APDU in response to the command with the entitlement change flag field cleared.

Table 14.56: operator_entitlement_ack APDU syntax

Syntax No. of bits | Mnemonic
operator_entitlement_ack() {
operator entitlement ack tag 24 uimsbf

length field()
}

Where the fields are defined as follows:

operator_entitlement_ack tag: See Table L.1 in Annex L.

14.7.5.14 operator_exit APDU

The Host sends this APDU to the CICAM to inform the CICAM that the Host has left a profile type=1
environment and is operating in a different channel list or context. Any transport stream passing through the
CICAM may not originate from the operator profile environment until such time that the Host returns to the
operator environment signified with a operator_status_req() APDU.

Table 14.57: operator_exit APDU syntax

Syntax No. of bits | Mnemonic
operator exit() {
operator exit tag 24 uimsbf

length field()

}

Where the fields are defined as follows:

operator_exit_tag: See Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 Cl Plus LLP

207 Cl Plus Specification v1.3.2 (2015-03)

Annex A (normative):
Random Number Generator

A.1 Random Number Generator Definition

The random number generator is used to generate following random numbers in this specification:

Table A.1: random numbers

Field Length (bits) Comment
DHX 2048 Diffie Hellman exponent "x"
DHY 2048 Diffie Hellman exponent "y"
Kp 256 CICAM's key precursor to Host for CCK
Ns_Host 64 Host's challenge to CICAM for SAC
Ns_Module 64 CICAM's challenge to CICAM for SAC
Auth_nonce 256 nonce in authentication protocol

The random number generator shall adhere to either of the following:
1) The PRNG described in SCTE 41 [5], section 4.6.

NOTE: The uniquely generated seed value is prng_seed in this specification. Unless explicitly noted
otherwise, the seed values shall be treated as highly confidential as described in the CI Plus
Licensee Specification [33]. It is advised that SHA implementations adhere to the SHS validation
list, refer to SHS Validation List [11].

2) An AES based algorithm inspired by ANSI X 9.31 [12] illustrated in Figure A.1 and described below:

DT;
Y
AES-
k 128
] !
A 4) 4
S —> R —»C
Y Y
AES- AES-
k 128 k 128
R S

Figure A.1: AES Based PRNG Example

In Figure A.1, k is a 128-bit constant value, DT; is a 128 bit value that is updated on each iteration (e.g.
date/time vector or monotonic counter) and s is a seed value. The CICAM and the Host shall each have a
uniquely generated seed value S.

NOTE: Unless explicitly noted otherwise, the values k and S shall be treated as highly confidential as
described in the license agreement.

The combination of fixed value k and initial seed value S, shall be unpredictable and unique per licensed
product. The seed generator for Sy shall comply with SP800-22b [36]. If there is no seed generator for S, then S

© 2008, 2009, 2011, 2015 Cl Plus LLP

208 Cl Plus Specification v1.3.2 (2015-03)

shall be maintained in a non-volatile register, in which case a source of entropy is not required. Additionally DT
must be ensured to be non-repeating only until the next time the licensed product is re-started.

The 128 bit random values R; (i=0,1....) are generated as follows:

I; = E 4gs 128 tk} (DT}) Eq. A.1
R =E yps128tk}(L; © ;) Eq. A2
Siv1 =Egps128k}U; © R;) Eq. A3

For random numbers that are not an exact multiple of the AES block size the last AES block is truncated LSB to
the length specified in Table A.1.

© 2008, 2009, 2011, 2015 Cl Plus LLP

209 Cl Plus Specification v1.3.2 (2015-03)

Annex B (normative):
Device ID Protocol

B.1 Device ID Specification

Note: The Device ID format is not defined in this document and may be obtained from the CI Plus
Licensee Specification [33].

© 2008, 2009, 2011, 2015 Cl Plus LLP

210 Cl Plus Specification v1.3.2 (2015-03)

Annex C (normative):
Checksum Algorithms

C.1 Checksum Algorithms

This section is deprecated. Communication between the CICAM and the service operator is not within scope of
this specification.

© 2008, 2009, 2011, 2015 Cl Plus LLP

211 Cl Plus Specification v1.3.2 (2015-03)

Annex D (normative):
SD and HD capabilities

D.1 SD and HD Definitions

In this specification the definition for an SD device or an HD device is not specified. A HD device is a device
that can process and decode HD signals passed through the Common Interface. This could mean for example
that the HD device conforms to the HD TV logo of the EICTA. Several countries or continents have different
definitions of logo programs, other logo definitions may apply to conform to the capability to process HD
signals.

© 2008, 2009, 2011, 2015 Cl Plus LLP

212 Cl Plus Specification v1.3.2 (2015-03)

Annex E (normative):
Clarification of DVB-CI| Use Cases

E.1 Initialisation
E.1.1 Specification

PCMCIA standard defines in volume 2, section 4.4.6 that the Host has to wait 5s for the ready signal to be set.
As a reminder, a specification extract is shown below in italic.

A card that requires more than 20 ms for internal initialization before access shall negate READY until it is
ready for initial access, a period of time which is not to exceed five seconds following the time at which the
RESET signal is negated (or if no RESET is implemented, VCC is stable).

E.1.2 Requirement

The Host shall explicitly check for the READY signal until it is set by the module or until a timeout of 5s has
expired.

E.2 CA_PMT in Clear
E.2.1 Specification

DVB-CI specifications define in the "Guidelines for Implementation and Use of the Common Interface for DVB
Decoder Applications (R206-001:1998)" [24] that the Host has to send the ca_pmt object even when the
selected programme is in the clear. As a reminder, the specification extract is shown below in italic.

CA_PMT is sent by the Host even when a programme in clear is selected by the user (typically a programme for
which there are no CA_descriptor in the PMT). In this case, the Host shall issue a CA_PMT without any
CA_descriptors (i.e.: CA_PMT with program_info_length == 0 and ES_info_length == ().

E.2.2 Requirement

Hosts shall send the CA_PMT even when selected programme is in the clear (FTA).

E.3 CA_PMT Clear to Scrambled / Scrambled to
Clear

E.3.1 Specification

It has been defined in Guidelines for Implementation and Use of the Common Interface for DVB Decoder
Applications (R206-001 [24]; section 9.5.6.2):

Switch from scrambled to unscrambled and vice-versa.
. When one programme switches from scrambled to clear, there are several possibilities:

1. This change is not signalled in the PMT, but only in the TSC field of the packet header or in
the PES_SC field of the PES header. In this case, there is no reason for the Host to send a new
CA_PMT to remove the programme from the list. The programme remains selected and the
Host keeps on sending CA_PMT when the version_number of the PMT evolves.

2. This change results in a modification of the PMT. In this case, a CA_PMT is issued by the
Host.

© 2008, 2009, 2011, 2015 Cl Plus LLP

213 Cl Plus Specification v1.3.2 (2015-03)

. When one programme switches from clear to scrambled, there are several possibilities:

1. This change is not signalled in the PMT, but only in the TSC field of the packet header or in
the PES_SC field of the PES header. In this case, the Host does not send a new CA_PMT. The
CA application must detect that switch.

2. This change results in a modification of the PMT (e.g.: CA_descriptors are removed). In this
case, a CA PMT is issued by the Host.

NOTE: In both cases it is recommended that the CA application attempt to create a user dialogue to
inform the user.

E.3.2 Recommendation

The CA application shall not create a user dialogue when not necessary.

E.4 PMT Update and New CA PMT
E.4.1 Specification

It has been described in R206-001 [24] (section 9.5.5.1) that:

If the Host wants to update a CA_PMT of one of the programmes of the list it sends a CA_PMT with
ca_pmt_list management == update. This happens when the Host detects that the version_number or the
current_next_indicator of the PMT has changed. The CA application in the module then checks whether this
change has consequences in the CA operations or not. It also happens when the list of elementary streams of a
selected programme changes (e.g.: the user has selected another language). In this case, the Host has to resend
the whole list of elementary streams of that updated programme.

E.4.2 Recommendation

When the PMT version is changed, the CA_ PMT_Update object shall be used in order to avoid a black screen.

E.5 Spontaneous MMI
E.5.1 Specification

It has been defined in Guidelines for Implementation and Use of the Common Interface for DVB Decoder
Applications R206-001 [24] (section 9.5.6.1):

CA applications currently not active for any current programmes selected by the user may create MMI sessions
for user dialogue, for example to warn of an impending PPV event on another programme previously purchased
by the user.

E.5.2 Resolution

Display all MMI messages sent by the CICAM. Do not allow automatic MMI closing, allow the user to close
the MML.

The CICAM shall deal with situations when the Host is busy and cannot service the CICAM's request to display
a spontaneous MMI message. In this case, the Host returns an open_session_response object with session_status
F3 (resource busy) when the module tries to open the MMI session. The module may retry opening an MMI
session until the Host is able to open the session but it must take into account that some messages become
obsolete when the current service is changed (e.g. a spontaneous MMI message saying "you are not allowed to
watch this programme").

© 2008, 2009, 2011, 2015 Cl Plus LLP

214 Cl Plus Specification v1.3.2 (2015-03)

E.6 Transport Stream to CICAM
E.6.1 Specification

DVB-CI specifications define in EN 50221 [7] (section 5.4.3) that a transport stream connection has to be
established if the module is found as DVB conformant. As a reminder, a specification extract is shown below in
italic.

When a module is not connected the Transport Stream Interface shall bypass the module, and the Command
Interface to that module shall be inactive. On connection of a module, the Host shall initiate a low-level
initialisation sequence with the module. This will carry out whatever low-level connection establishment
procedures are used by the particular Physical Layer, and then establish that the module is a conformant DVB
module. If successfully completed, the Host shall establish the Transport Stream connection by inserting the
module into the Host's Transport Stream path. It is acceptable that some Transport Stream data is lost during
this process.

E.6.2 Resolution

Always send the transport stream to the CICAM when it has been initialized.

E.7 Profile Reply
E.7.1 Specification

DVB-CI specifications define in EN 50221 [7] (section 8.4.1.1) that when a profile enquiry is sent by Host or
module, a profile reply has to be sent by module or Host. As a reminder, a specification extract is shown below
in italic.

When a module is plugged in or the Host is powered up one or perhaps two transport connections are created to
the module, serving an application and/or a resource provider.

The first thing an application or resource provider does is to request a session to the Resource Manager
resource, which is invariably created as the Resource Manager has no session limit. The Resource Manager
then sends a Profile Enquiry to the application or resource provider which responds with a Profile Reply listing
the resources it provides (if any). The application or resource provider must now wait for a Profile Change
object. Whilst waiting for Profile Change it can neither create sessions to other resources nor can it accept
sessions from other applications, returning a reply of 'resource non-existent' or 'resource exists but unavailable’
as appropriate.

E.7.2 Recommendation

Reply to profile enquiry object.

E.8 Operation on a Shared Bus
E.8.1 Background

In many setups, a PCMCIA slot shares address and data lines with other devices such as a second PCMCIA slot
or a flash memory chip. Each device will have its own Chip Enable line that is negated when the current access
refers to this particular device. For a PCMCIA slot, this Chip Enable line is connected to the CICAM's Chip
Enable #1 (CE1#) pin, Chip Enable #2 (CE2#) is ignored.

© 2008, 2009, 2011, 2015 Cl Plus LLP

215 Cl Plus Specification v1.3.2 (2015-03)

E.8.2 Recommendation

The CICAM shall check its CE1# pin and make sure it is low before processing any data from the bus. When
Chip Enable #1 (CE1#) pin is high, the CICAM shall not send any data or change its internal state based on
signals from the bus.

E.Q Maximum APDU Size

EN 50221 [7] section 7 states:

The objects are coded by means of a general Tag-Length-Value coding derived from that used to code ASN.1
syntax.

And later in this section:
Any value field length up to 65535 can thus be encoded by three bytes.

ASN.1 Basic Encoding Rules (BER) allow for the encoding of lengths using more than three bytes. Using the
long form a length value may occupy a maximum of 127 bytes giving an encoded length which is 128 bytes
long that may represent a length of greater than 10°°° bytes.

The second fragment of EN 50221 text is in fact an example of how one can use three bytes to encode a length.
One could equally give the example of using four bytes which could encode a length of up to 16 777 216 bytes.

E.10 Host Control resource
E.10.1 Specification

The Host Control resource 00 20 00 4x is mandatory for a CI Plus Host to support, it allows the CICAM tune

away to another service for CAM upgrade as specified in section 14.3 and support Video on Demand (VoD)
type applications as specified in section 14.6.1.

E.10.2 Recommendation

Host Control shall only be used when the User interacts with the CICAM allowing the CICAM to tune away to
another service (i.e. CAM upgrade and MMI).

E.11 CA-PMT Reply
E.11.1 Specification

DVB-CI specifications define in EN 50221 [7] (section 8.4.3.5). This object is always sent by the application to
the Host after reception of a ca_pmt object with the ca_pmt_cmd_id set to 'query'. It may also be sent after
reception of a ca_pmt object with the ca_pmt_cmd_id set to 'ok_mmi' in order to indicate to the Host the result
of the MMI dialogue. e.g. 'descrambling_possible'; if the user has purchased the content, or 'descrambling not
possible (because no entitlement)'; if the user has not purchased the content.

E.11.2 Recommendation

The CICAM shall always send a ca_pmt_reply when the ca_pmt object is sent with the ca pmt cmd 1id set to
'query' and shall not start descrambling until the Host sends a ca_pmt with ca_ pmt cmd_id set to
'ok_descrambling'.

© 2008, 2009, 2011, 2015 Cl Plus LLP

216 Cl Plus Specification v1.3.2 (2015-03)

E.12 CC and CP Resource
E.12.1 Specification

The CC resource in CI plus offers enhanced Content Control using the URI as defined in section [5.7], the
extensions in DVB TS 101 699 [8], section 6.6, offers the CP resource for Content Control. Both of these
resources are used to control the distribution of content and shall never be opened at the same time.

E.12.2 Recommendation

The CICAM shall not open a session to both the CC resource and the CP resource at the same time. The Host
shall reply 'session not opened, resource exists but unavailable (0xf1)'

E.13 Physical Requirements
E.13.1 Data Interface

EN 50221 [7] section 5.4.2.5 states:

All interfaces shall support a data rate of at least 58 Mb/s averaged over the period between the sync bytes of
successive transport packets.

This specification increases this data rate requirement. CICAMs conforming to this specification shall support
96 Mb/s. Hosts conforming to this specification shall have sufficient bandwidth for their network interfaces.
Refer to section 11.1.3 for further information on the CI Plus data rate requirements.

E.13.2 Command Interface
EN 50221 [7] section 5.4.2 states:

The Command Interface shall transfer commands as defined by the appropriate Transport Layer part of this
specification in both directions. The data rate supported in each direction shall be at least 3.5 Megabits/sec.

This requirement shall still hold for this specification.

E.14 Low-Speed Communication comms reply object
E.14.1 Specification

In section 8.7.1.5 of EN 50221 [7] the return_value in the description of the Comms Reply object coding is
categorised by the mnemonic “uimsbf”’. However, in the text of the specification is states that return_value
contains negative values to indicate an error and specifically a value of -1 for non-specific errors.

E.14.2 Recommendation

It is recommended that the eight bit return_value field in a comms_reply APDU should be interpreted as a
signed “two’s complement” value.

E.15 High-Level MMI Text Object Coding
E.15.1 Specification

Section 8.6.5.1 of EN 50221 [7] states that Text information is coded using the character sets and methods
described in EN 300 468 [10] and that text sent by the application may include such control characters as are
defined by [10] to provide indication of how the display is to be presented.

© 2008, 2009, 2011, 2015 Cl Plus LLP

217 Cl Plus Specification v1.3.2 (2015-03)

The Host may render any text object without a preceding character table selection byte as Table 00 — Latin
Alphabet as shown in EN 300 468 [10] Annex Al, Figure A.1, which may not be what the CICAM wants.

E.15.2 Recommendation

It is recommended that the CICAM always includes the preceding character table selection byte to ensure that
the correct character table is used by the Host. See EN 300 468 [10] Annex A.

E.16 DVB Host Control Tune Object
E.16.1 Specification

Section 8.5.1.1 of EN 50221 [7] describes how the Host Control resource allows a CICAM to instruct the Host
to tune to another location. The new location is defined by a combination of network id, original network id,
transport_stream_id and service id. The behaviour of the receiver when some of these values are zero and any
method of setting a wild card value is not described.

E.16.2 Recommendation

It is recommended that the network id shall not be used. A value of zero (0) shall be considered a wild card or
don’t care value. It is recommended that there shall be only two valid combinations of tuning parameters and
wild card values. The valid combinations are shown in Table E.1.

Table E.1: Valid combinations of DVB Host Control Tune object parameters

network_id transport_stream_id original_network_id service_id Action
0 TSID ONID SID Tune to a service,
service must exist
0 TSID ONID 0 Tune to a multiplex,

Host does not select
service, a ca_pmt will
not be sent by the
Host.

Note: It is assumed that the receiver has the desired location already referenced in its service list so that the
actual tuning parameters may be found. The Host service list may only contain services interpreted by
the Host i.e. Television and Radio services only.

E.17 Conditional Access Support
E.17.1 Specification

EN 50221 [7], section 8.4.3.4 states:

The CA PMT contains all of the CA_descriptors of the selected programme. If several programmes are selected,
the Host sends several CA PMT objects to the application. The CA_PMT only contains CA_descriptors. All
other descriptors must be removed from the PMT by the Host.

R206-001:1998 [24], section 9.5.5 Description of the feature, states:

If simulcrypt techniques are in use then an entry for one programme in the PMT may contain CA descriptors for
more than one CA ID. In this case the CA_PMT object will contain all the CA descriptors in use, that is, the
receiver will not attempt to select on the basis of the CA ID(s) advertised by a particular CA application.

E.17.2 Host Requirement

On selection of a service to be descrambled, the Host is required to process ALL CA_descriptors appearing in
both the first descriptor loop (Program Stream Loop) and second descriptor loops (Elementary Stream Loop) of
the PMT. Multiple CA_descriptors with different CA_system ID's may be present in either or both loops.

© 2008, 2009, 2011, 2015 Cl Plus LLP

218 Cl Plus Specification v1.3.2 (2015-03)

The Host shall pass all CA_descriptors appearing in the PMT to the CICAM in the ca_pmt using the
corresponding program level and/or elementary stream level loops, with the exception that the Host may
optionally discard any CA_descriptors that do not match any of the CA_system id's advertised by the CICAM
in the ca_info() APDU.

The Host is recommended to, but not obliged to, to maintain the same CA_descriptor and Elementary Stream
ordering of the PMT in the ca_pmt.

E.17.3 CICAM Requirement

The CICAM shall include all CA_system_IDs that it supports in the ca_info() APDU when requested by the
Host.

The CICAM shall be robust in the presence of multiple CA_descriptors which may appear in any order. The
CICAM shall be robust in the presence of CA_descriptors that do match any CA_system_id(s) of the CICAM
and shall ignore the CA_descriptors if they are not supported by the CICAM.

The CICAM shall be robust with respect to the order of Elementary Streams and shall be able to descramble
correctly signalled and CA supported elementary streams irrespective of their order in the ca_pmt.

E.18 Resource Version Handling
E.18.1 Specification

En 50221 [7], section 8.4.1.1 Resource Management Protocol states:

When it has asked for profiles on all transport connections and received Profile Replies the host builds a list of
available resources. Where two or more resources match in both class and type the host keeps the one with the
highest version number in its list.

E.18.2 Requirement

Where a Host supports multiple versions of the same resource then the highest version number of the resource is
reported by the Host ONLY. Lower versions of the resource shall be supported by the Host but are not reported
in the profile reply() APDU.

The CICAM may request a lower version of the resource than reported by the Host which is discussed in section
E.19.

E.19 Open Session Request
E.19.1 Specification

En 50221 [7], section 7.2.6.1 Open Session Request states:

This object is issued by the module to the host in order to request the opening of a session between the module
and one resource provided either by the host or by a module. The resource_identifier must match in both class
and type a resource that the host has in its list of available resources. If the version field of the supplied
resource identifier is zero, then the host will use the current version in its list. If the version number in the
request is less than or equal to the current version number in the host’s list then the current version is used. If
the requested version number is higher than the version in the host’s list, then the host will refuse the request
with the appropriate return code.

E.19.2 Specification Correction

In a change to the EN 50221 [7] specification then the paragraph is revised as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

219 Cl Plus Specification v1.3.2 (2015-03)

This object is issued by the module to the host in order to request the opening of a session between the module
and one resource provided either by the host or by a module. The resource_identifier must match in both class
and type a resource that the host has in its list of available resources. If the version field of the supplied
resource identifier is zero, then the host will use the current version in its list. If the version number in the
request is equal to the current version number in the host’s list then the current version is used. If the version
number in the request is less than the current version number in the host's list then the Host shall use the
version number requested by the CICAM. If the requested version number is higher than the version in the
host’s list, then the host will refuse the request with the appropriate return code.

This requires that the Host shall always support all lower versions of an advertised resource.

E.19.3 Recommendation

The CICAM is recommended not to use a resource identifier version field value of zero and shall specify the
highest version number of the resource that is supported by the CICAM.

The CICAM shall never request a version number that it is not able to fully support and shall not return the
version number advertised by the Host unless it is fully supported.

E.20 CA PMT Provision
E.20.1 Background

Omission of the Host to send a CA PMT on each and every service change causes issues on the CICAM
including:

1) Pay Per Time (PPT) is not counted correctly (as no notification of service change),
2) Parental control is not always enforced when re-entering a protected service.

3) Application MMI is not restarted.

E.20.2 Specification
EN 50221 [7] 8.4.3.3 CA_PMT states:

The host may decide to send the CA PMT to all connected CA applications or preferably only to the applications
supporting the same CA_system_id value as the value given in the CA_descriptor of the selected elementary
streams (ES).

EN 50221 [7], section 8.4.3.4 states:

The receiver sends a new CA PMT or a new list of CA PMT to the Application when:
* the user selects another programme

* a 'tune' command selects another service (see 8.5.1.1)

* the version_number changes

* the current_next_indicator changes

E.20.3 Host Recommendation

The Host should send a new CA PMT on every service change and on change of the version_number or
current_next_indicator to all connected CA applications that are actively descrambling.

E.21 CICAM evaluation of CA_descriptors
E.21.1 Specification

EN50221:1997 [7], section 8.4.3.4 CA_PMT states:

© 2008, 2009, 2011, 2015 Cl Plus LLP

220 Cl Plus Specification v1.3.2 (2015-03)

The CA_descriptor(s) at elementary_stream level is (are) valid for the elementary stream only. If, for one
elementary stream, CA_descriptor(s) exist at programme level and at elementary _stream level, only the
CA_descriptor(s) at elementary_stream level are taken into account.

ITU-T J.96:2001 [39], section 6.2.3 Modes 2 and 3 states:

One CA_descriptor may be present in PMT at program level, giving an ECM _pid for all components of the
program. Additional CA_descriptors may be present at component level. In this case, it supersedes the value
which has been specified at program level, only for the concerned component.

E.21.2 CICAM Requirement

Within the ca_pmt() APDU; CA_descriptors that are available at the component level (ES) for a given
component that may be descrambled by the CICAM then any CA_descriptors at the program level shall be
ignored for this component.

E.22 CA Support session closing behaviour
E.22.1 Specification

EN-50221:1997 [7], section 8.4.3 Conditional Access Support states:

The session is then kept open for periodic operation of the protocol associated with the CA PMT and CA PMT
Reply objects.

R206-001:1998 [24], - 9.5.5.1. General rules, and 9.5.6.1. General rules states:
In case of repetitive errors, it may also close the CA support session and re-open it.

If the session to the CA support resource closes down, the CA application should attempt to open another
session.

E.22.2 Host Requirement

The Host shall support the closing and reopening of the CA support session.

E.22.3 CICAM Requirement

If the current session of the CA support resource is closed, the CICAM shall try to reopen it.

E.23 ca_pmt commands
E.23.1 Specification

ENS50221 [7] lists several ca_ pmt_cmd_id values. The influence the way a ca_pmt from the host is interpreted
by the CICAM.

E.23.2 CICAM Requirement

A CICAM shall support all ca_pmt_cmd _id values listed in EN 50221 [7], section 8.4.3.4. When the CICAM
receives a ca_pmt with ca_ pmt cmd_id set to query for a program or elementary stream, the CICAM shall send
aca pmt_reply to the host and shall not start descrambling and shall not display any MMI.

© 2008, 2009, 2011, 2015 Cl Plus LLP

221 Cl Plus Specification v1.3.2 (2015-03)

E.24 Open Session Response
E.24.1 Specification

The host sends an open_session_response() SPDU in response to an open_session_request() by the CICAM.

The open_session_response() contains a status value according to EN 50221 [7], table 7.

E.24.2 CICAM Requirement

The CICAM shall process all status values in EN 50221 [7], table 7.

A CICAM shall be robust if the Host returns the status "session not opened, resource busy". In this case, it is
recommended that the CICAM retry opening the session until the Host is able to service the request.

E.25 Character Coding
E.25.1 Specification

With respect to EN50221 [7] specification, section 8.6.2.3 Display Reply and a change to the R206-001[24],
section 9.8.5 Output character codes.

E.25.2 Host Requirement

The Host shall respond to a display _control() APDU of types get display character table list (02) and
get_input_character table list (03).

E.25.3 Host Recommendation

A Host is recommended to reply with all of the character codes required by the base profile of the country or
region or network for which the Host is currently configured. The Host may optionally include all other
character code tables that are supported by the High Level MMI which might not be required for the Hosts
current configuration.

In the case where the network requires only the default character set (ISO/IEC 6937) then the Host shall respond
to the display_control() APDU request with a display reply() APDU and the character_table byte loop shall be
zero length indicating that the default character set is supported.

Example:
Country/Region character_table byte Character Tables
France, Germany, ... {0x01} ISO/IEC 6937 and ISO/IEC 8859-9
United Kingdom {3 ISO/IEC 6937 only
Nordig {0x01, 0x05, 0x10, 0x00, 0x01, ISO/IEC 6937, ISO/IEC 8859-9,
8%2} 0x00, 0x04, 0x10, 0x00, | 19O/IEC 8859-9, ISO/IEC 8859-1,
ISO/IEC 8859-4, ISO/IEC 8859-15

© 2008, 2009, 2011, 2015 Cl Plus LLP

222 Cl Plus Specification v1.3.2 (2015-03)

Annex F (normative)
Error Code Definition and Handling

F.1 Error Codes

Table F.1: ARC Error Codes

Error Error condition Error Host action Cl Plus Module action Comments
Code” detected by
00 None N/A None None
01 Module Revoked CICAM None CICAM goes to pass-through mode (note 1)
02 Host Revoked CICAM - CICAM goes to pass-through mode (Note 1)
- a revocation notification message is
displayed.
03 SAC Failed CICAM/Host - If EMI>0 CICAM goes to pass-through mode, | The service
otherwise switches to DVB Cl mode operator and CAS
- a response error notification message is may choose under
displayed. what conditions to
descramble when
operating in DVB CI
mode.
04 CCK Failed CICAM/Host - If EMI>0 CICAM goes to pass-through mode, | The service
otherwise switches to DVB Cl mode operator and CAS
- a response error notification message is may choose under
displayed. what conditions to
descramble when
operating in DVB CI
mode.
05 CICAM Firmware Upgrade CICAM None Recommended:
Failed - CICAM retries the download 2 times
- Bootloader - a response error notification message is
displayed.
06 CICAM Firmware Upgrade CICAM None Recommended:
Failed - CICAM retries the download 2 times.
- Location Error - a response error notification message is
displayed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

223

Cl Plus Specification v1.3.2 (2015-03)

Error Error condition Error Host action Cl Plus Module action Comments
Code* detected by
07 CICAM Firmware Upgrade CICAM None Recommended:
Failed - CICAM retries the download 2 times
- Image Signature Error - a response error notification message is
displayed.
08 Authentication Failed CICAM None CICAM goes to pass-through mode
- Retries Exhausted
09 Authentication Failed CICAM/Host | Host stops the CICAM. CICAM goes to pass-through mode
- Signature Verification Failed
10 Authentication Failed CICAM/Host | Host stops the CICAM. CICAM goes to pass-through mode
- Auth Key Verification Failed
11 Authentication Failed CICAM/Host | Host stops the CICAM. CICAM goes to pass-through mode
- Key Computation Failed
12 Authentication Failed CICAM/Host | Host stops the CICAM. CICAM goes to pass-through mode
- DH Failed
13 CICAM Certificate Invalid Host Host stops the CICAM. None
- Syntax Incorrect
14 CICAM Certificate Invalid Host Host goes to DVB-CI mode. (Note 2) None
- Expired
15 CICAM Certificate Invalid Host Host stops the CICAM. None
- Signature Verification Failed
16 Host Certificate Invalid CICAM None - CICAM goes to pass-through mode
- Syntax Incorrect - a response error notification message is
displayed.
17 Host Certificate Invalid CICAM None - CICAM goes to DVB-CI mode (Note 3)
- Expired - a response error notification message is
displayed.
18 Host Certificate Invalid CICAM None - CICAM goes to pass-through mode
- Signature Verification Failed - a response error notification message is
displayed.
19 Service Operator Certificate CICAM None - CICAM goes to DVB-CI mode (Note 3)
Invalid - a response error notification message is
- Syntax Incorrect displayed.
20 Service Operator Certificate CICAM None - CICAM goes to DVB-CI mode (Note 3)
Invalid - a response error notification message is
- Expired displayed.
21 Service Operator Certificate CICAM None - CICAM goes to DVB-CI mode (Note 3)

Invalid
- Signature Verification Failed

- a response error notification message is
displayed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

224 Cl Plus Specification v1.3.2 (2015-03)

Error Error condition Error Host action Cl Plus Module action Comments
Code* detected by
22 CICAM Requires Update CICAM None - CICAM goes to pass-through mode
- a response error notification message is
displayed.
23 - Reserved for CI Plus CICAM None - a response error notification message is
127 displayed.
128 — Private Use for Service Operator | CICAM None - a response error notification message is
255 displayed.
NOTE:
1: The CICAM relays the transport stream unaltered and does not descramble any services (Cl Plus or DVB-CI services).
2: The Host behaves like a DVB-CI compliant Host.
3: The CICAM descrambles only services that require no Cl Plus protection (DVB-CI fallback mode)

© 2008, 2009, 2011, 2015 Cl Plus LLP

225 Cl Plus Specification v1.3.2 (2015-03)

Annex G (normative):
PCMCIA Optimizations

The PC-Card based physical layer for DVB-CI is described in EN 50221 [7], annex A. In CI Plus, more data has to be
transferred over the command interface than in DVB-CI. The following section defines changes to the DVB-CI physical
layer in order to increase throughput on the command interface. Please note that these changes do not affect the
transport stream interface.

G.1 Buffer Size

The buffer size for sending and receiving data on the command interface is negotiated during initialisation of the
command interface, see EN 50221 [7], annex A.2.2.1.1.

A CI Plus compliant device shall provide a minimum buffer size of 1024 bytes but it can be up to 65535 bytes.

G.2 Interrupt Mode

The CI Plus uses interrupt driven operation on the command interface outlined in R206-001 [24]. A CICAM may assert
IREQ# when it has data to send or when it is ready to receive data from the Host, i.e. when it sets the DA bit or the FR
bit in the status register.

Two additional bits are defined in the command register to control the occasions when the CICAM actually triggers an
interrupt.

Table G.1: Command Register

7 6 5 4 3 2 1 0
DAIE| FRIE R R RS SR Sw HC

Table G.2: Interrupt Enable Bits

DAIE | when this bit is set, the module asserts IREQ# each time it has data to send
FRIE | when this bit is set, the module asserts IREQ# each time it is free to receive data

The default values at start-up are 0 for both bits. Before setting DAIE or FRIE to 1, the Host shall ensure that the
CICAM is CI Plus compliant.

A CI Plus compliant CAM shall announce interrupt support in the Card Information Structure (CIS). The CIS contains
one CISTPL_CFTABLE_ENTRY for each interface the PC-Card supports. A CI Plus CAM uses the same PC card
custom interface as a DVB-CI CAM and therefore the same CISTPL_CFTABLE ENTRY. Table G.3 explains the
changes in the CISTPL_CFTABLE ENTRY to indicate interrupt support. See PC Card Standard Volume 4 [30],
section 3.3.2 for a complete explanation of the CFTABLE ENTRY and its components.

Table G.3: Changes to CISTPL_CFTABLE_ENTRY

TPCE_FS (feature selection byte) set bit 4 (IRQ) to 1

this indicates that a TPCE_IR entry is present
TPCE_IR only one byte is used for the TPCE_IR

set bit 5 (Level) to 1, all other bits to 0

The CICAM uses level-triggered interrupts. To signal an interrupt, the CICAM asserts the IREQ# line by setting it to
low. The line is kept asserted until the Host acknowledges that the interrupt is being serviced. The acknowledgement is
given implicitly by a read or write operation on the bus. Pulsed interrupts are not supported in CI Plus.

When the Host receives an interrupt from the CICAM, it checks its settings for DAIE and FRIE and the CICAM's DA
and FR bits in the status register in order to determine the cause of the interrupt. The Host must be prepared to find both
FR and DA set to 0. This may occur if the CICAM signalled that it is free to receive data but it has become busy and
reclaimed the free buffer before the interrupt was serviced.

© 2008, 2009, 2011, 2015 Cl Plus LLP

226 Cl Plus Specification v1.3.2 (2015-03)

If the interrupt was triggered because the CICAM has data available, the Host performs a module to Host transfer as
described in EN 50221 [7], annex A.2.2.1.3. If the interrupt signals that the CICAM is free to receive data, the Host
may perform a Host to module transfer according to EN 50221 [7], annex A.2.2.1.2.

In interrupt mode if the CICAM requests a reset (i.e. setting the IIR bit in the status register) it can assert the FR bit in
the status register to cause an interrupt and assert the IREQ# signal.

Support for interrupt handling is mandatory in both the Host and CICAM. See R206-001 [24], section 4.3.3 for further
information about interrupt driven operation.

A CI Plus module shall always be capable of operating with polling operation even though interrupt support is
mandatory. The module will raise an interrupt and wait for the Host to initiate a data transfer; the Host may poll
regularly without checking for an interrupt, the actual transfer of data is not changed.

G.3 CI Plus Compatibility Identification

A CI Plus CICAM (and optionally any other CICAM that is not necessarily CI Plus but is able to operate correctly in a
CI Plus Host) shall declare CI Plus compatibility in the CIS information. A CICAM shall declare CI Plus compatibility
in the CISTPL_VERS 1 tuple. Within the TPLLV1 INFO a CI Plus compliant CICAM shall include a CI Plus
compatibility string declaration in one of the two lines for Additional Product Information.

The compatibility string shall strictly adhere to the following BNF definition:

<compatibility> ::= "$compatible[" <compatibility sequence> "]1§"
<compatibility sequence> ::= <compatibility item> { " " <compatibility item> }
<compatibility item> = <label> "=" [<compatibility flag>] <identity>
<compatibility flag> = MMk

<label> = <word>

<identity> = <word>

<word> = <char> {<char>}

<char> = "a"-"z"["A"-"ZN Q=TT "

Where the fields are defined as follows:

<compatibility>: the compatibility string is used to indicate the start and end of the compatibility information. The
string is delimited by the dollar ($) character which shall appear at both the start and end of the compatibility string
enclosure. The enclosed string commences with the case insensitive key word compatible followed by a square bracket
with no spaces i.e. "$compatible[". The <compatibility sequence> shall immediately follow the square bracket and
shall be terminated with a closing square bracket "]". The string may appear once only in either one of the two lines for
Additional Product Information. The string may be preceded or followed by other text characters.

<compatibility_sequence>: a space separated string of <compatibility item>’s, a single space only shall separate each
<compatibility item>.

<label>: a character string that identifies the compatibility that is supported. The label shall comprise the uppercase or

nn n_n

lowercase alphabetic characters "a" to "z" and "A" to "Z", numeric’s "0" to "9", period character (".") and underscore
("_™). For CI Plus compatibility then the label is defined as the case insensitive string "ciplus".

<identity>: a character string that qualifies the compatibility of the given label.

<compatibility_flag>: an optional character that identifies the compatibility of the item with the associated label as
defined in Table G.4.

Table G.4: Compatibility Flag

Character Description
- (Minus) The CICAM is not compatible with the <identity>
+ (Plus) The CICAM is compatible with the given <identity> only. This is the default when
omitted.
* (Asterisk) The CICAM is compatible with all versions up to and including the <identity>.

Where a label appears in the compatibility string with multiple compatibility settings then the compatibility string set
shall be fully evaluated for the label before being applied. In the example "label=*4 label=-2" then "label" is valid for
the set of values {0,1,3,4} only and the value 2 is excluded.

© 2008, 2009, 2011, 2015 Cl Plus LLP

227 Cl Plus Specification v1.3.2 (2015-03)

All components of the compatibility string are defined as case insensitive and a Host processing the CIS compatibility
string shall perform case insensitive parsing. As an example the following Additional Product Information strings are
considered to be compatibility equivalent:

"Some text S$compatiblel[acme=+this ciplus=1 acme=-that]$ more text"
"Some text S$SCOMPATIBLE [Acme=+This CIPLUS=1 Acme=-that]$ more text"
"Some text $CoMpAtIbLe[AcMe=+ThIs CIplus=1 aCmE=-tHaT]$ more text"

A CICAM shall not under any circumstances advertise compatibility with CI Plus at a given version unless that CICAM
has been fully tested with a CI Plus Host at that specified version. It is mandatory for a CI Plus CICAM to indicate its
CI Plus compatibility status in the CIS information.

A CI Plus Host may optionally process the CIS compatibility information. A CI Plus Host that processes the
compatibility information and determines that the CICAM is not CI Plus compatible may optionally omit advertising CI
Plus resources or refrain from using specific CI Plus APDUs. Removal of the CI Plus specific APDUs minimises
interoperability issues with CICAMs that are not CI Plus compatible. It is mandatory for a CI Plus Host to advertise its
CI Plus specific resources to a compatible CICAM irrespective of whether the module is actually a CI Plus CICAM.

G.3.1 CI Plus Identification

A CI Plus CICAM shall declare support for CI Plus with the <label> "ciplus". For the <label> "ciplus" then the
<identity> shall be a decimal integer version number comprising one or more decimal digits. For this version of the
specification then the <identity> shall be "1". The version shall remain at 1, irrespective of the specification version,
until such time that there is an APDU or functional incompatibility which shall force the version number to be increased
by 1.

For a CICAM that is compatible with the CI Plus specification then the <label> and <compatibilty item> shall be
defined as "ciplus=1". A typical compatibility string for a CI Plus CICAM (or a CICAM that has been tested with a CI
Plus Host) shall be:

Scompatible[ciplus=1]$

The compatibility information may appear with other information embedded in the string, a complex string example
might be:

"Some text S$Scompatiblelacme=+this ciplus=1 acme=-that]$ more text"

Where the CICAM is compatible with "acme=this" but is not compatible with "acme=that" and is also compatible with
CI Plus specification 1.2 ("ciplus=1").

A later revision of the CI Plus specification may require the CI Plus identification number to be incremented and a
CICAM that is compatible with versions 1 and 2 of the identifier would advertise compatibility as follows:

Scompatible[ciplus=*2]$

indicating that the CICAM is compatible with identity 1 CI Plus Specification and identity 2 (some later version of the
specification). All Hosts that interpret the CIS information shall process the compatibility flag.

G.3.2 Additional CIl Plus Feature Identification

A CICAM shall declare support for additional CI Plus features in the CIS information e.g. Operator Profile Resource.
The compatibility string shall strictly adhere to the BNF definition defined in G.3.

For a CICAM that is compatible with the additional CI Plus features <label> and <compatibilty item> shall be defined
as "ciprof=int". A typical compatibility and features string for a CICAM which supports the additional CI Plus features
shall be:

Scompatible[ciplus=1 ciprof=int]$

Where int is defined as a 32-bit unsigned integer which may be expressed as an unsigned decimal integer using the
digits 0..9 or as a hexadecimal integer which shall be prefixed with 0x and include the digits 0..9 and characters a..f.
The hexadecimal notation shall be case insensitive i.e. 0x4ac or 0X4AC or 0x4Ac are all valid.

The ciprof identity is interpreted as a bit mask as follows:

© 2008, 2009, 2011, 2015 Cl Plus LLP

228 Cl Plus Specification v1.3.2 (2015-03)

Table G.5: Features Bit Mask

Features (resources) bit mask Note
Operator Profile Resource | 0x00000001 See section 14.7.4.1.4
Reserved 0x00000002 - 0x80000000

Examples of compatibility and features might be:
Scompatible[ciplus=1 ciprof=1]$
Scompatible[ciplus=1 ciprof=0x4401]$S
Scompatible[ciplus=*22 ciprof=116893]$S
Scompatible[ciplus=*3 ciprof=0x890a4401]1$

A CICAM shall not under any circumstances advertise CI Plus feature unless the CICAM has been fully tested with a
CI Plus Host. It is mandatory for a CI Plus CICAM to indicate its CI Plus compatibility and features in the CIS
information.

A CI Plus Host may optionally process the CIS additional CI Plus Features information.

When the ciprof string is omitted from the CIS information then the Host shall assume that none of the features that are
known are supported, unless otherwise determined by the Host when full communication with the CICAM has been
initiated.

It is recommended that the ciprof label is placed after the ciplus label in the string.

G.3.2.1 Operator Profile Resource (Bit 0 — 0x00000001)

The operator profile resource bit when set to "1" indicates that the CICAM supports an active operator profile. This bit
is set to "0" when there is no operator profile on the CICAM or the operator profile has not been advertised in advance.

The Host device may optionally interpret this bit to determine if an operator profile is present and may wait for the
CICAM to create the operator profile APDU before continuing with any installation process. When the bit is zero then
the CICAM may still have an operator profile present however it may not be possible for the Host to install the profile
in any initial installation procedure as it was not advertised early enough. In such an event then the operator profile shall
be installed by the Host in a separate installation procedure following the initial installation.

© 2008, 2009, 2011, 2015 Cl Plus LLP

229 Cl Plus Specification v1.3.2 (2015-03)

Annex H (normative):
Credential Specification

H.1

Parameters Exchanged in APDUs

Table H.1: Input Parameters in Computations (exchanged in APDUs)

Key or variable Size (bits) Comments datatype id
Reserved - - 1
Reserved - - 2
Reserved - - 3
Reserved - - 4
HOST ID 64 Generated by the ROT and included in the X.509 certificate. 5
CICAM _ID 64 Generated by the ROT and included in the X.509 certificate. 6
Host_BrandCert Note 1 Host Brand Certificate 7
CICAM_BrandCert Note 1 CICAM Brand Certificate 8
Reserved - - 9
Reserved - - 10
Reserved - - 11
Kp 256 CICAM's key precursor to Host for CCK 12
DHPH 2048 DH Public Key Host 13
DHPM 2048 DH Public Key module/CICAM 14
Host DevCert Note 1 Host Device Certificate Data 15
CICAM DevCert Note 1 CICAM Device Certificate Data 16
Signature_A 2048 The signature of Host DH public key 17
Signature_B 2048 The signature of CICAM DH public key 18
auth_nonce 256 Random nonce of 256 bits generated by the CICAM and 19

transmitted by the CICAM to the Host for use in the
authentication protocol.
Ns_Host 64 Host's challenge to CICAM for SAC 20
Ns_module 64 CICAM's challenge to Host for SAC 21
AKH 256 Authentication Key Host 22
AKM 256 Authentication Key Module/CICAM 23
Reserved - - 24
uri_message 64 Data message carrying the Usage Rules Information. 25
program_number 16 MPEG program number. 26
uri_confirm 256 Hash on the data confirmed by the Host. 27
key register 8 (uimsbf) 0 = even, 1 = odd, other values not supported. 28
uri_versions 256 Bitmask expressing the URI versions that can be supported 29
by the Host. Format is 'uimsbf'
status_field 8 Status field in APDU confirm messages. 30
HDCP.srm Note 2 SRM for HDCP 31
srm_confirm 256 Hash on the data confirmed by the Host. 32
cicam_license variable License from CICAM associated with content (Note 3) 33
license status 8 Current status of the content license 34
license_rcvd_status 8 Status from the exchange of content license 35
Host_license variable License for which the Host requires current status. (Note 3) 36
play count 8 Remaining Play Count 37
operating_mode 8 Record operating mode 38
PINcode data variable CICAM PIN code one byte for each pin code digit 39
record_start_status 8 CICAM status after a record_start protocol 40
mode_change_status 8 CICAM status after a change operating mode protocol 41
record stop status 8 CICAM status after a record_stop protocol 42
DTCP.srm Note 4 Reserved for DTCP SRM. 43
XXXX.srm Note 4 Reserved for future SRM use 44-49
Notes:
1. Certificate lengths are of variable size.
2. SRMs for HDCP are defined in the HDCP specification, [34]. First generation HDCP v1.x SRMs shall not exceed 5
kilobytes. Second generation HDCP v2.x SRMs may be larger than 5 kilobytes.
3. Licenses must not be zero length and shall be padded to the next byte boundary. Licenses shall be no larger than 1024
bytes.
4. F}c/Jr Cl Plus specification v1.4 and above then datatype_id 43-49 inclusive are SRM messages. A Host complying with v1.4
shall correctly handle all such datatype_ids that are designated as SRM messages.SRM message lengths are of variable
Size.

© 2008, 2009, 2011, 2015 Cl Plus LLP

230 Cl Plus Specification v1.3.2 (2015-03)

Annex | (normative):
Use of PKCS#1

.1 RSA Signatures under PKCS#1

RSA signatures shall be constructed using the implementation guidelines of RSA PKCS#1 [1].

The scheme is RSA + SHA1. There are two choices specified in RSA PKCS#1 [1] as they are RSASSA-PSS and
RSASSA-PKCS1-V1_5. RSASSA-PSS shall be used to sign and validate messages.

The signatures shall be 2048 bits long.

© 2008, 2009, 2011, 2015 Cl Plus LLP

231 Cl Plus Specification v1.3.2 (2015-03)

Annex J (normative):
Tag Length Format

J.1 Tag Length Format

A tag length format (TLF) is defined to identify the items in the signatures of the authentication protocol (see section 6).
An item in the signature is identified by following syntax:

<tag> <length><signature item>

<tag> - this is a field of 8 bits with a unique value (uimsbf) for the data item as specified in Table J.1. The tag is
encoded as binary value. The following tag values are defined and shall be used.

Table J.1: Tag and length definition

tag value tag name Comment length
(8 bits) (16 bits)
0x00 version version of the protocol (value is fixed to 0x01 for 8
this version of the specification)

0x01 msg_label message label 8
0x02 auth_nonce authentication nonce 256
0x03 DHPM DH Public key CICAM Module 2048
0x04 DHPH DH Public key Host 2048
0x05-0xFF reserved reserved for future use N/A

<length> - this is a field of 16 bits (uimsbf) to express the length of the actual data item in the signature in bits. The
length is encoded as binary value with min 0 and max 2'° -1.

<signature_item> - this field carries the actual data item in the signature.
Example; following signature:

<version 1>+ <msg_label 02> + <auth _nonce> + <DHPH>

would encode as explained in Table J.2:

Table J.2: Example

Item Encoding
<version> 0000 0000
0000 0000 0000 1000
0000 0001
<msg_label 02> 0000 0001
0000 0000 0000 1000
0000 0010
<auth_nonce> 0000 0010

0000 0001 0000 0000

(followed by 256 bits of random data)
<DHPH> 0000 0100

0000 1000 0000 0000

(followed by 2048 bits of random data)

© 2008, 2009, 2011, 2015 Cl Plus LLP

232 Cl Plus Specification v1.3.2 (2015-03)

Annex K (normative):
Electrical Specification

K.1 Electrical Specification

This Annex reiterates the electrical requirements for CI Plus Host and CICAM. There are no new electrical
requirements for CI Plus. This information is extracted from EN 50221 [7], PCM CIA Volume 2 [28] and PCM CIA
Volume 3 [29].

K.1.1 General Information

DVB compliant Hosts shall accept any forms of PCMCIA module without damage to either the Host or PCMICA
module and determine that it is not a CICAM. Similarly CICAM may be plugged into a PCMCIA socket on any other
system without damage to either the Host or CICAM and the usability of the CICAM in that system will be determined.

K.1.2 Connector Layout

Common Interface physical layer uses PC Card Type I and II physical form factor which is defined in PCMCIA 8.0
Volume 3 Physical Specification [29]. The interface specifies a connector with 68 pins. At power up just after Reset the
pin assignment of the CICAM is shown in Table L.1 which is an abstract of the 16 bit PC Card signal definition as
defined in the PCMCIA Electrical specification [28]. When the CICAM is configured as the DVB-CI variant during the
initialisation process, the following pin reassignments are made is shown in Table L.2

© 2008, 2009, 2011, 2015 Cl Plus LLP

233 Cl Plus Specification v1.3.2 (2015-03)

Table K.1: Common Interface pin assignment before Personality Change

Pin assignment before personality change
Pin Signal 110 Comment Pin Signal 110 Comment

1 GND Ground 35 GND

2 D3 I/O | DataBit3 36 CD1# Card Detect 1

3 D4 I/O | Data Bit4

4 D5 I/O | Data Bit5

5 D6 I/O | Data Bit6

6 D7 I/O | DataBit7

7 CE1# I Card Enable 1

8 A10 I Address Bit 10

9 OE# I Output Enable 43 VS1# O Voltage Sense 1

10 A11 I Address Bit 11

11 A9 I Address Bit 9

12 A8 I Address Bit 8

13 A13 I Address Bit 13

14 A14 I Address Bit 14

15 WE# I Write Enable

16 Ready 0] Ready

17 VCC Supply 51 VCC Supply

18 VPP1 Program Voltage1 52 VPP2 Program Voltage2

21 A12 I Address Bit 12

22 A7 I Address Bit 7

23 A6 I Address Bit 6

24 A5 I Address Bit 5 58 RESET | Card Reset

25 A4 I Address Bit 4 59 WAIT# 0] Extend Bus Cycle

26 A3 I Address Bit 3

27 A2 I Address Bit 2 61 REG# [Register Select

28 A1 I Address Bit 1

29 A0 I Address Bit 0

30 DO I/lO | DataBit0

31 D1 I/O | DataBit1

32 D2 I/O | DataBit 2

67 CD2# Card Detect 2

34 GND 68 GND

Notes:

1. "I" indicates signals input to the CICAM.

2. "O" indicates signals output from the CICAM.

3. Uses the least significant byte of the data bus. 16 bit read and writes are not supported.

4. Data signals D8 — D15 shall not be available as data lines.

5. Address Lines A15 — A25 shall not be available as address lines.

6. Signals BVD1 BVD2 shall remain "High" during initialization phase.

7. CE2# shall be ignored and interpreted by the module as being in the "High" state.

8. Signals shown in are non used signals on the CICAM in this personality.

9. The following items apply to all signals marked with High Z. Signals marked as input indicated
with "I", shall not be actively driven by the Host and kept in High Z state except the signals
pulled up / down by the Host according to Tables K5, K6 and K7.

10. The following items apply to all signals marked with High Z. Signals marked as output
indicated with "O", shall not be actively driven by the CICAM and kept in High Z state except
the signals pulled up / down by the Host according to Tables K5, K6 and K7.

11. All signals that are not active (out) should be ignored at the input end.

© 2008, 2009, 2011, 2015 Cl Plus LLP

234 Cl Plus Specification v1.3.2 (2015-03)

Table K.2: Common Interface pin assignment after Personality Change

Pin assignment after personality change

Pin Signal 110 Comment Pin Signal 110 Comment
1 GND Ground 35 GND
2 D3 /O | DataBit 3 36 CD1# Card Detect 1
3 D4 /O | Data Bit4 37 MDO3 0 MP data out 3
4 D5 /O | DataBit5 38 MDO4 O MP data out 4
5 D6 /O | Data Bit6 39 MDO5 O MP data out 5
6 D7 /O | DataBit7 40 MDOG6 6] MP data out 6
7 CE1# | Card Enable 1 41 MDO7 6] MP data out 7
8 A10 | Address Bit 10 42 CE2# I Card Enable 2
9 OE# | Output Enable 43 VS1# o Voltage Sense 1
10 A11 | Address Bit 11 44 IORD# I 1/O read

11 A9 | Address Bit 9 45 IOWR# I 1/O write

12 A8 | Address Bit 8 46 MISTRT I MP in start

13 A13 | Address Bit 13 47 MDIO I MP data in 0

14 A14 | Address Bit 14 48 MDI1 I MP data in 1

15 WE# | Write Enable 49 MDI2 I MP data in 2

16 IREQ# (@) Interrupt Request 50 MDI3 I MP data in 3

17 VCC Supply 51 VCC Supply

18 VPP1 Program Voltage1 52 VPP2 Program Voltage2
19 MIVAL | MP invalid 53 MDI4 I MP data in 4
20 MCLKI | MP clock input 54 MDI5 I MP data in 5
21 A12 | Address Bit 12 55 MDI6 I MP data in 6
22 A7 | Address Bit 7 56 MDI7 I MP data in 7
23 A6 | Address Bit 6 57 MCLKO 0 MP clock output
24 A5 | Address Bit 5 58 RESET I Card Reset
25 A4 | Address Bit 4 59 WAIT# 0 Extend Bus Cycle
26 A3 | Address Bit 3 60 INPACK# (0] In Port Ack.
27 A2 | Address Bit 2 61 REG# I Register Select
28 A1 | Address Bit 1 62 MOVAL O MP out valid
29 A0 | Address Bit 0 63 MOSTRT O MP out start
30 DO /O | DataBit0 64 MDOO (0] MP data out 0
31 D1 /O | Data Bit 1 65 MDO1 0 MP data out 1
32 D2 /O | DataBit2 66 MDO2 0 MP data out 2
33 I01S16# 16 bit 1/0 67 CD2# Card Detect 2
34 GND 68 GND
Notes:

1. IOIS16# is never asserted.
2. CE2# is ignored by the CICAM and is pulled up to Vcc by the Host.
3. INPACKH# is optional for Hosts with single Cl slots, mandatory for CICAMS

K.1.3 Configuration Pins
K.1.3.1 Card Detection Pins

. Card Detect pins (CD1# and CD2#) are used by the Host to detect the presence of a CICAM.
. Both Card Detect pins are placed at opposite ends of the connector in order to detect correct insertion.

. The Host shall provide a 10KQ or larger pull up resistor to "Vcc" on each of the Card Detect pins. This Vcc is
not the same Vcc as used to supply the CICAM.

. The CICAM shall tie both of the Card Detect pins to "GND".

© 2008, 2009, 2011, 2015 Cl Plus LLP

235 Cl Plus Specification v1.3.2 (2015-03)

Vce Cl
HOST S o connector Cl CARD
CD1#
< g !
Vce GND
Detection Logic
2 10K
6 CD2#
g 7 €7

B GND

Figure K.1: Card Detect Mechanism

Host shall only report valid insertion when both Card Detect pins are asserted.

Card Detect pins shall not be interconnected between CICAM:s.

If the Host senses only one Card Detect pin asserted, it may notify the user one of the following conditions:
The CICAM has not been inserted correctly or completely.

The card inserted is of a type not supported by the common interface.

K.1.3.2 Voltage Sense Pins And Socket Key

Following the PCMCIA version 8 specifications, voltage sense pins are used to configure supply voltage
levels.

CI Plus Host shall support 5V and optionally 3.3V.

CI Plus CICAM shall support 5V supply only.

Voltage sense pin VS1# may be connected to GND or left open on the CICAM due to previous demand.
VS1# pins shall not be interconnected between CICAMs.

Socket Key for the Host is of 5V type.

K.1.3.3 Function Of VPP1 And VPP2

CICAMs are allowed to use pins VPP1 and VPP2 as power pins.
The CICAM is not allowed to short pin VPP1 to VPP2.
The CICAM is not allowed to short pin VPP1 or VPP2 to VCC.

When pins VPP1 and VPP2 are used as power pins they have to follow the power up/down conditions and
sequence that are valid for the VCC pins.

CICAM must not derive more than 30% of the consumed power via the VPP pins and not more than 15% for
each VPP pin.

VPP pins shall not be interconnected between CICAMs.

© 2008, 2009, 2011, 2015 Cl Plus LLP

236 Cl Plus Specification

K.1.4 Power Supply Specifications
K.1.4.1 5V DC Supply Specification

Table K.3: Card supply characteristics for 5V indication

Common Interface Card DC Characteristics

1.

Supply Name Min Max Unit Remark

Vce 4.75 5.25 \Y See 1.

Vpp 4.75 5.25 Vv See 1.

Icc + Ipp - 300 mA See 2.

Ipp 50 mA valid per VPP pin
Icc + IpPpower up 100 mA See 4.

Icc + Ipppeak 500 mA See 3.

Protal 1.5 W See 2.

Notes:

"Vcc" is the voltage indication for the VCC pins and "Vpp" is the voltage
indication for the VPP1 and VPP2 pins. When indicated with 5V it
demands that the card functions properly in the specified supply voltage
range.

2. Total long term power dissipation of a single common interface card must
not exceed Ptotal.

3. Short term peak current are allowed but not longer than 1ms

4. Maximum current consumption directly after power up and reset and
during the configuration access.

Table K.4: Host supply characteristics for 5V indication
Host DC Characteristics
Supply Name Min Max Unit Remark

Vce 4.75 5.25 \Y See 1.

Vpp 4.75 5.25 V See 1.

Icc 330 mA See 2.

Ipp 55 mA

Icc + Ipppeak 500 mA See 3.

Notes:

1. "Vcc" or "Vpp" indicated with 5V meet the specification under all static
load conditions that does not pass load limits with the remark that the
Host is not in a power up/down state.

3. It is recommended that the Host is able to provide the minimal peak load
for duration of at least 1ms.

4. Current load requirements are based on a single card. Hosts that support
multiple cards shall provide the current load requirements times the
number of card slots.

© 2008, 2009, 2011, 2015 Cl Plus LLP

v1.3.2 (2015-03)

237 Cl Plus Specification v1.3.2 (2015-03)

K.1.4.2 Host Supply Power Up Timing Diagram

Vce 90%

Vee 10%

¢) supply voltage on VCC and VPP pins

0.1-100 ms

signal level “high”
signal level “high Z”

signal level “low”

>1ms » lg signal on RESET pin
>10us » |«

signal level “high”
A A it nal

signal level “low”

signal on CE1#

>20ms

Figure K.2: Host supply power up timing diagram

K.1.4.3 Host Supply Power Down Timing Diagram

Vee 90%

Vee 10%

< > supply voltage on VCC and VPP pins

3-300ms

signal level “high”
signal level “high Z2”

signal level “low”

signal on RESET pin

> Ous »
signal level “high”
2V
signal level “low signal on CE1#
= >20ms =

Figure K.3: Host supply power down timing diagram

© 2008, 2009, 2011, 2015 Cl Plus LLP

238

K.1.5 Signal Level Specifications
K.1.5.1

Table K.5: Load requirements control signals

Cl Plus Specification v1.3.2 (2015-03)

Pull Up/Pull Down And Capacitive Load Requirements

Load requirements control signals

Signal Name Card Host Remark
CE1# Pull up to "Vec" 210KQ
CE2# Must be sufficient to keep inputs
REG# inactive when pins are not connected
IORD# at the Host.
|IOWR# Capacitive Load < 50pF
OE# Pull up to VCC >10KQ
WE# Capacitive Load < 50pF
RESET Pull up to VCC >100KQ
Capacitive Load < 50pF
Table K.6: Load requirements status signals
Load requirements status signals
Signal Name Card Host Remark
READY Pull up to VCC >10KQ
INPACK#
WAIT# Capacitive Load < 50pF
WP = 10IS16#
Table K.7: Load requirements address and data signals
Load requirements address and data signals
Signal Name Card Host Remark
A[14:0] Pull down to GND >100KQ
Capacitive Load < 100pF
D[7:0] Pull down to GND >100KQ
Capacitive Load < 50pF
Table K.8: Load requirements MPEG input signals
Load requirements MPEG input signals
Signal Name Card Host Remark
MDI[7:0] Pull down to GND >100KQ
MISTRT
MICLK Capacitive Load between 5
MIVAL and 25pF
Table K.9: Load requirements MPEG output signals
Load Requirements MPEG Output Signals
Signal Name Card Host Remark

MDQJ[7:0] Pull down to GND >100KQ

MOCLK Capacitive Load < 50pF

MOVAL

NOTE: The load requirements are applicable for each single card.

© 2008, 2009, 2011, 2015 Cl Plus LLP

239 Cl Plus Specification v1.3.2 (2015-03)

K.1.5.2 DC Specification For Signals With 5V Supply
Table K.10: DC specifications for signals with 5V supply

Name Parameter min max units
VIH = "high" input high voltage 24 "Vec" + 0.25 V
VOH = "high" output high voltage 2.8 "Vec" V
VIL = "low" input low voltage 0.0 0.8 V
VOL ="low" output high voltage 0.0 0.5 V
IIH control signal input high current for defined max. 150 MA
load conditions per card see
K.1.5.1.
IOH control signal | output high current drive capacity 300 MA
Host for defined max. load
conditions
IIL control signal input low current for defined max. 700 MA
load conditions per card see
K.1.5.1.
IOH control signal | output high current drive capacity 1400 MA
Host for defined max. load
conditions
IIH status signal input high current for defined max. 100 MA
Host load conditions see K.1.5.1.
IOH status signal | output high current drive capacity 100 MA
per card for defined max. load
conditions
IIL status signal input low current for defined max. 400 MA
Host load conditions see K.1.5.1.
IOH status signal | output high current drive capacity 400 MA
per card for defined max. load
conditions
IIH data and input high current for defined max. 150 MA
address signal load conditions for each card and
Host see K.1.5.1.
IOH data and output high current drive capacity 300 MA
address signal Host for defined max. load
conditions
IIL data and input low current for defined max. 450 MA
address signal load conditions per card see
K.1.5.1.
IOH data and output high current drive capacity 1600 MA
address signal Host for defined max. load
conditions
1. All specifications are valid for each individual signals.
2. While OV is recommended min. for VIL, allowable absolute min. limit for VIL is -0,5V
undershoot.

K.1.6 Common Interface Signal Description
K.1.6.1 Common Interface CPU Related Signals

The Common Interface specification is derived from the PC card specification. The Common Interface is a variant of
the PC Card with the differences as described in this section.

Just after reset and before configuration and personality change the pin out is shown in Table K.1. In this mode
CICAM shall behave as a memory only device. This mode does not support I/O cycles.

After personality change the pin out is shown in Table K.2. In this mode CICAM supports I/O cycles and attribute
memory cycles.

Attribute Memory is used for storing CICAM identification and configuration information and shall not require a large
address space. To access attribute memory signal REG# is kept active. Attribute memory support by Hosts and CICAM
is mandatory. After personality change the CICAM shall provide at least the Configuration Option Register address.

© 2008, 2009, 2011, 2015 Cl Plus LLP

240 Cl Plus Specification v1.3.2 (2015-03)

Common Memory is the collective name for a variety of different memory types like SRAM, MaskROM, OTPROM,
(E)EPROM and FLASH. Common memory support by the Host is optional. The CICAM shall not implement common
memory.

1/0 support by Host and CICAM is mandatory after personality change. CICAM shall support the Configuration Option
Register. Host support for registers other than the Configuration Option Register is optional.

Address Lines A[14 : 0]:
. Before personality change the following items apply.
. The Host shall provide a full 32kByte A[14:0] address space to the CICAM.
. The CICAM shall decode at least 12 bits of addresses A[11:0].

. Due to the byte mode operation of the CICAM access to odd addresses are not supported and the Host shall
not access odd addresses.

. After personality change the following items apply.
. The Host shall provide at least 4 address locations in I/O mode A[1:0] starting at 00h.

. The CICAM shall decode the 4 address locations in I/O mode using address lines A[1:0] and shall ignore
address lines A[14:2] in I/O mode.

. For attribute memory access the Host and the CICAM shall support the same address range as before the
personality change.

. Multiple CICAMs may share the same Address lines.
Data Lines D[7:0]:
. Data Lines D[7:0] constitutes the bidirectional data bus.
. Data lines must turn to "high Z" when not enabled.
. The most significant bit is D[7], least significant bit is D[0].
. Multiple CICAMs may share the same Data lines.
Card Enable CE2# and CE1#:
. CE1# (in diagrams named CE#) is enabled on even addresses only.
. CE2# is ignored by the CICAM and interpreted as always being "high".
. CEl1# is active for attribute memory access and 1/O access.
. Host may never assert CE1# lines to more than one CICAM at the same time.
. CE2# and CE1# shall not be interconnected between CICAM.
Output Enable OE#:
. OE# is used to read data from the CICAM's attribute memory.
. Hosts must negate OE# during memory write and I/O read and write operation.
. Multiple CICAMs may share the same OE#.
Write Enable WE#:
. WEH# is used to write date to the CICAM's attribute memory.
. Multiple CICAMs may share the same WE#.

Interrupt Request IREQ#:

© 2008, 2009, 2011, 2015 Cl Plus LLP

241 Cl Plus Specification v1.3.2 (2015-03)

. IREQ# is available after personality change.
. IREQ# is asserted to indicate to the Host that the CICAM requires Host software service.

. The Host must support one IREQ# input per Common Interface slot. Support for more than one IREQ# per
slot is optional.

. It is recommended to route IREQ# to one of the standard interrupt inputs when the Host is a PC compatible
computer. In this case it must be guaranteed that the interrupt is not occupied by the Host itself.

. The interrupt shall be level dependant.
Attribute Memory Select REG#:
. In case of memory read or write cycle, access is limited to attribute memory when REG# is asserted.
. In case of I/O read and write cycle, REG# is asserted.
. Multiple CICAMs cards may share the same REG#.
Input Output Read IORD#:
. IORD# is supported after personality change.
. IORD# is asserted during I/O read action from CICAM into the Host.
. Multiple CICAMs may share the same IORD#.
Input Output Write IOWR#:
. IOWR# is supported after personality change.
. IOWR# is asserted during I/O write action from Host into the CICAM.
. Multiple CICAMs may share the same IOWR#.
Extend Bus Cycle WAIT#:
. WAIT# is asserted by the CICAM to delay completion of memory or I/O read or write cycles.
. WAIT# shall not be interconnected between CICAMs.
Input Port Acknowledge INPACK#:
. INPACKH# is active low.

. INPACKH# is asserted by the CICAM when the card is selected to respond to an I/O read cycle and can handle
the response.

. This signal is used by the Host to control the enable of any input data buffer between CICAM and Host system
data bus D[7:0].

. INPACK# must be inactive until the card has passed personality change.

. INPACK# shall not be interconnected between CICAMs.

K.1.6.2 MPEG Transport Stream Related Signals

This section describes the signal definitions of the MPEG stream ports of the Common Interface. The Common
Interface replaces the signals as defined in Table K.1 with the signals as defined in Table L2 after personality change to
enable the port signals as required for the MPEG transport stream. Before personality change the MPEG stream related
signals are not defined and the Host shall keep these signals in "High Z" state. In a multiple CICAM configuration, the
MPEG stream signals may be daisy chained via the socket on the Host.

The MPEG stream part of the Common Interface has signals as defined below.

© 2008, 2009, 2011, 2015 Cl Plus LLP

242 Cl Plus Specification v1.3.2 (2015-03)

MPEG Data Input MDI[7:0]:
. MPEG stream data lines MDI[7:0] constitutes the input data bus.
. The most significant bit is MDI[7], least significant bit is MDI[0].

. CICAM may connect the MPEG stream data input to the MPEG stream data output taking the timing
specifications into account.

MPEG Input Start MISTRT:

. This signal is active to indicate the first byte of a MPEG Transport Packet on MDI[7:0].

. CICAM may connect MISTRT to MOSTRT taking the timing specifications into account.
MPEG Input Valid MIVAL:

. This signal is active to indicate valid byte of a MPEG Transport Packet on MDI[7:0].

. In a phase that the interface is clocked continuously it is required to have and use this signal for non valid data
identifications between and within MPEG Transport Packet transfers.

. CICAM may connect MIVAL to MOVAL taking the timing specifications into account.

MPEG Input Clock MCLKI:

. This signal is a continuously running clock input after personality change under the condition the transport
stream redirection switch is set to module pass through. "leading to the condition that the transport stream is
routed through the CICAM".

. It is recommended that MCLKI shall have a continuous frequency clock related to the data rate of the transport
stream being received.

. CICAM may connect MCLKI to MCLKO taking the timing specifications into account. MCLKO is in that
case the buffered version of MCLKI with a small delay.

MPEG Data Output MDO[7:0]:

. MPEG stream data lines MDOJ[7:0] constitutes the output data bus.

. The most significant bit is MDO[7] , least significant bit is MDOJ[0].
MPEG Output Start MOSTRT:

. This signal is active to indicate the first byte of a MPEG Transport Packet on MDOJ[7:0].
MPEG Output Valid MOVAL:

. This signal is active to indicate valid byte of a MPEG Transport Packet on MDO[7:0].

. In a phase that the interface is clocked continuously it is required to have and use this signal for non valid data
identifications between and within MPEG Transport Packet transfers.

MPEG Output Clock MCLKO:

. This signal is a continuously running clock output after personality change under the condition the transport
stream redirection switch is set to module pass through. "leading to the condition that the transport stream is
routed through the CICAM".

. Multiple CICAMs may interconnect MCLKO of one card with MCLKI of the other consecutive card taking
the timing specifications into account.

K.1.6.3 MPEG Clock Timing Considerations.

. To ease EMC design on the Common Interface it is recommended to fulfil the minimum specification of 5ns
for rise and fall time for clock signals MCLKI and MCLKO.

© 2008, 2009, 2011, 2015 Cl Plus LLP

243 Cl Plus Specification v1.3.2 (2015-03)

. Due to potential cumulative distortion for chaining of clocks through at least 2 cascaded CICAMs and to keep
clock reshaping and buffering economically attractive and still meet the timing requirements at max clock
speed it is recommended to fulfil the maximum specification of 20ns for rise and fall time for clock signals
MCLKI and MCLKO.

The fall time is defined as the transition time from Vh,,, to V1. as defined in section K.1.5.

. The rise time is defined as the transition time from Vl,,,, to Vh,,;, as defined in section K.1.5.

. Hosts that buffer the one's Common Interface MCLKO to pass to the next Common Interface MCLKI shall not
produce a cumulative absolute difference between rise and fall time of more than 20ns.

. To fulfil the rise and fall time requirements the next addition to the requirements in section K.1.5 are made.
The capacitive load presented to MCLKO shall be between 10pF and 50pF. The capacitive load presented to
MCLKI shall be between SpF and 25pF.

. It is recommend not to use simple clock shapers in combination with multiple CICAMs that pass MCLKO
from one CICAM via a buffer on the Host to MCLKI of the next CICAM.

K.1.7 Timing Specifications

For a detailed description of the signals and bus see section K.1.6.1.

K.1.7.1 Common Interface Attribute Memory Read Diagram

< 5 te®) o
< tan)® g ™ & e
Viy min
[14:0]
REGH#
iL max
PJL,
ce 1 min
w‘ tsu(cE#)
Vi max
tsur) | ta(OB# th(CEH) -
OFE# i V. min
1 Vi max
tv(WT—OE#)“’ << fwpan® o
WAIT# -
‘ B ViL max
tdis(OE#)
f Lol
4&@)_» v(WT) > 4—'»4'> tdis(CE#)
Vin min
D[7:0]
VL max

Figure K.4: Attribute Memory Read Timing Diagram

© 2008, 2009, 2011, 2015 Cl Plus LLP

244 Cl Plus Specification v1.3.2 (2015-03)

Table K.11: Attribute Memory Read Timing Specifications

Item Symbol 300 ns

min max

Read Cycle Time t.R 300

Address Access Time ta(A) 300

Card Enable Access Time ta(CE#) 300

Output Enable Access Time ta(OE#) 150

Output Disable Time from OE# tais(OE#) 100

Output Enable Time from OE# ten(OE#) 5

Data valid from Add Change tu(A) 0

Address Setup Time ' tou(A) 100

Address Hold Time " th(A) 35

Card Enable Setup Time ' tsu(CE#) 0

Card Enable Hold Time " tn(CE#) 35

WAIT# valid from OE# " t(WT- OE#) 100

WAIT# Pulse Width ° tw(WT) 12 us

Data Setup for WAIT# Released tW(WT) 0

1. These timings are specified for Hosts and CICAM which support

the WAIT# signal.
2. All timings in ns when not explicitly mentioned.

K.1.7.2 Common Interface Attribute Memory Write Diagram

- teewy -
. Lol
Y 'S Wiy min
A[14-0)
REG#
WL max
(g tsu(CE#WE#) -
- \wlq—b tsurces) / Vi min
i Vi max
", tau(AWE#) - thicEs)
OE# Vg min
ViL max
| fTsuga) tw(wE#) - ‘trec WE#]
- | - .
WE# Wiy min
ViL max
tsulOE#-WE# -
su(] -l :E‘v‘(;\ﬂ;WE#) twr) - ___-tv(\n@ thioEs-wE#)
/ Wiy min
WAIT#
VL max
tsuD-we#) nl e |ty
> -t -
Wiy min
DIN[15:0}#
t YL max
dis(WE#) o t
i} | en{OE#)
tdis(OE#) ——— | - ten ™2 '=
Yig min
DOUT[15 0
ViL max

Figure K.5: Attribute Memory Write Timing Diagram

© 2008, 2009, 2011, 2015 Cl Plus LLP

245

Table K.12: Attribute Memory Write Timing Specifications

Item Symbol 250 ns
min max
Write Cycle Time te(W) 250
Write Pulse Width tw(WE#) 150
Address Setup Time ' tsu(A) 30
Address Setup Time for WE# " tsu(A-WE#) 180
Card Enable Setup Time for WE# tsu(CE#-WE#) 180
Data Setup Time for WE# t(D-CE#) 80
Data Hold Time th(D) 30
Write Recover Time trec(WE#) 30
Qutput Disable Time from WE# tais(WE#) 100
Output Disable Time from OE# tais(OE#) 100
Output Enable Time from WE# ten(WE#) 5
Output Enable Time from OE# ten(OE#) 5
Output En. Setup from WE# tsu(OE#-WE#) 10
Output Enable Hold from WE# th(OE#-WE#) 10
Card Enable Setup Time * tsu(CE#) 0
Card Enable Hold Time * tn(CE#) 20
WAIT# Valid from WE# ° tW(WT-WE#) 35
WAIT# Pulse Width * tw(WT) 12 us
WE# High from WAIT# released ° t,(WT) 0
Notes:
1. The REG# signal timing is identical to address signal timing.
2. These timings are specified for Hosts and cards which support the WAIT# signal.
3. These timings specified only when WAIT# is asserted within the cycle.
4 All timings measured at the Cl card. Skews and delays from the system driver/receiver to the ClI
card must be accounted by the system.
6. All timings in ns when not explicitly mentioned.

K.1.7.3 Common Interface 1/0 Read Timing

Al14:0]
{su(REG#) -t = th(a)
‘th(REG#)V
REGH#
th(ce#
~—Pp tsu(CE#) 4(—‘
CE#
- tsu(a) L tw(IORD)
IORD#
_tafNPACK#) tdrINPACK#)
INPACK# /
tdf(WAIT#) tw(WAIT#) tar(wAIT#)
- L |
I
WAIT#
- tsu() - Lge [h(D)
D[7:0]

Figure K.6: I/0 Read Timing Diagram

© 2008, 2009, 2011, 2015 Cl Plus LLP

Cl Plus Specification v1.3.2 (2015-03)

Vi min

V)L max

Viy min

V)L max

Vi min

V)L max

Vig min

V)L max

Vig min

V)L max

Vig min

V)L max

Vg min

VL max

246

Cl Plus Specification v1.3.2 (2015-03)

Table K.13: I/0 Read Timing Specifications

A[14:0]

CE#

IOWR#

WAIT#

Item Symbol min max
Data Delay after IORD# tsu(D) 100
Data Hold following IORD# th(D) 0
IORD# Width Time tw(IORD) 165
Address Setup before IORD# tsu(A) 70
Address Hold following IORD# th(A) 20
CE# Setup before IORD# tsu(CE#) 5
CE# Hold following IORD# th(CE#) 20
REG# Setup before IORD# tsu(REGH#) 5
REG# Hold following IORD# th(REGH#) 0
INPACK# Delay Falling from IORD# af(INPACK#) | 0 45
INPACK# Delay Rising from IORD# ar(INPACK#) 45
WAIT# Delay Falling from IORD# tar(WAITH) 35
Data Delay from WAIT# Rising tar(WAITH#) 0
WAIT# Width Timing tw(WAIT#) 12000
NOTE: All timings in ns.
K.1.7.4 Common Interface 1/0O Write Timing
{su(REGH# -¢ tha)
r—)» ‘th(REG#)V
REG# \]
-t tsu(cE#) <th(CE#$
< tsu(a) < tw(lowR)
tdf(WAIT#) twWAIT#) o tdr(WAIT#)
I
tsu(D) rt— -t » th(D)

D[7:0]

Figure K.7: /0 Write Timing Diagram

© 2008, 2009, 2011, 2015 Cl Plus LLP

Vg min

V)L max

Vi min

VL max

Vi min

V)L max

Vi min

V)L max

Vi min

VL max

Vi min

VL max

247

Cl Plus Specification v1.3.2 (2015-03)

Table K.14: 1/0 Write Timing Specifications

Item Symbol min Max
Data Delay before IOWR# tsu(D) 60
Data Hold following IOWR# th(D) 30
IOWR# Width Time tw(IOWR) 165
Address Setup before IOWR# tsu(A) 70
Address Hold following IOWR# th(A) 20
CE# Setup before IOWR# tsu(CE#) 5
CE# Hold following IOWR# th(CE#) 20
REG# Setup before IOWR# tsu(REGH#) 5
REG# Hold following IOWR# th(REG#) 0
WAIT# Delay Falling from IOWR# ta(WAITH) 35
IOWR# High from WAIT# High tar(WAIT#) 0
WAIT# Width Timing tw(WAIT#) 12000
NOTE: All timings in ns.

K.1.7.5 Common Interface MPEG Signal Timing

MCLKI

MDI[7:0]
MISTR
MIVAL

MCLKO

MDO[7:0]
MOSTR
MOVAL

tclkp
toii

telkh

Vi min

VL max

St

A

Vg min

Y{E ;ié;;{ >< V)L max

tclkp
toikn telk
l Vi min
\ V)L max
tosu 047 toh
Vg min

QR

R

PR

VL max

Figure K.8: MPEG Stream Signals Timing Diagram

Table K.15: MPEG Stream Signals Timing Specifications

Item Symbol Minimum Timings
72 MBits/s 96 MBits/s

Clock Period teikp 111 83
Clock High Time teikn 40 20
Clock Low Time tei 40 20
Input Data Setup Time tsu 15 10
Input Data Hold Time th 10 10
Output Data Setup Time | tosu 20 10
Output Data Hold Time ton 15 10
NOTE: All timings in ns.

© 2008, 2009, 2011, 2015 Cl Plus LLP

248 Cl Plus Specification v1.3.2 (2015-03)

Annex L (normative):
Resource Summary

L.1 Resource IDs

There are two different versions of Resource IDs. Version 1 is defined in EN 50221 [7], section 8.2.2, version 2 is defined in TS 101 699 [8] section 4.1. In version 1, the

resource_type is 10 bits. Version 2 splits this field into 4 bits resource_type and 6 bits resource_instance. The resource_instance is identical to the module id described in TS 101
699 [8], section 4.2.

The resource_instance is used to distinguish between different implementations of the same resource provided by the Host and by CICAMs that need to co-exist. This concept is
only applicable to the resources listed in TS 101 699 [8], section 4.2. A Host supporting one of these resources has to implement resource manager version 2 and negotiate a
module_id with each CICAM.

For all resources not listed in TS 101 699 [8], section 4.2, resource ID version 1 is used. All resources defined in this specification use resource ID version 1. Such resources may
be handled by resource manager version 1 or 2.

The resource_id type (see EN 50221 [7], section 8.8.2) is set to O for all resources to indicate that they are public resources.

L.2 Resource Summary

© 2008, 2009, 2011, 2015 Cl Plus LLP

249 Cl Plus Specification v1.3.2 (2015-03)

Table L.1: Resource Summary

Resource Application Object Direction
Name Resource | class | type | vers. APDU Tag Tag Host | CAM | Mandatory Spec
Identifier value
Resource 00010041 |1 1 1 profile_enq 9F 80 10 <> Yes EN 50221
Manager profile 9F 80 11 <> (version 1
- or version 2
profile_change 9F 80 12 > may be
00010042 |1 1 2 profile_enq 9F 80 10 <> used), see | TS 101 699
profile 9F 80 11 > section L.1)
profile_change 9F 80 12 >
module_id_send 9F 80 13 <
module_id_command 9F 80 14 >
Application 00020041 | 2 1 1 application_info_enq 9F 80 20 > Yes EN 50221
Information application_info 9F 80 21 &
enter_menu 9F 80 22 >
00020042 | 2 1 2 application_info_enq 9F 80 20 > Yes TS 101 699
application_info 9F 80 21 <
enter_menu 9F 80 22 >
00020043 | 2 1 3 application_info_enq 9F 80 20 > Yes CI Plus
application_info 9F 80 21 <
enter_menu 9F 80 22 >
request_cicam_reset 9F 80 23 <
data_rate_info 9F 80 24 >
Conditional 00030041 | 3 1 1 ca_info_enq 9F 80 30 > Yes EN 50221
Access Support ca_info 9F 80 31 <
ca_pmt 9F 80 32 >
ca_pmt_reply 9F 80 33 <
Host Control 00200041 | 32 1 1 tune 9F 84 00 < Yes EN 50221
replace 9F 84 01 <
clear_replace 9F 84 02 <
ask_release 9F 84 03 >
00200042 | 32 1 2 tune 9F 84 00 < Yes CIPlus 1.3
replace 9F 84 01 <

© 2008, 2009, 2011, 2015 Cl Plus LLP

250

Cl Plus Specification v1.3.2 (2015-03)

clear_replace 9F 84 02 <
ask_release 9F 84 03 >
tune_broadcast_req 9F 84 04 <
tune_reply 9F 84 05 >
ask release reply 9F 84 06 <
Date-Time 00240041 | 36 date_time_enq 9F 84 40 < Yes EN 50221
date_time 9F 84 41 >
MMI 00400041 | 64 close_mmi 9F 88 00 > High level EN 50221
display_control 9F 88 01 < only
display_reply 9F 88 02 >
text_last 9F 88 03 <
text_more 9F 88 04 <
keypad_control 9F 88 05 <
keypress 9F 88 06 >
enq 9F 88 07 <
answ 9F 88 08 >
menu_last 9F 88 09 <
menu_more 9F 88 0A <
menu_answ 9F 88 0B >
list_last 9F 88 0C <
list_more 9F 88 OD <
subtitle_segment_last 9F 88 OE <
subtitle_segment_more 9F 88 OF >
display_message 9F 88 10 <
scene_end_mark 9F 88 11 <
scene_done 9F 88 12 <
scene_control 9F 88 13 >
subtitle_download_last 9F 88 14 <
subtitle_download_more 9F 88 15 >
flush_download 9F 88 16 <
download_reply 9F 88 17 <
low-speed 0060 xxx1 | 96 comms_cmd 9F 8C 00 < Yes for EN 50221
comms. connection_descriptor 9F 8C 01 < VH1O-§t‘:V;‘ere
comms_reply 9F 8C 02 >

© 2008, 2009, 2011, 2015 Cl Plus LLP

251

Cl Plus Specification v1.3.2 (2015-03)

comms_send_last 9F 8C 03 < support
comms_send_more 9F 8C 04 < exists
comms_rcv_last 9F 8C 05 >
comms_rcv_more 9F 8C 06 >

0060 xxx2 | 96 comms_cmd 9F 8C 00 < Yes for CI Plus
connection_descriptor 9F 8C 01 < v1.3 where

Host IP

comms_reply 9F 8C 02 > support
comms_send_last 9F 8C 03 < exists
comms_send_more 9F 8C 04 <
comms_rcv_last 9F 8C 05 >
comms_rcv_more 9F 8C 06 >

0060 xxx3 | 96 comms_cmd 9F 8C 00 < Yes for CIPlus 1.3
connection_descriptor 9F 8C 01 < ‘So-gt‘;"gere
comms_reply 9F 8C 02 > support
comms_send_last 9F 8C 03 < exists
comms_send_more 9F 8C 04 <
comms_rcv_last 9F 8C 05 >
comms_rcv_more 9F 8C 06 >

Content Control 008C 1001 | 140 64 cc_open_req 9F 90 01 < Yes CI Plus

cc_open_cnf 9F 90 02 >
cc_data_req 9F 90 03 <
cc_data_cnf 9F 90 04 >
cc_sync_req 9F 90 05 <
cc_sync_cnf 9F 90 06 >
cc_sac_data_req 9F 90 07 <
cc_sac_data_cnf 9F 90 08 >
cc_sac_sync_req 9F 90 09 <
cc_sac_sync_cnf 9F 90 10 >

008C 1002 | 140 64 cc_open_req 9F 90 01 < Yes Cl Plus 1.3
cc_open_cnf 9F 90 02 >
cc_data_req 9F 90 03 <
cc_data_cnf 9F 90 04 >
cc_sync_req 9F 90 05 <

© 2008, 2009, 2011, 2015 Cl Plus LLP

252 Cl Plus Specification v1.3.2 (2015-03)

cc_sync_cnf 9F 90 06 >
cc_sac_data_req 9F 90 07 <
cc_sac_data_cnf 9F 90 08 >
cC_sac_sync_req 9F 90 09 <
cc_sac_sync_cnf 9F 90 10 >
cc_PIN_capabilities_req 9F 90 11 >
cc_PIN_capabilities_reply 9F 90 12 <
cc_PIN_cmd 9F 90 13 >
cc_PIN_reply 9F 90 14 <
cc_PIN_event 9F 90 15 <
cc_PIN_playback 9F 90 16 >
cc_PIN_MMI_req 9F 90 17 >
Host Language & | 00 8D 10 01 | 141 64 1 Host_country_enq 9F 81 00 < Yes Cl Plus
Country Host_country 9F 81 01 >
Host_language_enq 9F 81 10 <
Host_language 9F 81 11 >
CAM_Upgrade 00 8E 1001 | 142 64 1 cam_firmware_upgrade 9F 9D 01 < Yes CI Plus
cam_firmware_upgrade_reply 9F 9D 02 >
cam_firmware_upgrade_progress 9F 9D 03 <
cam_firmware_upgrade_complete 9F 9D 04 <
Operator Profile 00 8F 1001 | 143 64 1 operator_status_req 9F 9C 00 > Yes Cl Plus 1.3
operator_status 9F 9C 01 <
operator_nit_req 9F 9C 02 >
operator_nit 9F 9C 03 <
operator_info_req 9F 9C 04 >
operator_info 9F 9C 05 <
operator_search_start 9F 9C 06 >
operator_search_status 9F 9C 07 <
operator_exit 9F 9C 08 >
operator_tune 9F 9C 09 <
operator_tune_status 9F 9C 0A >
operator_entitlement_ack 9F 9C 0B >
operator_search_cancel 9F 9C 0C >

© 2008, 2009, 2011, 2015 Cl Plus LLP

253 Cl Plus Specification v1.3.2 (2015-03)

SAS 0096 1001 | 150 64 1 SAS_connect_rgst 9F 9A 00 > No CI Plus
SAS_connect_cnf 9F 9A 01 <
SAS_data_rgst (see note 1) 9F 9A 02 >
SAS_data_av (see note 1) 9F 9A 03 >
SAS_data_cnf (see note 1) 9F 9A 04 >
SAS_server_query (see note 1) 9F 9A 05 >
SAS_server_reply (see note 1) 9F 9A 06 >
SAS_async_msg 9F 9A 07 >

Application MMI 00410041 | 65 1 1 RequestStart 9F 80 00 < Yes TS 101 699
RequestStartAck 9F 80 01 >
FileRequest 9F 80 02 >
FileAcknowledge 9F 80 03 <
AppAbortRequest 9F 80 04 <>
AppAbortAck 9F 80 05 &>

00410042 | 65 1 2 RequestStart 9F 80 00 < No for Host | Cl Plus 1.3

RequestStartAck 9F 80 01 > \éfgm
FileRequest 9F 80 02 >
FileAcknowledge 9F 80 03 <
AppAbortRequest 9F 80 04 >
AppAbortAck 9F 80 05 <>

Note 1: The synchronous SAS APDUs are not used by this specification.

© 2008, 2009, 2011, 2015 Cl Plus LLP

254 Cl Plus Specification v1.3.2 (2015-03)

Annex M (normative):
MHP Application Message Format

M.1 Background (Informative)

This Annex describes the MHP application message format that facilitates the connection between the CA system that
exists on the CICAM and the MHP application interface defined by TS 102 757 [35]. In considering the message format
then the architecture differences of an integrated receiver containing no conditional access system and a receiver
containing an integrated CA system have been considered. An architectural overview of the different environments is
presented.

M.1.1 Embedded CAS Environment (Informative)

An embedded CAS environment is depicted in Figure M.1 and is perhaps the simplest environment for Conditional
Access application environment. In this case the manufacturer has control of the middleware on the receiver and works
with the CA provider allowing the MHP component to be connected to the CA system. Interoperability issues between
the CA system and the MHP application API may be resolved by the manufacturer.

CA Head-end System

AA/ Possible return path for enablement, also telephone etc \A

—

Native

CA Domain
: T
v v
CA System A 4
L Native | it.dtt.ca Broadcast
l > l Ll l Xlet
CAVF
— J
N
CA Provider Manufacturer Manufacturer Broadcaster

or
3" Party

Figure M.1: Embedded CAS Environment

M.1.2 CI CAS Environment (Informative)

Within a CI CAS environment then the architecture of the system differs as there is no tight coupling of the CA system
and complete ownership may not lie with the manufacturer, as depicted in Figure M.2. A CAS-less receiver does not
include the CA subsystem and relies on a Conditional Access Module (CAM) on the Common Interface (CI) to perform
the CA services and de-scrambling. A CAS-less receiver has no knowledge of the CA system with which it is
interfacing, relying instead on the Common Interface protocol[4,3] to effect the CA services and descrambling (possibly
using the High Level MMI resource of the CI).

© 2008, 2009, 2011, 2015 Cl Plus LLP

255 Cl Plus Specification v1.3.2 (2015-03)

CA Head-end System

:/ Possible return path for enablement, also telephone etc \:
CI CAM iDTV
N N

- R s N
CA CIC CI) TV MHP App
Domain Link
Native

Smart
Card

: /'y

v v

CA System A 4
Native CIPlus it.dtt.c B’cast
-T=- native a xlet
CAIF
— ~
CA Provider CI CAM . iDTV Broadcaster
iDTV .
Manufacturer M act Manufacturer
anufacturer or 3 Party

Figure M.2: CICAM CAS Environment

In this environment then the CICAM Manufacturer has knowledge of the CA interfaces, the DTV Manufacturer does
not, therefore Pay-per-view and CA information has to be passed through the CI to the application environment and
presented at the application interface. For a manufacturer to realise 1t .dtt.ca then the Common Interface has to
provide all of the information as new CI messages which are understood by the native TV environment. This requires

that there is a CA information CI resource which is known to MHP enabled receivers and CI CA information enabled
CICAMs.

© 2008, 2009, 2011, 2015 Cl Plus LLP

256 Cl Plus Specification v1.3.2 (2015-03)

M.1.3 Use of SAS for MHP Support (Informative)

The SAS resource has been selected as the data transfer APDU resource to move data between the CICAM and Host
(and vice versa). This resource provides better control of asynchronous transfers than the DVB CA pipeline resource.
Figure M.3 depicts a conceptual view of the connection between the CICAM and the Host.

DVB
Cl Plus CAM MHP CA CA API
AP for for MHP
Cl Plus iDTV or CI Plus Host -
CAS CAS -
Specific . MHP Stack .~
Application Specific Resident
subset Java XLET

Apps

MHP
Specific
Application
for Cl Plus

Register Application ID
Cl Plus \ with SAS Resource
API Host

Establish SAS
SAS Communication SAS

Resource Resource [«

CAM @ Host |4 |

Spec

Where:

Start Communication
between Specific
Applications

This is'a generic SAS
resource that can
handle other SAS

sessions

Figure M.3: CA system and MHP connectivity through SAS

The private Host application ID shall be predefined for MHP environments.

The Open Session Request/Response and SAS Connect Request/cnf are used to establish
communication session.

Thereafter the SAS async _msg () is used to send data asynchronously between the specific applications in
Host and CICAM.

Additionally,

The MHP CA API implementation must be processed by the MHP SAS application in the event that the
CICAM is used for CAS (or to the embedded CA if local CAS is selected).

The SAS MHP application shall map between the MHP CA API and the MHP CA API for CI Plus as specified
in this Annex.

The SAS MHP messages shall support the full MHP CA API superset. Private Data that is CA vendor specific
shall be passed transparently through the interface in a defined way and is unambiguously specified in the
MHP CA API for CI Plus.

The SAS MHP Application in the CAM is a subset according to the requirements for a particular CAS.

© 2008, 2009, 2011, 2015 Cl Plus LLP

257 Cl Plus Specification v1.3.2 (2015-03)

M.1.4 Key Decisions (Informative)

The key decisions in defining the MHP application link are outlined below:
. SAS is selected for data transport over the Common Interface.
. The CA system link does not need to be encrypted.
. A common message format over SAS is required to map the CA system to the MHP API.

. The CICAM and Host manufacturers are to implement the message formatting. i.e. Host manufactures couple
to ita.dtt.ca, CICAM manufacturers couple to the CA system API.

. The messages shall encapsulate all of the requirements of ita.dtt.ca and do not require use of other CI
resources for information.

M.2 Message Format (Normative)

This section describes the MHP it .dtt.ca [35] message format. A MHP enabled CICAM and Host shall support all
messages.

M.2.1 Session Establishment

The application domain on the CICAM shall open a SAS session. The Host shall request a connection for the MHP
application using the SAS_connect rgst () APDU to the CICAM establishing a connection between the
application and the CA system. The connection shall be established with a 64-bit

private Host application IDof"itdttca\0" which has the hexadecimal value of
0x6974647474636100.

The CICAM shall respond with a SAS _connect _cnf () APDU and set the SAS session status field to
define the connection status.

M.2.2 Session Operation

The application API shall operate in asynchronous mode only to query and exchange data using the
SAS async_msg () which is reproduced in Table M.1.

Table M.1: SAS_Async_Message APDU syntax

Syntax No. of bits Mnemonic
SAS async msg () {
SAS async_msg_tag 24 uimsbf
length field() *
message_nb 8 uimsbf
message length 16 uimsbf
message_byte () 8 * message_length
}

Semantics for the SAS _async _msg () APDU syntax are defined by the OpenCableTM Specifications, CableCardTM
Interface 2.0 [27, 9.17.8] with the following qualifications:

message nb: The message number that is generated from a 8-bit cyclic counter, the Host and CICAM shall maintain
their own message counter numbers which shall be incremented by 1 on each message sent. The counter shall wrap
from 255 to 0.

The message byte () field for each message shall take the general form specified in Table M.2 where the message
data may be broken into a number of records containing the same or different types of data identified by the
datatype id.

© 2008, 2009, 2011, 2015 Cl Plus LLP

258 Cl Plus Specification v1.3.2 (2015-03)

Table M.2: General message_byte() syntax

Syntax No. of bits Mnemonic
message_byte () {
command_id 8 uimsbf
ca_system id 16 uimsbf
transaction id 32 uimsbf
send datatype nbr 8 uimsbf
for (i=0; i<send datatype nbr; i++) {
datatype id 8 uimsbf
datatype length 16 uimsbf
data_type () 8 * datatype_length | bslbf
}
}

Semantics for the general message byte () syntax:

command_id: This is a 8-bit value that identifies the message type and shall be either a command or a response. The
field values are defined in Table M.3. The command identity space is generally divided into two parts, a command is
even, while the response to a command is the even command identity plus 1.

Table M.3: Message Command Identities

Command_id Identity | Direction Description

reserved 0x00 Reserved for future use.

reserved 0x01 Reserved for future use.

CMD_ATR_GET_REQUEST 0x02 H>M A request sent by the Host to query the
SmartCard ATR information.

CMD_ATR_GET_RESPONSE 0x03 H&eM A response to a ATR Get Request Message
by the CICAM detailing the ATR information of
the smart card in the given slot or with the
given identity.

CMD_CANCEL_REQUEST 0x04 H&eM A request sent by either the Host or the
H>M CICAM to cancel a request with a specified
transaction identity, the command (if it exists)
will be cancelled and the command returns a
failed status.

CMD_CANCEL_RESPONSE 0x05 A response to a Cancel Request Message,
the cancel response is ONLY dispatched if no
transaction_id exists that needs to be

cancelled.

Ix
v
<<

CMD_CAPABILITIES REQUEST 0x06 H>M Queries the CICAM for information on the
CAS systems supported.

CMD_CAPABILITIES_RESPONSE 0x07 H&eM Response from the CICAM to a
CMD_CAPABILITIES_REQUEST message
informing the Host of the CA system
information.

CMD_HISTORY_GET_REQUEST 0x08 H>M A request sent by the Host to get the history
information.

CMD_HISTORY_GET_RESPONSE 0x09 H&eM A response to a History Get Request Message
by the CICAM detailing the product
information of the event.

CMD_HISTORY_SET_REQUEST 0x0a H>M A request sent by the Host to set the history
information.

CMD_HISTORY_SET_RESPONSE 0x0b HEM A response to a History Set Request Message
by the CICAM.

CMD_NOTIFICATION_DISABLE 0x0c H>M Disable asynchronous event notifications from
the CICAM.

CMD_NOTIFICATION_ENABLE 0x0d H>M Enable asynchronous event notifications from
the CICAM.

CMD_PARENTAL_LEVEL GET_REQUEST 0x0e H>M A request from the Host to query the current
parental control level.

CMD_PARENTAL_LEVEL GET_RESPONSE 0xOf HEM A response from the CICAM to retrieve the
current parental control level in response to a
CMD PARENTAL LEVEL GET REQUEST.

© 2008, 2009, 2011, 2015 Cl Plus LLP

259

Cl Plus Specification v1.3.2 (2015-03)

Command_id

Identity

Direction

Description

CMD_PARENTAL_LEVEL_SET_REQUEST

0x10

H>M

A request from the Host to modify the current
parental control level.

CMD_PARENTAL_LEVEL_SET_RESPONSE

0x11

HeM

A response from the CICAM to modify the
parental control level in response to a
CMD_SET_PARENTAL_LEVEL_REQUEST.

CMD_PIN_CHECK_REQUEST

0x12

H>M

A request sent by the Host to check the Pin
information.

CMD_PIN_CHECK_RESPONSE

0x13

HeM

A response to a Set PIN Request Message by
the CICAM confirming the correct PIN code.

CMD_PIN_GET_REQUEST

0x14

H>M

Queries the CICAM for status information on
the Personal Identification Numbers (PIN).

CMD_PIN_GET_RESPONSE

0x15

HeM

A response message from the CICAM to a
CMD_PIN_STATUS_REQUEST message
conveying the status information of the PINs.

CMD_PIN_SET_REQUEST

0x16

H>M

A request sent by the Host to change the
current Pin information.

CMD_PIN_SET_RESPONSE

0x17

A response to a PIN Set Request Message by
the CICAM detailing the PIN information held
by the CA system.

CMD_PRIVATE_DATA_REQUEST

0x18

A request sent by either the Host or the
CICAM to exchange private information.

CMD_PRIVATE_DATA_RESPONSE

0x19

A response to a Private Data Request
Message.

CMD_PRODUCT_GET_REQUEST

Ox1a

A request sent by the Host to query the
current product information.

CMD_PRODUCT_GET_RESPONSE

0x1b

A response to a Product Get Request
Message by the CICAM detailing the product
information of the event.

CMD_PURCHASE_CANCEL_REQUEST

Ox1c

H>M

A request sent by the Host to cancel a
purchase an event.

CMD_PURCHASE_CANCEL_RESPONSE

Ox1d

HeM

A response to a Purchase Get Request
Message by the CICAM detailing the product
information of the event.

CMD_PURCHASE_SET_REQUEST

Ox1e

H>M

A request sent by the Host to purchase an
event.

CMD_PURCHASE_SET_RESPONSE

Ox1f

HeM

A response to a Purchase Set Request
Message by the CICAM detailing the product
information of the event.

CMD_RECHARGE_REQUEST

0x20

H>M

A request sent by the Host to recharge the
wallet with monies.

CMD_RECHARGE_RESPONSE

0x21

HeM

A response to a Recharge Request Message
by the CICAM detailing the outcome of the
recharge event.

CMD_SLOT_GET_REQUEST

0x22

H>M

A request sent by the Host to query the slot
information.

CMD_SLOT_GET_RESPONSE

0x23

HeM

A response to a Slot Get Request Message by
the CICAM detailing the slot information of the
smart card in the given slot.

CMD_SMARTCARD_GET_REQUEST

0x24

H>M

A request sent by the Host to query the
SmartCard information.

CMD_SMARTCARD_GET_RESPONSE

0x25

HeM

A response to a SmartCard Get Request
Message by the CICAM detailing the smart
card information of the smart card in the given
slot or with the given identity.

CMD_SMARTCARD_SET_REQUEST

0x26

H>M

A request sent by the Host to set the user data
information on the SmartCard.

CMD_SMARTCARD_SET_RESPONSE

0x27

HeM

A response to a SmartCard Set Request
Message by the CICAM detailing the smart
card information of the smart card in the given
slot or with the given identity.

CMD_WALLET_GET_REQUEST

0x28

H>M

A request sent by the Host to get the wallet
information.

CMD_WALLET_GET_RESPONSE

0x29

HeM

A response to a Wallet Get Request Message
by the CICAM.

CMD_PRODUCT_INFO_GET_REQUEST

0x30

H>M

A request sent by the Host to query the
current product status information.

© 2008, 2009, 2011, 2015 Cl Plus LLP

260 Cl Plus Specification v1.3.2 (2015-03)

Command_id

Identity | Direction Description

CMD_PRODUCT_INFO_GET_RESPONSE

0x31 H&eM A response to a Product Info Get Request
Message by the CICAM detailing the product
status information.

0x32- Reserved for future use.
0x3f
CMD_ACCESS_EVENT 0x40 H&eM An event message from the CICAM to notify a

listener about a CA module status changes
regarding the access, descrambling and
purchasing periods.

CMD_CREDIT_EVENT 0x42 H&M An event message from the CICAM on a
change of state of the wallet credit.
CMD_MESSAGE_EVENT 0x44 H&eM An event message from the CICAM notifying a
new information message.
CMD_PIN_REQUEST_EVENT 0x46 H&eM An event from the CICAM indicating that a PIN
entry is required.
CMD_PIN_RESPONSE_EVENT 0x47 H>M A response from the Host to the CICAM to a

Pin Request Event Message which includes
the requested PIN code

CMD_PRIVATE_DATA_EVENT

0x48 HEM A request sent by either the Host or the
H->M CICAM to exchange private information, no
acknowledgement is required.

CMD_PRODUCT_EVENT Ox4a H&eM An event message from the CICAM on a
change of product status.
CMD_PURCHASE_HISTORY_EVENT Ox4c H&eM An event message from the CICAM on a
change to the purchase history.
CMD_RECHARGE_EVENT Ox4e H&eM An event message from the CICAM indicating
that a recharge event has completed.
CMD_SLOT_EVENT 0x50 H&eM An event message from the CICAM on a

change of card status, this message shall be
sent asynchronously whenever the card status

changes.
CMD_SMARTCARD_EVENT 0x52 H&eM An event message from the CICAM on a
change of card status.
0x54- Reserved for future use.
Ox7f
0x80-0xff User defined.

ca_system_id: This is a 16-bit integer that identifies the CA system being queried, this may be 0 when querying the
CICAM or transmitting a non-CA specific message.

transaction_id: A 32-bit value, generated by the sender of a data request message, that is returned in any corresponding
reply (response) message to that request. The transaction_id allows any asynchronous request for information to be
paired with any response that returns information. There are no constraints on the value of this field.

send_datatype_nbr: The number of data type items included in the message.

datatype_id: The type of the data contained in the data type loop, the values are defined in Table M.4.

Table M.4: Data Type Identities

Datatype Identity datatype id Description
0 Reserved.

dtid access event 31 Information about the access to services from the CA system.

dtid_byte_data() 1 Generic byte data.

dtid cas_information () 2 Identifies the CA provider and information about the CA system.

dtid_cicam information() 3 Identifies the CICAM supplier and information about the CICAM
system.

dtid credit event () 4 Notification status about the wallet and credit from the CA system.

dtid error status 5 Error status information.

dtid history () 6 A history or message record.

dtid_history_event () 7 Notification status about a change in the purchase history status or
arrival of a new message from the CA system.

dtid history request|() 8 A history information request.

dtid numeric index() 9 A numeric index or integer value.

dtid_object identity() 10 A CA system assigned object identity or handle.

© 2008, 2009, 2011, 2015 Cl Plus LLP

261 Cl Plus Specification v1.3.2 (2015-03)

Datatype Identity datatype id Description
dtid parental level() 11 A parental level.
dtid pin code () 12 A PIN code.
dtid pin event () 13 Notification status from the CA system requesting that the PIN code
should be entered.
dtid pin information() 14 Information about the PIN code.
dtid_product () 15 A product record.
dtid product event () 16 Notification status about the product from the CA system.
dtid product_info () 30 Product status information record.
dtid product request () 17 A product information request.
dtid_purchase () 18 A purchase record.
dtid_recharge () 19 A recharge request.
dtid recharge event () 20 Notification status about a recharge from the CA system.
dtid service id() 21 A service identity, specified as a DVB locator.
dtid slot () 22 Identifies the state of a smart card slot in the system.
dtid slot event () 23 Notification status about a card event from the CA system.
dtid_smartcard() 24 Smart card information.
dtid smartcard event () 25 Notification status about a smart card event from the CA system.
dtid smartcard request () 26 A smart card information request.
dtid user data() 27 User data.
dtid wallet () 28 A wallet record.
dtid wallet id() 29 A wallet identity.
32-127 Reserved for future use.
128-255 User defined.

datatype_length: The value of the datatype field in bytes.

data_type(): The datum contents identified by the datatype id oflength datatype length bytes. The data
type loop shall only contain the specified data type, but may contain multiple records of the same type, the number of
records may be determined by computation of the datatype length field.

M.3 Message Components

This section describes the format of standard components that are used in the message definitions. These are fragments
of data described as byte sequences which are referenced by the communication messages themselves. The basic
constructs represent common constructs that are used in the CI messages. They are used as a short hand field definition
rather than repeating a definition of a common construct.

M.3.1 Money

Money represents a quantity of money and includes the currency type and amount. The general form of any monetary
value shall be conveyed in the form as show in Table M.5.

Table M.5: Money field syntax

Syntax No. of bits | Mnemonic
money () {
currency 24 bslbf
num_of decimals 3 uimsbf
sign 1 bslbf
decimals 20 uimsbf
}

Semantics for the money() syntax are:

currency: A string of 3 characters representing the currency as defined by ISO 4217. The currency is specified as three
upper case characters e.g. EUR, GBP, USD, etc.

num_of decimals: The number of decimal places of this currency.

sign: The sign of the decimal value indicating a positive or negative value. "0" is positive, "1" is negative.

© 2008, 2009, 2011, 2015 Cl Plus LLP

262 Cl Plus Specification v1.3.2 (2015-03)

decimals: The value of this currency specified as a unsigned 20-bit integer. Currency units may be determined by using
the num of decimals field.

When the field is undefined then all bits of the money() block shall be "1" (i.e. OxffffffffFLES).

M.3.2 Time

This 40-bit field contains the time in Universal Time, Coordinated (UTC) and Modified Julian Date (MJD) as defined in
EN 300 468 [10], Annex C. The general form of any time value shall be conveyed in the form show in Table M.6.

Table M.6: Time field syntax

Syntax No. of bits | Mnemonic

time () {
mjd 16 uimsbf
utc 24 bslbf

Semantics for the time() block are:
mjd: 16-bit Modified Julian Date, refer to EN 300 468 [10], Annex C.
utc: Universal Time, Coordinated (UTC) coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

If the time is undefined then all bits of the time block are set to "1" (i.e. OXxfffffE££Ff).

M.3.3 Duration

This is a 24-bit field that contains a duration specified in hours, minutes and seconds. The general form of any duration
value shall be conveyed in the form show in Table M.7.

Table M.7: Duration field syntax

Syntax No. of bits | Mnemonic
duration() {

elapsed 24 bslbf
}

Semantics for the duration() block are:

elapsed: The elapsed time coded as 6 digits in 4-bit Binary Coded Decimal (BCD) - this is the same format as the utc
field in date ().

If the duration is undefined then all bits of the duration field are set to "1" (i.e. Oxf££ £ £).

M.3.4 String

A string field represents a variable length string up to 255 characters in length. The general form of any string shall be
conveyed in the form show in Table M.8.

Table M.8: String field syntax

Syntax No. of bits | Mnemonic
string () |
length 8 uimsbf
for (i=0; i<length; i++) {
char 8 bslbf
}
}

Semantics for the string() block are:

© 2008, 2009, 2011, 2015 Cl Plus LLP

263 Cl Plus Specification v1.3.2 (2015-03)

length: This 8-bit field specifies the length in bytes of the character forming the text string.

char: This is an 8-bit field. A string of char fields specify the string text. Text information is coded using the character
sets and methods described in EN 300 468 [10] Annex A.

M.3.5 Lstring

A long string field represents a variable length string which may exceed 255 characters and is typically used for a long
description or detailed information. The general form of any long string shall be conveyed in the form show in Table
M.9.

Table M.9: Long string field syntax

Syntax No. of bits | Mnemonic
lstring () {
length 16 uimsbf
for (i=0; i<length; i++) {
char 8 bslbf
}
}

Semantics for the Istring() block are:
length: This 16-bit field specifies the length in bytes of the character forming the text string.

char: This is an 8-bit field. A string of char fields specify the string text. Text information is coded using the character
sets and methods described in EN 300 468 [10] Annex A.

M.3.6 Locator

A locator represents a DVB reference to a service or programme event. The general form of any locator shall be
conveyed in the form show in Table M.10.

© 2008, 2009, 2011, 2015 Cl Plus LLP

264 Cl Plus Specification v1.3.2 (2015-03)

Table M.10: Locator field syntax

Syntax No. of bits | Mnemonic
locator () {
string indicator 1 bslbf
if (string flag == 1) {
length 7 uimsbf
for (i=0; i<length; i++) {
char 8 bslbf
}
}
else {
tsid indicator 1 bslbf
sid indicator 1 bslbf
event indicator 1 bslbf
reserved zero 1 bsIbf
num_components 3 uimsbf
original network id 16 uimsbf
if (tsid indicator == 1) {
transport stream id 16 uimsbf
}
if (sid indicator == 1) {
service id 16 uimsbf
}
for (i=0; i<num components; i++) {
component_tag 8 uimsbf
}
if (event indicator == 1) {
event id 16 uimsbf
}
path segments * string()
}
}

Semantics for the locator() block are:

string_indicator: This 1-bit flag indicates the use of a DVB locator string format when set to "1" and indicates a binary
field format when set to "0". In CI Plus then the binary format is the preferred transmission format and this field should
always be "0", the string format shall only be used where the locator cannot be represented in a binary format.

length: This 7-bit field specifies the length in bytes of the DVB locator string.

char: This is an 8-bit field. A string of char fields specify the string text. Text information is coded using the character
sets and methods described in EN 300 468 [10] Annex.

tsid_indicator: This 1-bit flag indicates that the locator includes the transport stream id when setto "1". If the
field is "0" then the transport stream identity is not specified.

sid_indicator: This 1-bit flag indicates that the locator includes a service id when setto "1". If the field is "0" then
the service identity is not specified.

event_indicator: This 1-bit flag indicates that the locator includes a event id when set to "1". If the field is "0" then
the event identity is not specified.

num_components: This 3-bit flag identifies the number of component tags that are specified in the locator, this may be
0 when no components are present.

original network_id: This 16-bit field specifies the label identifying the network id of the originating delivery
system of the information service indicated.

transport_stream_id: This is a 16-bit field that defines the transport stream containing the service indicated. This field
may be optionally omitted.

service_id: This is a 16-bit field which uniquely identifies an information service within a transport stream. The
service id isthe same asthe program number in the corresponding PMT. This field may be optionally omitted.

© 2008, 2009, 2011, 2015 Cl Plus LLP

265 Cl Plus Specification v1.3.2 (2015-03)

component_tag: This 8-bit field identifies an elementary stream component, the component _tag's have no specific
order. This field may be optionally omitted.

event_id: This 16-bit field contains the identification number of the described programme event in the EIT. This field
may be optionally omitted.

path_segments: The text path segments of the DVB locator as defined in IETF RFC 2396.

M.3.7 Pin Code

A Personal Identification Number, or PIN, is a 4 digit access code which enables access to some services of the CA
system and/or programme content. The general form of the pin code shall be conveyed in the form show in Table M.11.

Table M.11: PIN code syntax

Syntax No. of bits | Mnemonic
pin code () 16 uimsbf

Semantics for the pin_code() block are:

pin_code: This is a 16-bit field containing a 4-digit, 4-bit BCD, PIN code. When the value is undefined (i.e. not set)
then the value of the field bits shall be all "1"s i.e. 0Oxf£££. When the PIN code is secret and not available then the
value of the field shall be Oxfffe.

EXAMPLE: A pin-code of 1234 is coded as 0x1234.
EXAMPLE: A pin-code that is not defined or active shall be coded as Oxffff.

EXAMPLE: A pin-code that is set and is secret shall be coded as Oxfffe.

M.3.8 Parental Control Level

The parental control level describes the level of access available to the content. The general form of the field shall be
conveyed in the form show in Table M.12.

Table M.12: Parental Control Level syntax

Syntax No. of bits | Mnemonic
parental level () 8 uimsbf

Semantics for the parental level() are:
parental_level: The parental control level setting of the CA system. The values are shown in Table M.13.

Table M.13: Parental Control Values

Value Mnemonic Description

0x00 n/a Reserved for future use.

0x01 PARENTAL_CONTROL_STRICT_MODE Strict mode requires an extra PIN input for
viewing all PPV events except those rated for any
audience.

0x02 PARENTAL _CONTROL_INTERMEDIATE_MODE Intermediate mode an extra PIN input for viewing

PPV events rated restricted and adult only content
with no PIN for all other types of event.

0x03 PARENTAL_CONTROL_PERMISSIVE_MODE An extra PIN input for viewing PPV events rated
adults only and no PIN for all other events.
0x04-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined.

© 2008, 2009, 2011, 2015 Cl Plus LLP

266 Cl Plus Specification v1.3.2 (2015-03)

M.3.9 Properties

The Properties conveys generic information comprising a loop of names each with an associated data string. The
general form of the properties shall be conveyed in the form show in Table M.14.

Table M.14: Properties field syntax

Syntax No. of bits | Mnemonic
properties () {
num properties 8 uimsbf
for (i=0; i<num properties; i++) {
name * string()
data * Istring()
}
}

Semantics for the properties() block are:
num_properties: The number of properties described by the properties loop.
name: The name of the property.

data: The data associated with the property. The string content shall be interpreted in the context of name.

M.4 Message Types

The different message types are identified in the following sections:

M.4.1 ATR Get Request Message

A request sent by the Host to query the SmartCard ATR information. The Semantics for the CAS request _message()
syntax are:

command_id: CMD ATR GET REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.15.
Table M.15: ATR Get Request Message Data Types

Data Type Identity Description

dtid smartcard request () | The card or slot to query.

M.4.2 ATR Get Response Message

A response to a ATR Get Request Message by the CICAM detailing the ATR information of the smart card in the given
slot or with the given identity. The Semantics for the CAS_response_message() syntax are:

command_id: CMD ATR GET RESPONSE
ca_system_id: The ca system idreceivedinaatr get request message ().

data_type(): The data type fields associated with this response are shown in Table M.16.

© 2008, 2009, 2011, 2015 Cl Plus LLP

267 Cl Plus Specification v1.3.2 (2015-03)

Table M.16: ATR Get Response Message Data Types

Data Type Identity Description

dtid error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid data byte() The data associated with the ATR.

M.4.3 Cancel Request Message

A request sent by either the Host or the CICAM to cancel a request with a specified transaction identity, the command
(if it exists) shall be cancelled and the command returns a failed status. If there is no such request then a
CMD_CANCEL_RESPONSE shall be sent. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_CANCEL REQUEST

ca_system_id: The identity of the CA system.

transaction_id: The request/response command to cancel.

data_type(): The data type fields associated with this request are shown in Table M.17.

Table M.17: Cancel Request Message Data Types

Data Type Identity Description

dtid user data() One or more private data fields.

M.4.4 Cancel Response Message

A response to a Cancel Request Message, the cancel response is ONLY dispatched if no transaction_id exists that
needs to be cancelled. The Semantics for the CAS response message() syntax are:

command_id: CMD CANCEL RESPONSE
ca_system_id: The ca_system idreceivedina cancel request message ().
data_type(): The data type fields associated with this request are shown in Table M.18.

Table M.18: Cancel Response Message Data Types

Data Type Identity Description

dtid error_ status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in
the response and success shall be assumed.

M.4.5 Capabilities Request Message

A Host request for general information about the CA provider(s) and CA version numbers for all CA systems supported
by the CICAM in addition to information about the CICAM itself. The CICAM shall respond with a
CAS Response Message (). The Semantics for the CAS_request_message() syntax are:

command_id: CMD_CAPABILITIES REQUEST

ca_system_id: The CA system to query, a value 0x0000 shall return all CA systems supported by the CICAM, a non-
zero value queries information for a specific CA provider only.

data_type(): The data is ignored and shall be zero.

© 2008, 2009, 2011, 2015 Cl Plus LLP

268 Cl Plus Specification v1.3.2 (2015-03)

M.4.6 Capabilities Response Message

A response to a CAS_request message () by the CICAM detailing the CA provider(s) and CA version numbers
for all CA system supported by the CICAM. The Semantics for the CAS response message() syntax are:

command_id: CMD CAPABILITIES RESPONSE
ca_system_id: The ca_system idreceivedina CAS request message ().
data_type(): The data type fields associated with this response are shown in Table M.19.

Table M.19: Capabilities Response Message Data Types

Data Type Identity Description

dtid error status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in
the response and success shall be assumed.

dtid cas_information () One or more data blocks providing general information about the CA system(s)
available on the CICAM. A single block shall be used for each CA system supported
by the device.

dtid_cicam information() | A single data block that provides information about the CICAM itself.

M.4.7 History Get Request Message

A request sent by the Host to get the history information. The Semantics for the CAS request message() syntax are:
command_id: CMD_HISTORY GET REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.20.

Table M.20: History Get Request Message Data Types

Data Type Identity Description

dtid history request () One or more items specifying the history required.

M.4.8 History Get Response Message

A response to a History Get Request Message by the CICAM detailing the product information of the event. The
Semantics for the CAS_response message() syntax are:

command_id: CMD HISTORY GET RESPONSE
ca_system_id: The ca system idreceivedinahistory get request message ().
data_type(): The data type fields associated with this response are shown in Table M.21.

Table M.21: History Get Response Message Data Types

Data Type Identity Description

dtid error status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_history () The history information, there may be multiple history items. Multiple history items shall be
delivered in list order whereby the first item of any list shall be index 0. The history items
shall be delivered in a order that matches the original request.

© 2008, 2009, 2011, 2015 Cl Plus LLP

269 Cl Plus Specification v1.3.2 (2015-03)

M.4.9 History Set Request Message

A request sent by the Host to set the history information. The Semantics for the CAS_request _message() syntax are:
command_id: CMD HISTORY SET REQUEST

ca_system_id: The identity of the CA system to modify.

data_type(): The data type fields associated with this request are shown in Table M.22.

Table M.22: History Set Request Message Data Types

Data Type Identity Description
dtid history () One or more items specifying the updated history, the first item shall represent index
0 when a list is being replaced. If the history status is delete then the history is
deleted.

M.4.10 History Set Response Message

A response to a History Set Request Message by the CICAM. The Semantics for the CAS response_message() syntax
are:

command_id: CMD HISTORY SET RESPONSE
ca_system_id: The ca system idreceivedinahistory get request message ().
data_type(): The data type fields associated with this response are shown in Table M.23.

Table M.23: History Set Response Message Data Types

Data Type Identity Description

dtid error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_history () The revised history information, there may be multiple history items. Multiple history items
shall be delivered in list order whereby the first item of any list shall be index 0.

M.4.11 Notification Enable/Disable Request Message

A request from the Host to CICAM to enable or disable asynchronous event notification on the change of state of the
CA system and its associated environment. No response shall be returned to this command. On enabling notifications
then the CICAM shall immediately notify the Host of the current status by sending event messages reflecting the
current state of CA system, thereafter event messages shall only be dispatched on a change of state until such time that
the notifier is disabled or the SAS session is closed.

The Semantics for the CAS_response message() syntax are:
command_id: CMD_NOTIFICATION ENABLE REQUEST,CMD NOTIFICATION DISABLE REQUEST
ca_system_id: The identity of the CA system for which events are required.

data_type(): None.

M.4.12 Parental Level Get Request Message

A request from the Host to query the current parental control level.
command_id: CMD PARENTAL LEVEL GET REQUEST
ca_system_id: The identity of the CA system to query.

data_type(): None.

© 2008, 2009, 2011, 2015 Cl Plus LLP

270 Cl Plus Specification v1.3.2 (2015-03)

M.4.13 Parental Level Get Response Message

A response from the CICAM to retrieve the current parental control level.

command_id: CMD_PARENTAL LEVEL GET RESPONSE

ca_system_id: The ca_system_ id received in a Parental Level Get Request Message.
data_type(): The data type fields associated with this response are shown in Table M.24.

Table M.24: Parental Level Get Response Message Data Types

Data Type Identity Description

dtid error_status () The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid parental level () | The current parental level information assigned to the system.

M.4.14 Parental Level Set Request Message

A request from the Host to modify the current parental control level.

command_id: CMD_PARENTAL LEVEL SET REQUEST

ca_system_id: The identity of the CA system to modify.

data_type(): The data type fields associated with this request are shown in Table M.25.

Table M.25: Parental Level Set Request Message Data Types

Data Type Identity Description
dtid_parental level () | The new parental to assigned to the CA system.
dtid_pin_code () The optional PIN code required by the CA system to authorise the change in parental
level when required.

M.4.15 Parental Level Set Response Message

A response from the CICAM to modify the parental control level.

command_id: CMD PARENTAL LEVEL SET RESPONSE

ca_system_id: The ca_ system id received in the Parental Level Set Request Message.
data_type(): The data type fields associated with this response are shown in Table M.26.

Table M.26: Parental Level Set Response Message Data Types

Data Type Identity Description

dtid error status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid parental level () | The new parental level information assigned to the system.

M.4.16 Pin Check Request Message

A request sent by the Host to check the Pin information. The Semantics for the CAS request message() syntax are:

command_id: CMD PIN CHECK REQUEST

© 2008, 2009, 2011, 2015 Cl Plus LLP

271 Cl Plus Specification v1.3.2 (2015-03)

ca_system_id: The identity of the CA system to query.
data_type(): The data type fields associated with this request are shown in Table M.27.

Table M.27: Pin Check Request Message Data Types

Data Type Identity Description
dtid_pin_information () | The PIN information to check, the pin_code field shall contain the password to check.
No PIN information shall be changed in the CA System as a result of this message.

M.4.17 Pin Check Response Message

A response to a Set PIN Request Message by the CICAM detailing the PIN information held by the CA system. The
Semantics for the CAS response message() syntax are:

command_id: CMD_PIN CHECK RESPONSE
ca_system_id: The ca system id received in the Pin Check Request Message.
data_type(): The data type fields associated with this response are shown in Table M.28.

Table M.28: PIN Check Response Message Data Types

Data Type Identity Description

dtid_error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

M.4.18 Pin Get Request Message

Apin request message () sent by the Host to enquire about the current PINs held by the CA system. The
CICAM responds withthe pin response message () containing PIN information. The Semantics for the
CAS response_message() syntax are:

command_id: CMD PIN GET REQUEST
ca_system_id: The identity of the CA system to query.

data_type(): The data is ignored and shall be zero.

M.4.19 Pin Get Response Message

Aresponse to a PIN request message () by the CICAM detailing the PIN information held by the CA system.
The Semantics for the CAS_response message() syntax are:

command_id: CMD PIN GET RESPONSE
ca_system_id: The ca system id received in the Pin Get Request Message.
data_type(): The data type fields associated with this response are shown in Table M.29.

Table M.29: Pin Get Response Message Data Types

Data Type Identity Description

dtid_error_status () The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid pin information() | The PIN code information. One or more PIN codes may be returned.

© 2008, 2009, 2011, 2015 Cl Plus LLP

272 Cl Plus Specification v1.3.2 (2015-03)

M.4.20 Pin Set Request Message

A request sent by the Host to change the current Pin information. The CAS may not allow all fields of the PIN
information to be modified under application control and shall apply the changes to those fields that are permitted by
the CAS. i.e. The CAS may ignore field settings that it is not prepared to change under application control. The
application may determine the changed state in any PIN response message. The Semantics for the

CAS request message() syntax are:

command_id: CMD PIN SET REQUEST
ca_system_id: The identity of the CA system to query.
data_type(): The data type fields associated with this request are shown in Table M.30.

Table M.30: Pin Set Request Message Data Types

Data Type Identity Description
dtid_pin_information() | The updated PIN information and shall contain the existing PIN code.
dtid_pin_code () If the PIN is being changed then an authorisation PIN may be required to enable the
change of PIN code and shall be transmitted as a separate block.

M.4.21 Pin Set Response Message

A response to a PIN Set Request Message by the CICAM detailing the PIN information held by the CA system. The
Semantics for the CAS_response _message() syntax are:

command_id: CMD PIN SET RESPONSE
ca_system_id: The ca_system_id received in a Pin Set Request Message.
data_type(): The data type fields associated with this response are shown in Table M.31.

Table M.31: PIN Set Response Message Data Types

Data Type Identity Description

dtid error status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid pin_information () | Contains the updated PIN information. The returned information reflects the current PIN
information and the field settings may not exactly match the original request if the CA
system does not allow update of some of the fields.

M.4.22 Private Data Request Message

A request sent by either the Host or the CICAM to exchange private information. The Semantics for the
CAS request_message() syntax are:

command_id: CMD PRIVATE DATA REQUEST
ca_system_id: The identity of the CA system to query.
data_type(): The data type fields associated with this request are shown in Table M.32.

Table M.32: Private Data Request Message Data Types

Data Type Identity Description

dtid user data() One or more private data fields.

M.4.23 Private Data Response Message

A response to a Private Data Request Message. The Semantics for the CAS response message() syntax are:

© 2008, 2009, 2011, 2015 Cl Plus LLP

273 Cl Plus Specification v1.3.2 (2015-03)

command_id: CMD PRIVATE DATA RESPONSE
ca_system_id: The ca_system idreceived in a Private Data Request Message.
data_type(): The data type fields associated with this request are shown in Table M.33.

Table M.33: Private Data Response Message Data Types

Data Type Identity Description

dtid error status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in
the response and success shall be assumed.

dtid user data() One or more private data fields.

M.4.24 Product Get Request Message

A request sent by the Host to query the current product information. The Semantics for the CAS_request_message()
syntax are:

command_id: CMD PRODUCT GET REQUEST
ca_system_id: The identity of the CA system to query.
data_type(): The data type fields associated with this request are shown in Table M.34.

Table M.34: Product Get Request Message Data Types

Data Type Identity Description

dtid product request () The product to query.

M.4.25 Product Get Response Message

A response to a Product Get Request Message by the CICAM detailing the product information of the event. The
Semantics for the CAS_response message() syntax are:

command_id: CMD PRODUCT GET RESPONSE
ca_system_id: The ca_system_id received in a Product Get Request Message.
data_type(): The data type fields associated with this response are shown in Table M.35.

Table M.35: Product Get Response Message Data Types

Data Type Identity Description

dtid_error_status() | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid product () The product data, multiple products maybe returned in a single or multiple datatype blocks.

M.4.26 Product Info Get Request Message

A request sent by the Host to query the current product status information. The Semantics for the
CAS request message() syntax are:

command_id: CMD PRODUCT INFO GET REQUEST
ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.36.

© 2008, 2009, 2011, 2015 Cl Plus LLP

274 Cl Plus Specification v1.3.2 (2015-03)

Table M.36: Product Get Request Message Data Types

Data Type Identity Description

dtid_object_identity () The product identifier to query, multiple product identifiers may be included in a single
info request.

M.4.27 Product Info Get Response Message

A response to a Product Info Get Request Message by the CICAM detailing the product status information of the event.
The Semantics for the CAS_response message() syntax are:

command_id: CMD_INFO PRODUCT GET RESPONSE
ca_system_id: The ca_system_id received in a Product Get Request Message.
data_type(): The data type fields associated with this response are shown in Table M.37.

Table M.37: Product Get Response Message Data Types

Data Type Identity Description

dtid_error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_product_info () | Currentinformation about the product, multiple product information may be returned.
Information is only returned for products that exist.

M.4.28 Purchase Cancel Request Message

A request sent by the Host to cancel a purchase an event. The Semantics for the CAS request message() syntax are:
command_id: CMD PURCHASE CANCEL REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.38.

Table M.38: Purchase Set Request Message Data Types

Data Type Identity Description

dtid purchase () The identity of the item to cancel.

M.4.29 Purchase Cancel Response Message

A response to a Purchase Get Request Message by the CICAM detailing the product information of the event. The
Semantics for the CAS_response_message() syntax are:

command_id: CMD PURCHASE CANCEL RESPONSE
ca_system_id: The ca system id received in a Purchase Cancel Request Message.
data_type(): The data type fields associated with this response are shown in Table M.39.

Table M.39: Purchase Cancel Response Message Data Types

Data Type Identity Description

dtid error_ status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid purchase () The purchase information.

© 2008, 2009, 2011, 2015 Cl Plus LLP

275 Cl Plus Specification v1.3.2 (2015-03)

M.4.30 Purchase Set Request Message

A request sent by the Host to purchase an event. The Semantics for the CAS request _message() syntax are:
command_id: CMD PURCHASE SET REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.40.

Table M.40: Purchase Set Request Message Data Types

Data Type Identity Description

dtid purchase () The identity of the item to purchase.

M.4.31 Purchase Set Response Message

A response to a Purchase Set Request Message by the CICAM detailing the product information of the event. The
Semantics for the CAS_response message() syntax are:

command_id: CMD_PURCHASE SET RESPONSE
ca_system_id: The ca_system_id received in the Purchase Set Request Message.
data_type(): The data type fields associated with this response are shown in Table M.41.

Table M.41: Purchase Set Response Message Data Types

Data Type Identity Description

dtid_error_status() | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid purchase () The purchase data.

dtid product () The product data associated with the purchase.

M.4.32 Recharge Request Message

A request sent by the Host to recharge the wallet with monies. The Semantics for the CAS_request _message() syntax
are:

command_id: CMD RECHARGE REQUEST
ca_system_id: The identity of the CA system to query.
data_type(): The data type fields associated with this request are shown in Table M.42.

Table M.42: Recharge Request Message Data Types

Data Type Identity Description

dtid recharge () The recharge request information.

M.4.33 Recharge Response Message

A response to a Recharge Request Message by the CICAM detailing the outcome of the recharge event. The Semantics
for the CAS response message() syntax are:

command_id: CMD RECHARGE RESPONSE
ca_system_id: The ca system id received in the Recharge Request Message.

data_type(): The data type fields associated with this response are shown in Table M.43.

© 2008, 2009, 2011, 2015 Cl Plus LLP

276 Cl Plus Specification v1.3.2 (2015-03)

Table M.43: History Set Response Message Data Types

Data Type Identity Description

dtid error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid wallet () The updated wallet data.

dtid_recharge () Contains the original transaction information, including the recharge value.

M.4.34 Slot Get Request Message

A request sent by the Host to query the slot information. The Semantics for the CAS_request_message() syntax are:
command_id: CMD_ SLOT GET REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.44.

Table M.44: Slot Get Request Message Data Types

Data Type Identity Description

dtid_numeric_index () | The identity number of the slot to query. If the numeric index is not present then all slots
shall be assumed.

M.4.35 Slot Get Response Message

A response to a Slot Get Request Message by the CICAM detailing the slot information of the smart card in the given
slot. The Semantics for the CAS_response message() syntax are:

command_id: CMD SLOT GET RESPONSE
ca_system_id: The ca system id received in the Slot Get Request Message.
data_type(): The data type fields associated with this response are shown in Table M.45.

Table M.45: Slot Get Response Message Data Types

Data Type Identity Description

dtid error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid slot () The slot information, multiple blocks may be present if there are multiple slots in the CICAM.

M.4.36 SmartCard Get Request Message

A request sent by the Host to query the SmartCard information. The Semantics for the CAS request message() syntax
are:

command_id: CMD SMARTCARD GET REQUEST
ca_system_id: The identity of the CA system to query.
data_type(): The data type fields associated with this request are shown in Table M.46.

Table M.46: SmartCard Get Request Message Data Types

Data Type Identity Description

dtid smartcard request () | The smart card to query.

© 2008, 2009, 2011, 2015 Cl Plus LLP

277 Cl Plus Specification v1.3.2 (2015-03)

M.4.37 SmartCard Get Response Message

A response to a SmartCard Get Request Message by the CICAM detailing the smart card information of the smart card
in the given slot or with the given identity. The Semantics for the CAS _response message() syntax are:

command_id: CMD SMARTCARD GET RESPONSE
ca_system_id: The ca system_id received in the Smart Card Request Message.
data_type(): The data type fields associated with this response are shown in Table M.47.

Table M.47: Smartcard Get Response Message Data Types

Data Type Identity Description

dtid error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid smartcard() One or more data blocks containing the smart card information.

M.4.38 SmartCard Set Request Message

A request sent by the Host to set the user data information on the SmartCard. The Semantics for the
CAS request _message() syntax are:

command_id: CMD_SMARTCARD SET REQUEST
ca_system_id: The identity of the CA system to modify.
data_type(): The data type fields associated with this request are shown in Table M.48.

Table M.48: SmartCard Set Request Message Data Types

Data Type Identity Description
dtid smartcard request () | The smart card to query.
dtid wallet_ id() The identity of the new wallet to set as current. If this block is omitted then the current

wallet shall remain unchanged.

dtid user data() the user data to write to the smart card if the user data is to be updated. If this block
is omitted then the user data shall remain unchanged.

M.4.39 SmartCard Set Response Message

A response to a SmartCard Get Request Message by the CICAM detailing the smart card information of the smart card
in the given slot or with the given identity. The Semantics for the CAS_response message() syntax are:

command_id: CMD SMARTCARD GET RESPONSE
ca_system_id: The ca system id received in the SmartCard Set Request Message.
data_type(): The data type fields associated with this response are shown in Table M.49.

Table M.49: SmartCard Set Response Message Data Types

Data Type Identity Description

dtid error status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

278 Cl Plus Specification v1.3.2 (2015-03)

M.4.40 Wallet Get Request Message

A request sent by the Host to get the wallet information. The Semantics for the CAS_request_message() syntax are:
command_id: CMD WALLET GET REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.50.

Table M.50: Wallet Get Request Message Data Types

Data Type Identity Description
dtid _wallet_id() The wallet to query, multiple wallet identity data types may be present if information
on a number of different wallets is required in a single request.

M.4.41 Wallet Get Response Message

A response to a Wallet Get Request Message by the CICAM. The Semantics for the CAS_response_message() syntax
are:

command_id: CMD WALLET GET RESPONSE
ca_system_id: The ca_system_id received in a Wallet Get Request Message.
data_type(): The data type fields associated with this response are shown in Table M.51.

Table M.51: History Set Response Message Data Types

Data Type Identity Description

dtid error_status () | The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid wallet () The requested wallet data, multiple wallet data types may be present if multiple wallets were
originally requested. The wallets shall appear in the same order as they were requested.

M.5 Event Types

The different event message types are identified in the following sections, an event is generally distinguished from a
request / response message type as it is unsolicited and generally does not require a response.

M.5.1 Access Event Message

An event message from the CICAM on a change of access to the broadcast material, this message shall be sent
asynchronously whenever the access status changes. No response shall be returned. The message shall only be
transmitted when notifications are enabled.

The Access Event may be used to notify a listener about a CA module status changes regarding the access,
descrambling and purchasing periods. Under some circumstances, a single event in the CA system may result in
multiple CAAccessEvents being posted. For example, successful purchase of a current program could result in both
ACCESS DESCRAMBLING BEGIN and ACCESS _GRANTED.

The Semantics for the CAS response message() syntax are:
command_id: CMD ACCESS EVENT
ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.52.

© 2008, 2009, 2011, 2015 Cl Plus LLP

279 Cl Plus Specification v1.3.2 (2015-03)

Table M.52: Access Event Message Data Types

Data Type Identity Description

dtid_access_event () The access status. Multiple events may be included in a single or multiple data type
blocks.

M.5.2 Credit Event Message

An event message from the CICAM on a change in credit, this message shall be sent asynchronously whenever the
purchase credit state changes. No response shall be returned. The message shall only be transmitted when notifications
are enabled.

The credit event may be used to notify a listener about a credit status changes regarding wallet recharge etc.
The Semantics for the CAS_response message() syntax are:

command_id: CMD CREDIT EVENT

ca_system_id: The identity of the CA system performing the credit charge.

data_type(): The data type fields associated with this request are shown in Table M.53.

Table M.53: Credit Event Message Data Types

Data Type Identity Description

dtid_credit_event () The credit status. Multiple events may be included in a single or multiple data type
blocks. This data type block shall appear before any associated datatype information
associated with the event.

dtid wallet() The wallet associated with the credit change.

dtid smartcard() The Smart Card associated with the credit change.

M.5.3 Message Event Message

An event message from the CICAM on a new message from the service operator, this message shall be sent
asynchronously. No response shall be returned. The message shall only be transmitted when notifications are enabled.

The Semantics for the CAS_response message() syntax are:

command_id: CMD MESSAGE EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.54.

Table M.54: Message Event Message Data Types

Data Type Identity Description

dtid_history_event () The new message status. This data type block shall appear before any
associated datatype information associated with the event.

dtid history () The message information.

dtid smartcard() The Smart Card associated with the message event.

M.5.4 Pin Request Event Message

An event from the CICAM indicating that a PIN entry is required, this message shall be sent asynchronously. A pin
code response may be optionally returned to the Smart Card. The message shall only be transmitted when notifications
are enabled.

The Semantics for the CAS response message() syntax are:

© 2008, 2009, 2011, 2015 Cl Plus LLP

280 Cl Plus Specification v1.3.2 (2015-03)

command_id: CMD PIN REQUEST EVENT
ca_system_id: The identity of the CA system generating the event.
data_type(): The data type fields associated with this request are shown in Table M.55.

Table M.55: PIN Request Event Message Data Types

Data Type Identity Description

dtid pin event () The PIN code request. This data type block shall appear before any
associated datatype information associated with the event.

dtid pin information() The PIN information.

M.5.5 Pin Request Response Message

A response from the Host to the CICAM to a Pin Request Event Message which includes the requested PIN code. The
response may be optionally sent by the Host and shall use the same transaction_id to return the PIN code. This is the
only event message for which a response may be returned.

The Semantics for the CAS_response message() syntax are:

command_id: CMD_PIN RESPONSE EVENT

ca_system_id: The identity of the CA system as defined in the Pin Request Event Message requesting a PIN.
data_type(): The data type fields associated with this request are shown in Table M.56.

Table M.56: PIN Response Event Message Data Types

Data Type Identity Description

dtid pin_information () The PIN information. A valid PIN code shall be included in the pin code field.

M.5.6 Private Data Event Message

An event sent by either the Host or the CICAM to exchange private information, no acknowledgement is required. The
Semantics for the CAS_request_message() syntax are:

command_id: CMD PRIVATE DATA EVENT
ca_system_id: The identity of the recipient CA system.
data_type(): The data type fields associated with this request are shown in Table M.57.

Table M.57: Private Data Event Message Data Types

Data Type Identity Description

dtid user data() One or more private data fields.

M.5.7 Product Event Message

An event message from the CICAM on a change of product status, this message shall be sent asynchronously whenever
the product state changes. No response shall be returned. The message shall only be transmitted when notifications are
enabled.

The product Event may be used to notify a listener about a CA programme status changes regarding the Pay-per-View
start, stop and product list changes.

The Semantics for the CAS_response _message() syntax are:
command_id: CMD PRODUCT EVENT

ca_system_id: The identity of the CA system generating the event.

© 2008, 2009, 2011, 2015 Cl Plus LLP

281 Cl Plus Specification v1.3.2 (2015-03)

data_type(): The data type fields associated with this request are shown in Table M.58.

Table M.58: Product Event Message Data Types

Data Type Identity Description
dtid_product_event () The product status. Multiple events may be included in a single or multiple data type
blocks. This data type block shall appear before any dtid_product() associated with
the event.
dtid_product () The product associated with the event. Multiple products may be included in a single
or multiple data type blocks. The programmes relate to the last dtid_product_event()
included in the data type field.

M.5.8 Purchase History Event Message

An event message from the CICAM on a change to the purchase history, this message shall be sent asynchronously
whenever the history state changes. No response shall be returned. The message shall only be transmitted when
notifications are enabled.

The Semantics for the CAS_response message() syntax are:

command_id: CMD PURCHASE HISTORY EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.59.

Table M.59: Purchase History Event Message Data Types

Data Type Identity Description

dtid history event() The purchase history status. This data type block shall appear before any
associated datatype information associated with the event.

dtid_history () The history associated with the purchase history change.

dtid_smartcard() The Smart Card associated with the purchase history event.

M.5.9 Recharge Event Message

An event message from the CICAM indicating that a recharge event has completed, this message shall be sent
asynchronously. No response shall be returned. The message shall only be transmitted when notifications are enabled.

The CA product Event may be used to notify a listener about recharge transactions.

The Semantics for the CAS_response message() syntax are:

command_id: CMD RECHARGE EVENT

ca_system_id: Th identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.60.

Table M.60: Recharge Event Message Data Types

Data Type Identity Description
dtid_recharge_event () The recharge status. This data type block shall appear before any associated
datatype information associated with the event.

M.5.10 Slot Event Message

An event message from the CICAM on a change of slot status, this message shall be sent asynchronously whenever the
slot status changes. No response shall be returned. The message shall only be transmitted when notifications are
enabled. The Semantics for the CAS response message() syntax are:

© 2008, 2009, 2011, 2015 Cl Plus LLP

282 Cl Plus Specification v1.3.2 (2015-03)

command_id: CMD SLOT EVENT
ca_system_id: The identity of the CA system generating the event.
data_type(): The data type fields associated with this request are shown in Table M.61.

Table M.61: Slot Event Message Data Types

Data Type Identity Description

dtid slot event() The state of the slot.

M.5.11 Smart Card Event Message

An event message from the CICAM on a change of card status, this message shall be sent asynchronously whenever the
card status changes. No response shall be returned. The message shall only be transmitted when notifications are
enabled. The Semantics for the CAS_response message() syntax are:

command_id: CMD SMARTCARD EVENT
ca_system_id: The identity of the CA system generating the event.
data_type(): The data type fields associated with this request are shown in Table M.62.

Table M.62: Slot Event Message Data Types

Data Type Identity Description
dtid_smartcard_event () The state of the smartcard.
dtid smartcard() The Smart Card associated with the event.

M.6 Data Type Id Components

The datatype_id structures are identified in the following sections:

M.6.1 Access Event

Status information about the access to the services from the CA system. The general form of the access status data shall
be conveyed in the form show in Table M.63.

Table M.63: Access Event syntax

Syntax No. of bits | Mnemonic
dtid access_event () {
access_status 8 uimsbf
description * string()
object id * string()
private data * String()
}

Semantics for the dtid access_event() event data type syntax:

access_status: The access state to the current material The values are shown in Table M.64.

© 2008, 2009, 2011, 2015 Cl Plus LLP

283

Cl Plus Specification v1.3.2 (2015-03)

Table M.64: Access Status Values

Value Mnemonic Description

0x00 n/a Reserved for future use.

0x01 ACCESS_GENERIC EVENT An unknown or unspecified event.

0x02 ACCESS DESCRAMBLING BEGIN The current service has started descrambling.

0x03 ACCESS_DESCRAMBLING_END The descrambling process has been stopped for
the current service.

0x04 ACCESS_FREE_WINDOW_BEGIN The free window period for current PPV event
has started.

0x05 ACCESS_FREE_WINDOW_END The free window period for current PPV event
has ended.

0x06 ACCESS_PURCHASE_PERIOD_BEGIN The purchase period for current PPV event has
started.

0x07 ACCESS_PURCHASE_PERIOD_END The purchase period for current PPV event has
ended.

0x08 ACCESS_GRANTED The CA is entitled to descramble the current
PPV event.

0x09 ACCESS_DENIED The CA is not entitled to descramble the current
PPV event.

0x0a ACCESS_DENIED_FOR_PARENTAL_RATING The CA is not entitled to descramble the current
PPV event due to parental rating.

0x0b ACCESS CARD NEEDED A card is required.

0x0c ACCESS_DENIED_FOR_SMART_CARD_ERROR The CA is not entitled to descramble the current
PPV event due to a smart card issue. The smart
card status may be retrieved using other
smartcard specific methods.

0x0d ACCESS_CLEAR The signal is not scrambled.

0x0e ACCESS_FREE The signal is scrambled in a free mode.

0x0e-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined.

description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.2 Byte Data

The Byte Data includes an arbitrary string of data bytes. The datatype is formatted as shown in Table M.65.

Table M.65: Byte Data data type syntax

Syntax No. of bits | Mnemonic

dtid _byte data() {
byte data *

}

Istring()

Semantics for the dtid byte data() data type syntax:

byte data: An arbitrary block of data.

M.6.3 CAS Information

The dtid_cas_information() conveys the CA System information. The general form shall be conveyed in the form
shown in Table M.66 .

© 2008, 2009, 2011, 2015 Cl Plus LLP

284 Cl Plus Specification v1.3.2 (2015-03)

Table M.66: CA System Information data type syntax

Syntax No. of bits | Mnemonic
dtid cas information () {
ca_system id 16 uimsbf
name * string()
revision * string()
version * string()
}

Semantics for the dtid cas infomation() data type syntax:

ca_system_id: The DVB CA system identity as defined by ETSI TS 101 162 [32] or 0x0000 indicating that the record
identifies the CICAM.

name: The name of the CA provider coded using the character sets and methods described in EN 300 468 [10].

revision: The revision of the CA kernel, in a CA system provider form, coded using the character sets and methods
described in EN 300 468 [10].

version: The version of the CA kernel, in a CA system provider form, coded using the character sets and methods
described in EN 300 468 [10].

M.6.4 CICAM Information

The dtid cicam_information() conveys the CICAM information. The general form is show in Table M.67.

Table M.67: CICAM information data type syntax

Syntax No. of bits | Mnemonic
dtid cicam information() {
slot count 4 uimsbf
reserved 4 bslbf
name * string()
revision * string()
version * string()
serial number * string()
}

Semantics for the dtid_cicam_infomation() data type syntax:

slot_count: The number of smart card slots supported by the CICAM.

reserved: Reserved for future use.

name: The name of the CICAM supplier coded using the character sets and methods described in EN 300 468 [10].

revision: The revision of the CICAM, in a CICAM determined form, coded using the character sets and methods
described in EN 300 468 [10].

version: The version of the CICAM, in a CICAM form, coded using the character sets and methods described in EN
300 468 [10].

serial number: The serial number of the CICAM, in a CICAM form, coded using the character sets and methods
described in EN 300 468 [10].

M.6.5 Credit Status Event

Notification status about the wallet and credit from the CA system. The general form of the wallet and credit status data
shall be conveyed in the form show in Table M.68.

© 2008, 2009, 2011, 2015 Cl Plus LLP

285 Cl Plus Specification v1.3.2 (2015-03)

Table M.68: Credit Status Event syntax

Syntax No. of bits | Mnemonic
dtid credit event () {

credit_ status 8 uimsbf
description * string()
object id * string()
private data * string()

Semantics for the dtid credit event() data type syntax:
credit_status: The status of the credit as defined in Table M.69:

Table M.69: Credit Status Values

Value Mnemonic Description

0x00 CREDIT_CHANGED The credit on the card is changed.
0x01-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined

description: An optional text description of the event.
object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.6 Error Status

The dtid _error status datatype conveys information about a failure of a request. The general form shall be
conveyed in the form show in Table M.70.

Table M.70: Error Status field syntax

Syntax No. of bits | Mnemonic
dtid error status() {
error code 8 uimsbf
message * string()
}

Semantics for the dtid_error_status() block are:

error_code: An error code associated with the original request that failed, the error code shall be interpreted in the
context of the original request. The error codes are shown in Table M.71.

© 2008, 2009, 2011, 2015 Cl Plus LLP

286 Cl Plus Specification v1.3.2 (2015-03)

Table M.71: Error code values

Value Mnemonic Description
0 OK No error.
1 PIN_REQUIRED A PIN code is required (or NULL PIN has been passed).
2 PIN_ERROR The entered PIN code was incorrect.
3 CARD_BLOCKED The smart card is blocked.
4 CARD_EXPIRED The card has expired.
5 CREDIT_LACK There is insufficient credit to purchase the PPV event.
6 CARD _REMOVED The card was removed during the process.
7 CARD_ERROR Generic communication error with the smart card.
8 PURCHASE_TIME_ENDED The purchase period ended while proceeding with a purchase.
9 ALREADY_PURCHASED It is not possible to buy the even because it has already been
purchased.
10 CARD MUTED The card is muted.
11-21 n/a Reserved for future use.
22 CARD_DAMAGED No smart card is inserted.
23 UNSUPPORTED_FEATURE Feature is not supported.
24 NO_OFFERS No events are offered currently.
25-50 n/a Reserved for future use.
51 SMS _DENIAL SMS denied the recharge to success.
52 CONNECTION_ERROR The recharge ended with a failure due to a connection problem.
53 INVALID_SCRATCH Recharge event ended with a failure due to incorrect scratch card
number.
54 MAXIMUM_CREDIT Recharge event ended with a failure because the user reached the
maximum credit.
55 PARAMETER_ERROR Recharge event ended with a failure because parameters used in
the transaction were incorrect.
56-99 n/a Reserved for future use.
100 GENERIC_ERROR Unspecified generic error.
101-124 n/a Reserved for future use.
125 BUSY The system is busy and cannot service the request.
126 SYSTEM_ERROR The system has suffered a fatal error and cannot service the
request.
127 BAD_COMMAND An unrecognised command has been received.
128-255 n/a User defined.

message: An optional string message associated with the error code.

M.6.7 History

A History item represents a previous purchase of a pay event, be it a subscription or PPV event. The general form of the
history request shall be conveyed in the form show in Table M.72.

© 2008, 2009, 2011, 2015 Cl Plus LLP

287

Cl Plus Specification v1.3.2 (2015-03)

Table M.72: History field syntax

Syntax No. of bits | Mnemonic
dtid history() {
type 8 uimsbf
id * string()
nid 32 uimsbf
cancelled 1 bslbf
status 7 uimsbf
history date * time()
private data * Istring()
if (type == HISTORY TYPE PPV) ({
ppv_product_ id * string()
ppv_order date * time()
ppv_item status 8 uimsbf
}
else if (type == HISTORY TYPE RECHARGE) {
recharge value * money()
recharge source 8
recharge transaction id * string()
}
else if (type == HISTORY TYPE MESSAGE) {
message_ subject * string()
message body * Istring()
message priority 8 uimsbf
message date * time()
}
else {
properties * properties()
}
}

Semantics for the dtid_history() data type syntax:

type: The type of history, as defined in Table M.73.

Table M.73: History Type Values

Value

Mnemonic

Description

0x00

HISTORY_TYPE_RESERVED

Reserved for future use.

0x01

HISTORY_TYPE_PPV

Pay per view item.

0x02

HISTORY_TYPE_RECHARGE

Recharge item.

0x03

HISTORY_TYPE_MESSAGE

A message from the broadcaster.

0x04-0x7£f

n/a

Reserved for future use.

0x80-0xff

n/a

User defined.

id: The CA system string identity assigned to the history item, this field is opaque and private to the CA system. This is

a variable length text string.

nid: The CA system numeric identity assigned to the history item that uniquely identifies it.

cancelled: The purchase cancel state, zero "0" indicates that the order has not been cancelled, "1" indicates that the

order has been cancelled.

status: The status of the history item, defined as Table M.74:

© 2008, 2009, 2011, 2015 Cl Plus LLP

288

Cl Plus Specification v1.3.2 (2015-03)

Table M.74: History Status Values

Value Mnemonic Description

0x00 HISTORY_STATUS RESERVED | Reserved for future use.

0x01 HISTORY STATUS UNREAD The history item is un-read.

0x02 HISTORY _STATUS READ The history item has been read.

0x03 HISTORY_STATUS DISPOSED | The history item has been disposed.
0x04-0x3e | n/a Reserved for future use.

0x3f HISTORY_STATUS DELETE Delete the history item.
0x40-0x7f | n/a User defined.

history_date: The date when the item was added to the history list.

associate a date with the history.

private_data: Private data associated with the purchase.

ppv_product_id:
ppv_order_date:

ppVv_item_status:

This may be undefined if the CA system does not

The CA system assigned product identity that was purchased. This is a variable length string.

The date when the order was made.

The current status of the history item, as defined in Table M.75.

Table M.75: History Event Iltem Status Values

Value Mnemonic Description

0x00 ITEM_STATUS _EVENT_SEEN The event has already been seen.

0x01 ITEM_STATUS_EVENT _UPCOMING | The event has been purchased and it is upcoming.

0x02 ITEM_STATUS_EVENT_LOST The event has been purchased and not viewed. The event

has been lost and credit deducted.

0x03 ITEM STATUS EVENT REFUNDED | The event has been refunded by broadcaster.
0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

recharge value: The value recharged for this history item.

recharge _source: The source of the re-charge, defined as Table M.76:

Table M.76: Recharge Source Values

Value Mnemonic Description
0x00 RECHARGE_SOURCE_RESERVED Reserved for future use.
0x01 RECHARGE_PROMOTIONAL The recharge has been performed by the broadcaster for
free for promotional purpose.
0x02 RECHARGE_DEBIT_CANCELLATION | The recharge has been performed by the broadcaster to
cancel a debit.
0x03 RECHARGE_REQUESTED The recharge has arrived after a request performed by the
user (both via OTA and via RC).
0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

recharge_transaction_id: A unique identifier of the recharge transaction.

message_subject: Optional string with the subject of the message, this shall be empty if there is no subject.

message body: The message text.

message_priority: The priority of the message, defined as Table M.77.

© 2008, 2009, 2011, 2015 Cl Plus LLP

289 Cl Plus Specification v1.3.2 (2015-03)

Table M.77: Message Priority Values

Value Mnemonic Description

0x00 PRIORITY_LOW A low priority message.

0x01 PRIORITY _NORMAL | A normal priority message.

0x02 PRIORITY_ HIGH A high priority message.
0x03-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined.

message_date: The date when the message was originally stored.

M.6.8 History Event

Notification status about a change in the purchase history status or arrival of a new message from the CA system. The
general form of the history status data shall be conveyed in the form show in Table M.78.

Table M.78: History Event syntax

}

Syntax No. of bits | Mnemonic
dtid history event() {
history status 8 uimsbf
description * string()
object id * string()
private data * string()

Semantics for the dtid_history _event() data type syntax:

history_status: The status of the history as defined in Table M.79.

Table M.79: History Change Status Values

Value Mnemonic Description
0x00 PURCHASE_HISTORY_CHANGE The purchase list stored on the card has been changed.
0x01 RECHARGE_HISTORY_CHANGED The recharge list stored on the card has been changed.
0x02 MESSAGE_HISTORY_CHANGED The message list stored on the card has been changed.
0x03-0x0f | n/a Reserved for future use.
0x10 NEW_MESSAGE A new message has arrived.
0x01-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined.

description: A text description of the event.

object_id: The CA object string identity associated with this event.

private_data: Private data associated with the event.

M.6.9 History Request

A History Request requests the history information from the CA system. The general form of the purchase request shall
be conveyed in the form show in Table M.80.

© 2008, 2009, 2011, 2015 Cl Plus LLP

290

Cl Plus Specification v1.3.2 (2015-03)

Table M.80: History Request field syntax

Syntax No. of bits | Mnemonic
dtid history request () {
reserved 4 bslbf
request type 4 uimsbf
if (request type == ID HISTORY) ({
history id * string()
else if (request type == NID HISTORY) ({
history nid 32 uimsbf
}
private data * string()
}

Semantics for the dtid_history request() data type syntax:
request_type: The type of history requested as defined in Table M.81.

Table M.81: History Request Type Values

Value Mnemonic Description

0x0 ALL HISTORY All of the history information.

0x1 PPV_HISTORY The history of PPV events

0x2 RECHARGE_HISTORY | The history of recharge events.

0x3 MESSAGE_HISTORY The history of messages.

O0x4 ID HISTORY The history item with specified CA system assigned string identity.

0x5 NID HISTORY The history item with specified CA system assigned numeric identity.
0x6-0xf | n/a Reserved for future use.

history_id: The CA system string identity assigned to the history item, this field is opaque and private to the CA
system. This is a variable length text string. Note that a history item is generally expected to use a CA numeric identity
rather than a CA string identity.

history nid: The CA system numeric identity to the history item, this field is opaque and private to the CA system.

private_data: Optional private data associated with the request.

M.6.10 Numeric Index

The numeric index identifies a numerically defined item in the CASystem. The datatype is formatted as shown in Table
M.82.

Table M.82: Numeric Index data type syntax

Syntax No. of bits | Mnemonic
dtid numeric index() {
numeric_ index 32 uimsbf
}

Semantics for the dtid numeric_index() data type syntax:

identity: A numeric value interpreted in the context of the message type.

M.6.11 Object Identity

The Object identifies the CASystem returned object identification. The datatype is formatted as shown in Table M.83.

© 2008, 2009, 2011, 2015 Cl Plus LLP

291 Cl Plus Specification v1.3.2 (2015-03)

Table M.83: Object Identity data type syntax

Syntax No. of bits | Mnemonic
dtid object identity () {
identity * Istring()
}

Semantics for the dtid_object_identity() data type syntax:

identity: The identification string obtained from a CA object interpreted in the context of the message type.

M.6.12 Parental Level

The Parental Level conveys information about the current parental control level. The datatype is formatted as shown in
Table M.84.

Table M.84: Parental Level data type syntax

Syntax No. of bits Mnemonic
dtid parental level() {
parental level

*

parental_level()

}

Semantics for the dtid_parental level() data type syntax:

parental_level: The parental level.

M.6.13 PIN Code

The Pin Code conveys the pin-code required to perform some operation. Information is formatted as shown in Table
M.85.

Table M.85: PIN code data type syntax

Syntax No. of bits | Mnemonic
dtid pin code () {
pin_code * pin_code()
}

Semantics for the dtid_pin_code() data type syntax:
new_parental_level: The requested parental level.

pin_code: The PIN code required to modify the parental level setting , enable a data update or unblock an event etc.

M.6.14 PIN Request Event

Notification status from the CA system requesting that the PIN code should be entered. The general form of the pin
entry notification shall be conveyed in the form show in Table M.86.

Table M.86: PIN Request Event syntax

Syntax No. of bits | Mnemonic
dtid pin event () {
pin_type 8 uimsbf
description * string()
object id * string()
private data * string()
}

Semantics for the dtid_pin_event() data type syntax:

© 2008, 2009, 2011, 2015 Cl Plus LLP

292 Cl Plus Specification v1.3.2 (2015-03)

pin_type: The type of PIN code required, the types are the same as those defined in dtid pin_information() for the type
field defined in Table M.87.

description: A text description of the event.
object_id: The CA object identity associated with this event.

private_data: Private data associated with the event.

M.6.15 PIN Information

The PIN conveys information associated with the Personal Identification Number associated with the CA system or
SmartCard. The PIN Information conveys information formatted as shown in Table M.87.

Table M.87: PIN information data type syntax

Syntax No. of bits | Mnemonic
dtid pin information () {
id * string()
type 6 uimsbf
is required 2 bslbf
is validated 1 bslbf
reserved 3 bslbf
retries remaining 4 uimsbf
pin_code * pin_code()
}

Semantics for the dtid_pin_infomation() data type syntax:

id: The CA system identity assigned to the smart card, this field is opaque and private to the CA system and uniquely
identifies the pin. This is a variable length text string.

type: The type of PIN code. The values are shown in Table M.88.
Table M.88: Pin Type Values

Value Description
0x00 Reserved.
0x01 Parental control PIN that protects parental control
modes.
0x02 SmartCard PIN that protects the CA system functions
of the smart card.
0x03 History PIN that protects history data.
0x04-0x0f | Reserved for future use.
0x10-0x1f | User defined.

is_required: A 2-bit field that designates whether PIN code use is required, the top bit is effectively a lock and
determines if the access may be changed, the lower bit is the state of the PIN requirement, as defined in Table M.89.

Table M.89: Pin Required Values

Value Description
0x0 | The PIN code is not required.
0x1 | The PIN code is required.
0x2 | The PIN code is not required and cannot be enabled.
0x3 | The PIN code is required and cannot be disabled.

is_validated: This single bit indicates if the current PIN has been validated since the last reset. "1" indicates that the
PIN has been validated, otherwise "0".

retries_remaining: The number of tries of the PIN before the PIN is blocked from further use. A value of 0xf indicates
that there is no blocking in effect, a value of 0x0 indicates that the PIN is currently blocked and there are no more re-
tries outstanding.

© 2008, 2009, 2011, 2015 Cl Plus LLP

293 Cl Plus Specification v1.3.2 (2015-03)

M.6.16 Product

The product identifies information about a specified product. The datatype is formatted as shown in Table M.30
The product details a pay item. The general form of any product shall be conveyed in the form as show in Table M.90.

Table M.90: Product data type syntax

Syntax No. of bits | Mnemonic
dtid product () {
product_type 8 uimsbf
id * string()
name * string()
description * string()
xdescription * Istring()
pw_start time * time()
pw_end time * time()
preview * duration()
cost * money()
num_contained products 8 uimsbf
for (i=0; i<num products; i++) {
contained product id * string()
}
if (product type == PPT) {
ppt_locator * locator()
ppt_rating 8 uimsbf
ppt slice price * money()
ppt_slice duration * duration()
}
else if (product type == PPE) ({
ppv_locator * locator()
ppv_rating 8 uimsbf
ppv_start time * time()
ppv_end_time * time()
ppv_num_packages 8 uimsbf
for (i=0; i<ppv_num packages; 1i++) {
ppv_package * string()
}
}
else if (product type == SUB) {
sub_start time * time()
sub_end time * time()
sub_num_services 16 uimsbf
for (i=0; i<sub num services; i++) {
sub_service * locator()
}
}
private data * Istring()
}

Semantics for the dtid_product() data type syntax:
product_type: The type of product. The product types are defined in Table M.91.
Table M.91: Product Type Values

Value Description

0x00 Reserved.

0x01 Generic Product.

0x02 Pay per Time (PPT) Event.

0x03 Pay per Event (PPE) Event.

0x04 Pay per View (PPV) Package.

0x05 Subscription (SUB) Package.
0x06-0x7f | Reserved for future use.
0x80-0xff | User defined.

© 2008, 2009, 2011, 2015 Cl Plus LLP

294 Cl Plus Specification v1.3.2 (2015-03)

id: The CA system identity assigned to the product, this field is opaque and private to the CA system. This is a variable
length text string.

name: The name of the product item. This is a variable length text string.
description: A brief description of the product which may be up to 255 characters.
xdescription: An extended description of the product which may exceed 255 characters in length.

pw_start_time: The purchase window start time and date of the product item specified in UTC. If the pw_start time is
not applicable to the product then the field may have a undefined value.

pw_end_time: The purchase window end time and date of the product item specified in UTC. If the pw_end time is
not applicable to the product then the field may have an undefined value.

preview: The preview time associated with the product. If there is no preview period available then this field shall be
undefined.

cost: The cost of the product, if the product is free then the cost shall be assigned the value 0. If there is no cost
assigned then the field value shall be the undefined value.

num_contained_products: The number of products contained within this product.

contained_product_id: The contained product identity. These are the identities of products that are contained within
this product.

ppt_locator: The pay per time locator of the event of type locator ().

ppt_rating: The pay per time rating of the event. This 8-bit field is coded as the rating field of the
parental rating descriptor as defined by EN 300 468 [10]. The value of "0" means that the rating of zero is
undefined.

ppt_slice_price: The pay per time price for a single slice of time of type money().
ppt_slice_duration: The pay per time duration for a single slice of time of type duration().
ppv_locator: The pay per view locator of the event of type locator().

ppv_rating: The pay per view rating of the event. This 8-bit field is coded as the rating field of the
parental rating descriptor as defined by EN 300 468 [10]. The value of "0" means that the rating of zero is
undefined.

ppv_start_time: The pay per view purchase window start time.
ppv_end_time: The pay per view purchase window end time.
ppv_num_packages: The number of packages associated with this pay per view event.

ppv_package: A package associated with the pay per view event. Each package is an CA system identity string which
references a product.

sub_start_time: The starting date of the subscription service.

sub_end_time: The ending date of the subscription service.

sub_num_service: The number of services that comprise the subscription package.
sub_service: A locator that describes the service reference.

private_data: A string of bytes which may be used for private data.

M.6.17 Product Event

Notification status about the product from the CA system. The general form of the product status data shall be conveyed
in the form show in Table M.92.

© 2008, 2009, 2011, 2015 Cl Plus LLP

295 Cl Plus Specification v1.3.2 (2015-03)

Table M.92: Product Event syntax

Syntax

No. of bits | Mnemonic

dtid product event ()
product status
description
object id
private data

}

{

uimsbf
string()
string()

string()

* % * Q0

Semantics for the dtid product event() data type syntax:

product_status: The status of the current product as defined in Table M.93.

Table M.93: Product Status Values

Value Mnemonic Description
0x00 EVENT_END The current PPV event reached the end.
0x01 EVENT_STOPPED The current PPV event has been stopped by the user (e.g.
by the remote control).
0x02 EVENT BEGIN A new PPV event has just started.
0x03 PRODUCTS_OFFERS_LIST_CHANGE The offered products' list has changed.
0x04-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined.

description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.18 Product Info

Status information about the product received from the CA system. The general form of the product info shall be
conveyed in the form show in Table M.94.

Table M.94: Product Info field syntax

Syntax

No. of bits | Mnemonic

dtid product info () {
purchase status
is_current service
reserved
access_state
product id
private data

bslbf

bslbf

bslbf
uimsbf
string()
Istring()

* *x 00 W = N

Semantics for the dtid_product_info() data type syntax:

purchase_status: The purchase status of the product as defined in Table M.95.

© 2008, 2009, 2011, 2015 Cl Plus LLP

296 Cl Plus Specification v1.3.2 (2015-03)

Table M.95: Purchase Status Values

Value Mnemonic Description

0x0 PURCHASE_STATUS PURCHASABLE The product may be purchased.

0x1 PURCHASE_STATUS_NOT_PURCHASABLE | The product may not be purchased for CAS reasons
(i.e. no access rights on air)

0x2 PURCHASE_STATUS_PURCHASED The product has already been purchased and specific
rights are on the smart card.

0x3 PURCHASE_STATUS_ LOW_CREDIT The inserted smart card has insufficient credit to buy
an associated event.

O0x4 PURCHASE_STATUS_NO_CREDIT The inserted smart card has no credit. If the event has
zero cost this cannot be stated as a purchase status.

0x5 PURCHASE_STATUS_ SMART_CARD_ISSUE | The inserted smart card has some condition that
caused the event not to be purchasable. The reason
may be retrieved using the dedicated get status
method of the Smart Card.

0x6-0xf n/a Reserved for future use.

access_status: The access state of the current programme. The values are shown in Table M.64.

is_current_service: A 1-bit flag that indicates whether this is the service on air to which the receiver is tuned. The bit
field is " 1" if this service is current and " 0" when it is not the current service.

product_id: The CA system assigned product identity that was purchased. This is a variable length string.

private_data: Optional private data associated with the purchase status.

M.6.19 Product Request

A Product Request requests product information from the CA system. The general form of the product request shall be
conveyed in the form show in Table M.96.

Table M.96: Product Request field syntax

Syntax No. of bits | Mnemonic
dtid product request () {
reserved 3 bslbf
request qualifier 2 uimsbf
type 3 uimsbf
if (request qualifier == PRODUCT ID) {
product_id * string()
} else if (request qualifier == PRODUCT LOCATOR) {
locator * locator()
}
private data * Istring()
}

Semantics for the dtid_product _request() data type syntax:
request_qualifier: The qualification of the information requested as defined in Table M.97.

Table M.97: Product Request Qualifier Values

Value Mnemonic Description
0x0 | PRODUCT NONE No qualification is specified.
0x1 | PRODUCT ID The product(s) with given product id are required.
0x2 | PRODUCT_LOCATOR | The product(s) with the given locator are required.
0x3 | n/a Reserved for future use.

type: The type of product request as defined in Table M.98. When the request qualifier is a identity then the type shall
be ALL PRODUCT.

© 2008, 2009, 2011, 2015 Cl Plus LLP

297 Cl Plus Specification v1.3.2 (2015-03)

Table M.98: Product Request Type Values

Value Mnemonic Description
0x0 ALL_PRODUCT All products are required.
0x1 CURRENT _PRODUCT | The current event product(s) are required
0x2 NEXT _PRODUCT The next event product(s) are required.
0x3 OFFERED_PRODUCT | The offered product(s) are required.
0x4-0x7 | nla Reserved for future use.

product_id: The CA system identity assigned to the product, this field is opaque and private to the CA system. This is a
variable length text string.

locator: The DVB locator of the service to query.

private_data: The private data associated with the purchase.

M.6.20 Purchase

A Purchase represents a purchase of a pay event, be it a subscription or PPV event. The general form of the purchase
request shall be conveyed in the form show in Table M.99.

Table M.99: Purchase field syntax

Syntax No. of bits | Mnemonic
dtid purchase () {
id * string()
product id * string()
cancelled 1 bslbf
reserved 7 bslbf
private data * Istring()
}

Semantics for the dtid_purchase() data type syntax:

id: The CA system identity assigned to the purchase, this field is opaque and private to the CA system. This is a
variable length text string. When a purchase request is made then this field may be the empty string until assigned by
the CA system.

product_id: The CA system assigned product identity that was purchased. This is a variable length string.
cancelled: The purchase has been cancelled.

private_data: The private data associated with the purchase.

M.6.21 Recharge

A Recharge requests a recharge of credit from the CA system. The general form of the recharge message shall be
conveyed in the form show in Table M.100.

© 2008, 2009, 2011, 2015 Cl Plus LLP

298 Cl Plus Specification v1.3.2 (2015-03)

Table M.100: Recharge field syntax

Syntax No. of bits | Mnemonic
dtid recharge () {
reserved 4 bslbf
request type 4 uimsbf
phone * string()
user * string()
password * string()
ip address * string()
port * string()
if (request type == CREDIT CARD MODE) {
surname * string()
name * string()
card number * string()
start date 16 bsIbf
expiry date 16 bslbf
value * money()
}
recharge value * money()
transaction * Istring()
private data * Istring()
}
Semantics for the dtid recharge () data type syntax:
request_type: The type of history requested as defined in Table M.101.
Table M.101: Request Type Values
Value Mnemonic Description

0x0 n/a Reserved

0x1 CREDIT_CARD_MODE Recharge request using a credit card

0x2 SCRATCH_CARD_MODE | Recharge request using a scratch card
0x3-0xf | n/a Reserved for future use.

phone: The phone number to be called.
user: The name of the user for login.
password: The password supplied by the user for login.

ip_address: The IP address of the server, specified as a decimal character string with a period character delimiting the
address ranges.

port: The port number of the server, specified as a decimal character string.

surname: The credit card surname.

name: The credit card forename(s) or initials.

card_number: The credit card number, specified as a decimal character string with no spaces.

start_date: The start date of the credit card expressed as a MJD value, refer to the time() field definition.
expiry_date: The expiry date of the credit card expressed as a MJD value, refer to the time() field definition.
value: The recharge value requested.

recharge value: The amount of monies recharged, this field shall be undefined when forming part of a request.
transaction: Additional transaction information which may be optionally populated with information.

private_data: Additional private data.

© 2008, 2009, 2011, 2015 Cl Plus LLP

M.6.22 Recharge Event

Notification status about a recharge from the CA system. The general form of the recharge event data shall be conveyed

in the form show in Table M.102.

299

Cl Plus Specification v1.3.2 (2015-03)

Table M.102: Recharge Event syntax

Syntax No. of bits | Mnemonic
dtid recharge event() {
recharge status 8 uimsbf
description * string()
object id * string()
value * money()
private data * string()
}

Semantics for the dtid recharge event() data type syntax:

recharge_status: The recharge status, the values are defined in Table M.76.

description: An optional text description of the event.

value: The value of the recharge event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.23 Service Id

The Service Id includes a locator that identifies the service. The datatype is formatted as shown in Table M.103.

Table M.103: Service Identity data type syntax

Syntax

No. of bits

Mnemonic

}

dtid service id()
service locator

{

*

locator()

Semantics for the dtid_service id() data type syntax:

service locator: A locator that identifies the service.

M.6.24 Slot

The Slot identifies the state of a smart card slot in the system. The datatype is formatted as shown in Table M.104.

Table M.104: Slot data type syntax

Syntax No. of bits | Mnemonic
dtid slot() {
slot_id 8 uimsbf
slot status 8 uimsbf
}

Semantics for the dtid_slot() data type syntax:

slot_id: The identity number of the slot commencing from 0.

slot_status: The status of a smart card slot. The values are shown in Table M.105.

© 2008, 2009, 2011, 2015 Cl Plus LLP

300 Cl Plus Specification v1.3.2 (2015-03)

Table M.105: Slot Status Values

Value Mnemonic Description
0x00 SLOT_STATUS_RESERVED Reserved for future use.
0x01 SLOT STATUS CARD IN A card is present in the slot.
0x02 SLOT STATUS CARD OUT A card is not present in the slot.
0x03 SLOT_STATUS_CARD_ERROR a smart card is inserted into the reader but wrong ATR is
received (e.g. because of a damaged card).
0x04 SLOT_STATUS_CARD_MUTED A smart card is inserted into the reader but no ATR is retrieved
because no electrical communication is established with the
smart card (e.g. card upside-down).
0x05 SLOT_STATUS_ ACCESS_DENIED | Access to the card currently inserted in the slot is denied; this
normally means that the card does not correspond to the
current active service and CAS.
0x06 SLOT_STATUS_ VERIFYING A smart card is in the slot and is being verified.
0x07 SLOT_STATUS_UNKNOWN Status is unknown, the status of the slot has not been retrieved
yet.
0x08-0x7f | n/a Reserved for future use.
0x80-0xff | n/a User defined.

M.6.25 Slot Event

Notification status about a card event from the CA system. The general form of the slot event data shall be conveyed in

the form show in Table M.106.

Table M.106: Slot Event syntax

Syntax No. of bits | Mnemonic
dtid slot event() {
slot status 8 uimsbf
slot id 8 uimsbf
description * string()
object id * string()
private data * string()
}

Semantics for the dtid_slot_event() data type syntax:

slot_status: The slot status, the values are defined in Table M.105.

slot_id: The identity number of the slot commencing from 0.
description: An optional text description of the event.

value: The value of the recharge event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.26 SmartCard

The SmartCard conveys information associated with the smart card slot in the system. The datatype is formatted as

shown in Table M.107.

© 2008, 2009, 2011, 2015 Cl Plus LLP

Semantics for the dtid_smartcard() data type syntax:

301 Cl Plus Specification v1.3.2 (2015-03)

Table M.107: Smart Card data type syntax

Syntax No. of bits | Mnemonic
dtid smartcard() {

id * string()
status 8 uimsbf
slot id 8 uimsbf
expiry date * time()
id number * string()
version * string()
provider name * string()
service provider name * string()
user data * string()
num_pin codes 8 uimsbf
for (i=0; i<num pin codes; i++) {

pin id * string()
}
num wallets 8 uimsbf
for (i=0; i<num wallets; i++) {

wallet id * string()
}
current wallet * string()
additional info * properties()
private data * string()

}

id: The CA system identity assigned to the smart card, this field is opaque and private to the CA system and uniquely
identifies the smart card. This is a variable length text string.

status: This 8-bit value denotes the current status of the smart card. The values are shown in Table M.108.

Table M.108: SmartCard Status Values

Value

Mnemonic

Description

0x00

SCS_VALID

Notifies that the smart card is valid. This value may also be
returned when a smart card check is performed.

0x01

SCS_INVALID

Notifies that the smart cart is not valid. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x02

SCS_EXPIRED

Notifies that the smart card is expired. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x03

SCS_BLACKLISTED

Notifies that the smart card is blacklisted. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x04

SCS_SUSPENDED

Notifies that the smart card is suspended. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x05

SCS_NEVER_PAIRED

Notifies that the smart card has never been paired with box. When
in this state, the smart card cannot perform any further operation.
This value may also be returned when a smart card check is
performed.

0x06

SCS_NOT_PAIRED

Notifies that the smart card is not actually paired with the box.
When in this state, the smart card cannot perform any further

operation. This value may also be returned when a smart card
check is performed.

0x07

SCS_NOT_CERTIFIED

Notifies that the smart card is not certified. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x08

SCS_MEMORY_FULL

Notifies that the smart card has filled up memory. This value may
also be returned when a smart card check is performed.

0x09

SCS_GENERIC_CARD_ERROR

Notifies that there is an unknown error with the smart card. When
in this state, the smart card cannot perform any further operation.
This value may also be returned when a smart card check is
performed.

© 2008, 2009, 2011, 2015 Cl Plus LLP

302 Cl Plus Specification v1.3.2 (2015-03)

Value Mnemonic Description
0x0a SCS_PIN_CHANGED Notifies that the pin of the smart card is changed (i.e. to have
notification on reset by SMS).
0x0b-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

slot_id: The identity of the slot in which the card is placed.

expiry_date: The date of expiry of the card, if there is no expiry date then this field may be the undefined value.
id_number: The smart card identification number for the card. This is a variable length string.

version: The version number of the smart card, returned as a CA system specific formatted string.
provider_name: The name of the smart card provider (normally the same as the CA provider name).
service_provider_name: The name of the service provider who delivered the card.

user_data: The user data field stored on the card. The format of the data is CA system specific.
num_pin_codes: This is an 8-bit number of Personal Identification Numbers (PIN) available on the card.
pin_id: The CA system identity of the PIN code.

num_wallets: This 8-bit field indicates the number of wallets available on the SmartCard. This may be zero if there are
no wallets.

wallet_id: The CA system identity of the wallets stored on the smart card.

current_wallet_id: The CA system identity of the wallet that is current. This may be a zero length string if there is no
current wallet.

additional_info: Additional information available on the smart card, this may include addition version numbers and
identification information.

private_data: Optional private data associated with the object.

M.6.27 SmartCard Event

Notification status about a smart card event from the CA system. The general form of the slot event data shall be
conveyed in the form show in Table M.109.

Table M.109: Smartcard Event syntax

Syntax No. of bits | Mnemonic
dtid smartcard event () {
smartcard status 8 uimsbf
description * string()
object id * string()
private data * string()
}

Semantics for the dtid smartcard event() data type syntax:

smartcard_status: The smart card status, the values are defined in Table M.108.
description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

© 2008, 2009, 2011, 2015 Cl Plus LLP

M.6.28 SmartCard Request

A SmartCard Request requests information about the smart card from the CA system. The general form of the smart
card request shall be conveyed in the form show in Table M.110.

303 Cl Plus Specification v1.3.2 (2015-03)

Table M.110: Smart Card Request field syntax

Syntax No. of bits | Mnemonic
dtid smartcard request () {
reserved 6 bslbf
request qualifier 2 uimsbf
if (request qualifier == SMARTCARD ID) ({
smartcard_id * string()
} else if (request qualifier == SMARTCARD SLOT) ({
slot id 8 uimsbf
}
private data * string()
}

Semantics for the dtid_smartcard request() data type syntax:

request_qualifier: The qualification of the information requested as defined in Table M.111.

Table M.111: Request Qualifier Values

Value

Mnemonic

Description

0x0

SMARTCARD_ALL

All smart card information.

0Ox1

SMARTCARD_ID

The smart card identified by the given CA identifier.

0x2

SMARTCARD_SLOT

The smart card located in the given slot identity.

0x3

n/a

Reserved for future use.

smartcard_id: The identity of the smart card assigned by the CA system.

slot_id: The identity of the slot containing a smart card starting from index 0.

private_data: Optional private data associated with the request.

M.6.29 User Data

The User Data includes an arbitrary string of data bytes. The datatype is formatted as shown in Table M.112.

Table M.112: User Data type syntax

Syntax

No. of bits | Mnemonic

byte data
}

dtid user data() {

*

Istring()

Semantics for the dtid_user data() data type syntax:

byte data: An arbitrary block of data.

M.6.30 Wallet

Wallet represents an account containing details of monies registered with the system (typically the SmartCard). The
general form of the wallet shall be conveyed in the form show in Table M.113.

© 2008, 2009, 2011, 2015 Cl Plus LLP

304 Cl Plus Specification v1.3.2 (2015-03)

Table M.113: Wallet field syntax

Syntax No. of bits | Mnemonic
dtid wallet () {
product type 8 uimsbf
id * string()
name * string()
balance * money()
expiry date * time()
transaction count 16 uimsbf
transaction remain 8 uimsbf
}

Semantics for the dtid wallet() data type syntax:

id: The CA system identity assigned to the wallet, this field is opaque and private to the CA system. This is a variable
length text string.

name: The name associated with this wallet. This is a variable length string.
balance: The balance of monies in the wallet.

expiry_date: The expiry date of the wallet, where there is no expiry date then the data value shall be set to the
undefined value.

transaction_count: The number of transactions that have been made against this wallet. A value of Oxff £ f indicates
that the transaction count is unknown.

transaction_remain: An estimate of the number of remaining transactions that can be purchased. A value of Oxff
indicates that no estimate is available.

M.6.31 Wallet Identity

The Wallet Identity identifies the name of a wallet. The data type is formatted as shown in Table M.114.

Table M.114: Wallet Identity data type syntax

Syntax No. of bits | Mnemonic
dtid wallet id() {
wallet id * string()
}

Semantics for the dtid_wallet_id() data type syntax:

wallet_id: The CA System id for the wallet.

M.7 MHP APl Mapping

Table M.115 provides a list of the MHP API and the CI Plus commands that satisfy them.

© 2008, 2009, 2011, 2015 Cl Plus LLP

305

Cl Plus Specification v1.3.2 (2015-03)

Table M.115: MHP APl Message Mapping

Class Method Message Mapping
CAManagerFactory SessionOpener() M.2.1 Session Establishment
SessionCloser() APDU open_session_request()
openSession() APDU open_session_response()
closeSession() APDU close_session_request()
AccessDeniedException APDU close_session_response()
APDU SAS_connect_rgst()
APDU SAS_connect_cnf()
CAManager getCAProvider() CMD_CAPABILITIES_REQUEST
getCARevision()
getCAVersion()
getSlots()
CAManager getCurrentProducts() CMD_PRODUCT_GET_REQUEST
getNextProducts()
CAManager getParentalControlLevel() CMD PARENTAL_LEVEL_GET REQUEST
CAManager setParentalControlLevel() CMD_ PARENTAL_LEVEL_SET_REQUEST
CAManager getPins() CMD_PIN_GET_REQUEST
Pin setRequired() CMD_PIN_SET_REQUEST
reset()
change()
Pin check() CMD_PIN_CHECK_ REQUEST
Pin isRequired() See CAManager::getPins()
getRetriesRemaining()
isValidated()
Slot getStatus() CMD_SLOT_GET_REQUEST
Slot getSmartCard() CMD_SMARTCARD _GET _REQUEST
SmartCard getATR() CMD_ATR_GET REQUEST
SmartCard getExpiryDate() CMD_SMARTCARD_GET_REQUEST
getMorelnfo()
getNumber()
getPins()
getProvider()
getServiceProviderName()
getStatus()
getUsedWallet()
getUserData()
getVersion()
getWallets()
SmartCard setUserData() CMD_SMARTCARD_SET_REQUEST
setUsedWallet()
CAAcessEvent CAAdapter() CMD_ACCESS_EVENT
getType()
CAProductEvent CAProductEvent CMD_PRODUCT EVENT
CreditsEvent CMD_CREDIT _EVENT
NewMessageEvent CMD_MESSAGE_EVENT
HistoryUpdateEvent CMD_PURCHASE_HISTORY_EVENT
PinRequestEvent CMD_PIN_REQUEST_EVENT
RechargeEvent CMD_RECHARGE EVENT
SlotEvent CMD_SLOT _EVENT
SmartCardEvent CMD_SMARTCARD_EVENT
ppv.Product getld() CMD__PRODUCT_GET_REQUEST
getPrivateData()
getType()
getName()
getDescription()

getExtendedDescription()

etPurchaseWindowStartTime()
getPurchaseWindowEndTime()

getContainedProducts()
getPrice()

isFree()
getPreviewTime()

PPVEvent

getRating()
getLocator()
getPackages()

CMD__PRODUCT_GET_REQUEST

© 2008, 2009, 2011, 2015 Cl Plus LLP

306

Cl Plus Specification v1.3.2 (2015-03)

Class

Method

Message Mapping

getStartTime()
getEndTime()
isFree()

getType()

PPTEvent

getSlicePrice()
getSliceDuration()

getType()

CMD__PRODUCT_GET_REQUEST

PPVPackage

isFree()
getType()

CMD__PRODUCT_GET_REQUEST

Subscription

getSubscriptionStart()
getSubscriptionEnd()
getServices()

isFree()

getType()

CMD__PRODUCT_GET_REQUEST

request

BuyRequest()

CMD_PURCHASE_SET_REQUEST

request.CARequest

cancel()

CMD_PURCHASE_CANCEL_REQUEST

request.CARequest

setPrivateData()

CMD_PURCHASE_SET REQUEST

request. CARequest

isCancelled()
getPrivateDate()

CMD_PURCHASE_SET_REQUEST

HistoryRequest

getHistoryLength()
getltem()
getltems()
getPrivateData()
isCancelled()

CMD_HISTORY_GET_REQUEST

HistoryRequest

setltems()
setPrivateData()
cancel()

CMD_HISTORY_SET_REQUEST

BuyResponseEvent

buyResponseEvent()

CMD_PURCHASE_SET_RESPONSE

FailureResponseEvent

FailureResponseEvent()
getErrorCode()

CMD_*_RESPONSE

HistoryResponseEvent

HistoryResponseEvent()
getHistory()

CMD_HISTORY_GET_RESPONSE

HistoryUpdateRequest

HistoryUpdateRequest()
getHistory()

CMD_HISTORY_SET_REQUEST

HistoryUpdateResponseEv

HistoryUpdateResponseEvent()

CMD_HISTORY_SET_RESPONSE

ProductinfoRequest

ProductinfoRequest()

CMD_PRODUCT _INFO_GET_REQUEST

getProduct() CMD_PRODUCT INFO_GET_RESPONSE
RcRechargeRequest RcRechargeRequest() CMD_RECHARGE_REQUEST
getRcParameter()
RcRechargeResponse RcRechargeResponse() CMD_RECHARGE_RESPONSE
getRechargeValue()
getWallet
R.OfferedProducts RetrieveOfferedProductsRequest() | CMP_PRODUCT _GET REQUEST

OfferedProductsResponse

OfferedProductsResponseEvent()
getProducts()

CMP_PRODUCT_GET_RESPONSE

© 2008, 2009, 2011, 2015 Cl Plus LLP

307 Cl Plus Specification v1.3.2 (2015-03)

Annex N (normative):
CICAM Broadcast Profile

This Annex describes the pseudo broadcast profile that is created with the Operator Profile resource that shall be
supported by a CI Plus Host and optionally supported by a CICAM. It is a mandatory for a CI Plus Host to support the
Operator Profile resource and to support the broadcast profile requirements set down in this Annex.

N.1 Service Information (Normative)

This section describes the Service Information (SI) that shall be minimally specified and interpreted by the Host.

N.1.1 ClI Plus Private Descriptors

The private descriptors recognised by a CI Plus Host device are summarised in Table N.1. All CI Plus private
descriptors shall only be interpreted in the context of the CI Plus private data specifier value.

Table N.1: Cl Plus private descriptors

Descriptor Tag Description
ci _protection descriptor Oxce | Cl Plus Host shunning control.
ciplus_content label descriptor | Oxcb | Content descriptor text label applicable for the network.
ciplus service descriptor Oxcc | Service name and type.

N.1.2 CICAM NIT

A single quasi-static CICAM NIT ., shall be common to all multiplexes of the network. It shall detail the transmission
parameters of the multiplexes within the network and may be constructed by the CICAM using service operator specific
information. The CICAM NIT defined in this specification shall be in compliance with ISO/IEC 13818-1 [13] and ETSI
EN 300 468 [10]. A new version of the CICAM NIT shall be passed to the Host in one of the following circumstances:

A new multiplex is added or removed to/from the network.

When the transmission parameters are changed.

When the service line up changes.

When attributes of the network are changed (including text labels).

The NIT version number may not change without changes to the payload i.e. a CICAM constructing the NIT .., from
various broadcast tables shall not update the NIT in response to a broadcast table version change if the change does not
result in any NIT payload change. The NIT version number shall always be updated following any change to the NIT
payload by incrementing the version number field.

The CICAM NIT is a complete self contained definition of the operator profile service line up. The Host shall construct
the channel list from information entirely obtained from the CICAM NIT, there is no requirement for the Host to scan
or monitor any part of the broadcast SI in order to construct or maintain the profiled channel list.

The use of descriptors within the NIT shall be strictly according to Table N.2, other descriptors may be skipped if not
known to the Host. The scope of all private descriptors shall be honoured by the Host.

© 2008, 2009, 2011, 2015 Cl Plus LLP

308

Cl Plus Specification v1.3.2 (2015-03)

Table N.2: CICAM NIT descriptors

NIT Descriptor Tag Value | Loop | Actual | Other Notes

* delivery system descriptor * 2M Mb/Mr N/A | The delivery system descriptors supported by the Host
network interfaces shall be supported. Delivery system
descriptors not supported by the Host shall be ignored.

ciplus content label descriptor 0xcb 1% Ob/Or N/A | Shall be preceded by a Cl Plus private data specifier.

ciplus service descriptor Oxcc 2 Mb/Mr N/A Shall be preceded by a Cl Plus private data specifier.

linkage descriptor Ox4a 1% Ob/Mr N/A The Host shall interpret and enact linkage_type 0x02
EPG service.

linkage descriptor Ox4a 1% Ob/Or N/A DVB-SSU information with linkage_type 0x09 and Ox0A.

network name descriptor 0x40 1% Ob/Or N/A The profile_name of the operator_info() APDU shall be
used in preference to any network name appearing in the
NIT.

private data specifier descriptor 0x5f 192" | Mb/Mr | N/A | The CI Plus private data specifier value shall be
recognised by all Hosts and shall precede any Cl Plus
private descriptors.

image icon descriptor 0x7£/0x00 1% Ob/Or N/A An in-line image icon of the service operator which may
be optionally used by the Host in any network selection,
channel banner and EPG.

Notes: Mb — Mandatory to broadcast; Ob — Optional to broadcast; Mr — Mandatory to receive; Or — Optional to receive; N/A — not applicable.

The CICAM shall propagate DVB-SSU linkage information in the CICAM NIT with the appropriate DVB-SSU
signalling using the linkage descriptor with linkage type’s 0x09 and 0x0A. This may require that the CICAM construct
the correct signalling from a broadcast NIT or BAT.

N.1.2.1 system_delivery descriptor

The system_delivery_descriptor, defined by ETSI EN 300 468 [10], appropriate to the network shall be included in the
2" Joop of the CICAM NIT and shall fully describe the location of the multiplex.

N.1.2.2

The linkage descriptor with tag 0x4a, defined by ETSI EN 300 468 [10], may optionally be present in the 1% loop of
the NIT with linkage type 0x02 (EPG Service). The linkage shall indicate the presence of any Electronic Programme
Guide (EPG) barker service and shall be interpreted by the Host when the EPG is invoked.

linkage descriptor

Other linkage descriptors may be present in the CICAM NIT. The CICAM is required to propagate all DVB-SSU
descriptors to the Host.

N.1.2.3 ciplus_service descriptor

The CI Plus service descriptor provides the names of the service provider and the service in text form together with the
service_type and logical channel information. The descriptor shall be used in the 2™ loop of the NIT, one descriptor
shall be present for each service to be included in the logical channel list. The descriptor shall only be interpreted in the
context of a CI Plus private data specifier.

The Host shall include all services in the logical channel list that are specified by this descriptor, irrespective of whether
the Host is able to display the service type. The CICAM shall profile the services based on the service type declaration
of the Host and the operational constraints defined by the Service Operator (which may require that unsupported service
types are included in the Host logical channel list).

Data in this descriptor shall be treated as quasi-static and shall be used to define services in the Host service list or
channel list. A service may be assigned more than one logical channel number i.e. the same service may be specified to
appear multiple times in a channel list with a different logical channel number assignment, different visibility status and
different name.

The CICAM shall ensure that all selectable services are assigned a unique logical channel number, this requires the
CICAM to select a numbered service ordering in the case where a logical channel numbering is not assigned by the
network. This may be based on an alphabetical sort of the channels etc. to determine the ordering and hence numbering.
There is no requirement for the Host to allocate a logical channel number for any services which are incorrectly labelled
and conflicting services shall be discarded.

© 2008, 2009, 2011, 2015 Cl Plus LLP

309 Cl Plus Specification v1.3.2 (2015-03)

Table N.3: ciplus_service_descriptor syntax

Syntax No. of bits | Mnemonic
ciplus_service descriptor () {
descriptor tag 8 uimsbf
descriptor length 8 uimsbf
service id 16 uimsbf
service type 8 uimsbf
visible service flag 1 bslbf
selectable service flag 1 bslbf
logical channel number 14 uimsbf
service provider name length 8 uimsbf
for (i=0; 1i<N; i++) {
char 8 uimsbf
}
service name length 8 uimsbf
for (i=0; 1i<N; i++) {
char 8 uimsbf
}
}

Where the fields are defined as follows:

descriptor_tag: This 8-bit field shall be assigned the value Oxcc and shall only be interpreted in the context of a CI
Plus private data specifier descriptor.

service_id: This is a 16-bit field which identifies the service from any other service in the transport stream. The
service_id is the same as the program_number in the corresponding program map _table.

service_type: This is an 8-bit field specifying the type of the service. It shall be coded in accordance to the service type
field of the service descriptor defined in ETSI EN 300 468 [10].

visible_service_flag: This 1-bit field when set to "1" indicates that the service is normally visible via the Host service
or channel list and EPG etc. When set to "0" this indicates that the receiver is not expected to offer the service to the
user in normal navigation modes but the receiver shall provide a mechanism to access these services by direct entry of
the logical channel number, depending on the setting of the selectable service flag field.

selectable_service flag: This 1-bit field is only interpreted when the visible service flag field is set to "0". When set to
"1" indicates that the hidden service is selectable by direct entry of the logical channel number, when set to "0" then the
hidden service is not directly selectable by the user (but may be selectable by LCN from an application environment).

logical_channel number: This 14-bit field indicates the logical channel number to be assigned to the service, however
only 4-digit channel numbers from 0 to 9999 are allowed. The value of all-ones (0x3fff) indicates that the service is not
available for selection and shall be hidden but retained in the Host channel list. The same service may be allocated more
than one logical channel number and shall appear at multiple locations in the service list. Logical channel numbers shall
be unique throughout the network i.e. the logical channel number shall be used once only (with the exception of all-
ones).

The Host behaviour with logical channel numbers > 9999 is unspecified and may be discarded. Where services are
assigned the same logical channel number then the Host shall retain one service and discard any others.

service_provider_name_length: This 8-bit field specifies the number of bytes that follow the
service_provider name length field for describing characters of the name of the service provider.

char: This is an 8-bit field. A string of char fields specify the name of the service provider or service. Text information
is coded using the character sets and methods described in ETSI EN 300 468 [10], Annex A in conjunction with the
operator_info() APDU.

service_name_length: This 8-bit field specifies the number of bytes that follow the service name length field for
describing characters of the name of the service.

N.1.2.4 ciplus_content_label descriptor

The CI Plus content label descriptor is used in the 1* descriptor loop of the NIT and provides a new text label for the
ETSI EN 300 468 [10] content_descriptor (0x54) content_byte field. The descriptor allows the default text labels

© 2008, 2009, 2011, 2015 Cl Plus LLP

310 Cl Plus Specification v1.3.2 (2015-03)

associated with the genre of the programme event to be modified in the context of the network. Multiple instances of the
descriptor are permitted in the loop and may appear in any content byte order. Multiple instances of the same text label
for an identical range may exist with a different language assignment. The text labels bind a content_byte value range
with a text string.

When processing the content descriptor then the content byte is compared with the active range of the content label
descriptor, if the content_byte matches the range then the text label is used. Where multiple labels match the
content_byte then the content label with the smallest matching content range shall be selected in preference to any other
label that has a larger matching content range. If none of the labels of the CICAM NIT match a content_byte value then
the default assigned DVB content_descriptor text labels are used. i.e. a specific label is assigned a narrow range of
content byte values whilst a generic genre category has a wider range of content_byte values.

Informative: The Host processing is equivalent to effectively re-ordering the text labels for evaluation with narrow
range labels appearing before any other labels with a wider range and the content label is searched from top to bottom
of the list until a match is found. e.g.

0x67-0x67 Dance music // Create a new label
0x65-0x65 Opera // Over-ride existing label
0x60-0x6f Music // Over-ride the generic category name must

// appear after the specific labels in same range

Table N.4: ciplus_content_label_descriptor syntax

Syntax No. of bits | Mnemonic
ciplus_content label descriptor () {

descriptor tag 8 uimsbf
descriptor length 8 uimsbf
content byte min 8 uimsbf
content byte max 8 uimsbf
ISO 639 language code 24 bslbf
for (i=0; 1i<N; i++) {

label char 8 uimsbf

}

Where the fields are defined as follows:

descriptor_tag: This 8-bit field shall be assigned the value Oxcb and shall only be interpreted in the context of a CI
Plus private data specified descriptor.

content_byte_min/max: These 8-bit fields identify the maximum and minimum range of the content descriptor
content_byte field value which should be matched if this label should be used for the content byte. The values are
inclusive values and are compared as follows:

if ((content byte >= content byte min) && (content byte <= content byte max))

then

// Use this content label.
endif

ISO_639 language code: This 24-bit field identifies the language code of the content label.

label_char: This is a 8-bit field, a string of "char" fields specifies the text label of the content byte. Text information is
coded using the character sets and methods defined in ETSI EN 300 468[10], Annex A.

N.1.3 SDT

Within a profiled environment (profile type=1) then all of the static service name and type information is obtained from
the CICAM NIT rather than the broadcast SDT, the service_descriptor() of the broadcast SDT shall be ignored.

The SDT,wa is used by the Host Shunning mechanism, in addition SDT,,, may be used for run-time service running
state information. The SDT ., tables shall only be trusted when the operator _info() APDU sdt_other trusted field is set
to "1".

The minimal interpretation of descriptors within the SDT handled by a CI Plus Host with a CICAM NIT shall be
according to Table N.5.

© 2008, 2009, 2011, 2015 Cl Plus LLP

31 Cl Plus Specification v1.3.2 (2015-03)

Table N.5: Minimally interpreted Cl Plus SDT descriptors

SDT Descriptor Tag Value | Actual | Other | Quasi-static Notes

ci protection descriptor Oxce Ob/Mr | Ob/Or yes Shall be preceded by a private data specifier.
Quasi-static for 7 days.

private data specifier descriptor 0x5f Ob/Mr | Ob/Or no Precedes the ci_protection_descriptor.

Notes: Mb — Mandatory to broadcast; Ob — Optional to broadcast; Mr — Mandatory to receive; Or — Optional to receive; N/A — not applicable.

The running_state in the SDT may be interpreted by the Host if the operator info() APDU field
sdt_running_status_trusted is set to "1" and the Host may optionally indicate to the user that the service is not available
when the service is not running.

N.1.4 EIT

The EIT,rand EIT;, may be present for each service providing information on the present, following and schedule
events. The Host shall be able to robustly handle the SDT::EIT present following flag and SDT::EIT schedule flag
being miss-signalled. The availability of EIT information available to the Host may be determined from the
operator_info() APDU eit_present following usage and eit_schedule usage fields.

Where a linkage descriptor containing linkage type 0x02 is present in the first loop of the CICAM NIT then the Host
shall acquire the EIT, information from the barker channel by tuning to the multiplex defined in the linkage descriptor
when required in any Electronic Programme Guide (EPG).

The running_state of the EIT may be interpreted by the Host if the operator_info() APDU eit_running_status_usage
field is set to "1" and the Host may optionally indicate to the user that the service is not available when the service is
signalled as not running or paused.

N.1.4.1 EIT delivery

The Electronic Programme Guide (EPG) of a CI Plus Host is derived from the EIT, information broadcast on the
network, the network operation may be qualified with the ciplus operator info() APDU EIT schedule hint information.
The EIT,, may be protected in the broadcast network by scrambling the EIT table sections. EIT,sis not allowed to be
scrambled.

Where EIT, tables are scrambled on a barker channel then the guidelines of ETSI TR 101 211 shall be followed and
the service may use a PMT with service id of Oxffff. The PMT shall contain an elementary stream of type private
sections with one or more CA_descriptors to identify the associated CAS. The Host shall pass the EIT service in the
ca_pmt() when descrambling is required. The location of the barker channel shall be identified with a

linkage descriptor of linkage type 0x02 and a tuning operation is required for the Host to move to the EPG service.
The network should contain a service describing the EPG service (which may be hidden).

Where the EIT,, tables are scrambled and cross carried on the multiplexes of the network then the descrambling shall
operate as follows:

e The CICAM may optionally automatically descramble the EIT, tables for a CI Plus Authenticated Host, this
requires no additional signalling in the PMT.

o The PMT shall include a Elementary Stream of stream_type 0x05 containing ISO/IEC 13818-1 private
sections for elementary PID=0x0012. The elementary stream loop shall contain one or more CA_descriptors
to identify the associated CA streams and the Host shall pass this elementary stream to the CICAM in a
ca_pmt() request with any other elementary stream components that require descrambling.

N.2 Profile Behaviour

This section describes the behaviour of a profiled CICAM network (profile type = 1)

N.2.1 Logical Channel List Organisation

The logical channel list for a profiled CICAM is organised as a separate channel list (sandbox) of channel numbers
identified by the profile name of the operator_info() APDU. The logical channel list shall be strictly restricted to the
services specified by the service operator using the ciplus_service descriptor() in the CICAM NIT 2™ loop. Additional

© 2008, 2009, 2011, 2015 Cl Plus LLP

312 Cl Plus Specification v1.3.2 (2015-03)

services may not be added to the profile specific channel list. The Host receiver may construct other channel lists (i.e.
favourites) which are under user control.

N.2.2 Logical Channel Numbering

Services delivered with the CICAM NIT shall be labelled and numbered according to the ciplus_service descriptor.
The CICAM shall ensure that a logical channel number is allocated only once to a service i.e. logical channel numbers
are unique. A service may be assigned multiple logical channel numbers and the assigned service shall appear multiple
times in the logical channel list with a different logical channel number.

Hidden selectable services shall not appear in the channel list but may be selected by direct entry of the logical channel
number and shall be presented.

Hidden non-selectable services shall not appear in the channel list and may only be selected by an application
environment (where supported by the Host).

In networks without any logical channel assignment then the CICAM shall determine the channel ordering i.e. network
order, alphabetic etc. and assign logical channel numbers. Special services which are not explicitly assigned a logical
channel assignment shall use a logical channel assignment value of all-ones (0x3fff) used to hide a service e.g. a special
software download service. Any special hidden services for S/W download and alike may be included in the logical
channel list so that their multiplex is accessible to the CICAM via the Host Control tune() with a DVB triplet.

Services assigned a logical channel number by the service operator, via the CICAM NIT, may not be re-numbered by
the user in the context of the service operator logical channel list.

The CICAM shall manage the logical channel number assignment through the CICAM NIT and shall take into account
the service type’s supported by the Host (i.e. SD or HD) and regional services based on the receiver location. The
methods used by the CICAM to determine the regional location and regional service line up is outside the scope of this
specification and is operator specific.

N.2.3 Service Types

Services shall be added to the channel list according to the rules of the ciplus_service descriptor; all services explicitly
required in the channel list shall be declared by this descriptor. The service shall be included irrespective of whether the
Host is able to decode that service type, the CICAM is notified of the service types known to the Host and is able to
tailor the service list according to this Host information and the requirements of the service operator.

The CICAM shall ensure that the service list is constructed based on the service operator rules and takes into
consideration the capabilities of the supported Host service type’s.

A Host encountering a unknown service type shall remain robust and shall provide an indication to the user that the
service is not supported i.e. “This service is not supported please contact your Service Operator for more information”.

N.2.4 Network Updates

Changes in the network occurring in the CICAM NIT shall be handled by the Host within 24 hours of the change
notification whilst the Host is operating in the profile channel list. The Host may automatically update the channel list
or minimally inform the user that there has been a change in the network, providing a manual mechanism to update the
Host.

N.2.5 Text Strings

The CICAM shall monitor the host language APDU to determine the Host language, a change in the Host language
may require the CICAM to update the CICAM NIT with new text strings that match the Host preferred language.

© 2008, 2009, 2011, 2015 Cl Plus LLP

313 Cl Plus Specification v1.3.2 (2015-03)

History

Document history

Version Date Description
1.3.2 03-Mar-2015 |Section 5.7.5.3 rl_copy_control_info value 0x£0 is 238 days not 237.
Section 11.3.4.6 Record Stop Protocol request_datatype_nbris 1 not 0.
Section 14.7.5.3 operator status nit_version when profile type 0.
Section 14.1.4 Corrected Fig 14.2, Step 5 return value 12 not 0.
Section N.1.2 CICAM NIT private data specifier descriptor is Mb/Mr.
Section 14.6.6 Corrected Figure 14.11 sequence numbering.
Section 14.6.5 Corrected sequence number steps to match Figure 14.10.
Nonexistent §5.7.5.4 referenced, should be §5.7.5.3 (from §5.4.1, §5.2).
Section 14.2 clarified the difference between v2 and v3 of LSC.
Section 14.1.1 Added Implementation Guidelines notes on timeout/retry.
Added section 14.2.1.3 and 14.2.1.4 from Implementation Guidelines.
Added SRM types in Annex H and srm_data renamed to HDCP.srm (31).
1.3.1 22-Sept-2011 |Registered Service Mode clarification [5.4.2]
Clarification of Operator Profile including profile type 0 usage [14.7.2], Host
initiated cancel [14.7.5.9], operator_status [14.7.5.3] and operator_info
[14.7.5.7]
Clarifications to PIN [5.11,11.3.2] and license handling [5.10]
Security improvements to Host Control v2 [14.6.2.1]
Clarification of the SAS Resource [11.4.2]
Clarification to CICAM upgrade progress reporting [14.3.5.4]
Miscellaneous typographic corrections
1.3 14-Jan-2011 |prng_seed per manufacturer [5.3]
URI version 2 [5.7.5.2]
Digital Only Token [5.7.5.3]
Content license [5.10]
Parental Control [5.11]
Recording and Storage [5.12]
Host Authentication [Table 6.3, step 13, item d]
Certificates, Service operator ID [9.3.6]
Host shunning, SDT absent [10.4]
Version 2 of CC resource [11.3]
SAS APDU clarifications [11.4, Annex M.2.1]
MHEG profile extensions [12.8]
Low Speed Communications v3 [14.1]
IP connection by name [14.2.1.2]
Application MMI clarifications [14.4]
Application MMI File Caching [14.5]
Host Control v2 [14.6]
Operator Profile [14.7, Annex N]
APDU clarifications [Annex E]
CIS Feature Identification [G.3.1]
Removal of PVR Resource [v1.2, 15]
1.2 16-Apr-2009 |Addition of module CI Plus compatibility identifier (Annex G.3)
Qualify all SHA algorithms as FIPS 180-3[3] and adhere to SHS validation
list[11]
Corrections to the resource summary (Annex L)
Miscellaneous typographic corrections.
1.1 28-Nov-2008 |New release.
1.0 23-May-2008 |Publication.
0.80 18-Dec-2007 |Public Review.

© 2008, 2009, 2011, 2015 Cl Plus LLP

	Contents
	Foreword
	1 Scope
	2 References
	2.1 Normative references

	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations
	3.4 Use of Words

	4 System Overview (informative)
	4.1 Introduction
	4.2 Content Control System Components
	4.2.1 Host
	4.2.2 CICAM
	4.2.3 Head-End

	4.3 Implementation Outline
	4.4 Device Authentication
	4.5 Key Exchange and Content Encryption
	4.6 Enhanced MMI
	4.7 CI Plus Extensions
	4.7.1 CI Plus 1.3 Extensions

	5 Content Control Overview (normative)
	5.1 End to End Architecture
	5.2 General Interface Behaviour
	5.3 Key Hierarchy
	5.3.1 Keys on the Credentials Layer
	5.3.2 Keys on the Authentication Layer
	5.3.3 Keys on the SAC Layer
	5.3.4 Keys on the Content Control Layer

	5.4 Module Deployment
	5.4.1 Deployment In Basic Service Mode
	5.4.2 Deployment in Registered Service Mode
	5.4.3 Generic Error Reporting

	5.5 Introduction to Revocation (informative)
	5.5.1 Host Revocation
	5.5.2 Revocation Granularity
	5.5.3 Revocation Signalling Data
	5.5.4 Transmission Timeout
	5.5.5 SOCRL and SOCWL Download Process
	5.5.6 Denial of Service

	5.6 (De)Scrambling of Content
	5.6.1 Transport Stream Level Scrambling
	5.6.1.1 PES Level Scrambling

	5.6.2 Scrambler/Descrambler Definition
	5.6.2.1 Scrambling rules
	5.6.2.2 Transport Stream Scrambling with DES
	5.6.2.3 Transport Stream Scrambling with AES
	5.6.2.3.1 Scrambling
	5.6.2.3.2 Terminating short block:
	5.6.2.3.3 Solitary Short Block:
	5.6.2.3.4 Descrambling

	5.7 Copy Control Exertion on Content
	5.7.1 URI Definition
	5.7.2 Associating URI with Content
	5.7.3 URI transfer – Head-End to CICAM
	5.7.4 URI transfer – CICAM to Host
	5.7.5 URI Refresh Protocol
	5.7.5.1 URI Version Negotiation Protocol
	5.7.5.2 Format of the URI message
	5.7.5.3 Coding And Semantics Of Fields

	5.8 Modes Of Operation
	5.8.1 Host Operation with Multiple CICAMs
	5.8.2 Single CICAM with Multiple CA System Support
	5.8.2.1 Introduction
	5.8.2.2 CICAM Device Certificates
	5.8.2.3 CCK Refresh
	5.8.2.4 Host revocation

	5.9 Authentication Overview
	5.10 Content License Exchanges
	5.10.1 Record Start Protocol
	5.10.2 Content License Exchange on Record
	5.10.3 Content License Exchange on Check
	5.10.4 Content License Exchange on Playback
	5.10.5 Content License and Timeshifting
	5.10.6 Record Stop Protocol

	5.11 Parental Control
	5.11.1 CICAM PIN Capabilities
	5.11.1.1 No CICAM PIN Capabilities
	5.11.1.2 CICAM PIN Capabilities for CA Services Only
	5.11.1.3 CICAM PIN Capabilities for CA and FTA Services
	5.11.1.4 CICAM PIN Capabilities for CA Services Only (cached PIN)
	5.11.1.5 CICAM PIN Capabilities for CA and FTA Services (cached PIN)

	5.11.2 CICAM PIN code
	5.11.3 Host PIN code
	5.11.4 Notification that a PIN is required
	5.11.5 Transfer of Parental Rating to CICAM
	5.11.6 PIN Code Caching

	5.12 Recording and Playback
	5.12.1 Playback Session

	5.13 SRM Delivery
	5.13.1 Data file transfer protocol
	5.13.1.1 Initialisation and message overview

	5.13.2 Data transfer conditions

	6 Authentication Mechanisms
	6.1 CICAM Binding and Registration
	6.1.1 Verification of Certificates & DH Key Exchange
	6.1.2 Verification of Authentication Key
	6.1.3 Report Back to Service Operator
	6.1.4 CC System Operation

	6.2 Authentication Protocol
	6.2.1 Initialisation and Message Overview
	6.2.2 Authentication Conditions
	6.2.3 Authentication Key Computations
	6.2.3.1 Diffie Hellman Parameters
	6.2.3.2 Calculate DH Public Keys (DHPH and DHPM)
	6.2.3.3 Calculate DH Keys (DHSK)
	6.2.3.4 Calculate Authentication Key (AKH and AKM)

	6.3 Power-Up Re-Authentication

	7 Secure Authenticated Channel
	7.1 SAC Operation
	7.1.1 SAC Initialisation
	7.1.2 SAC (re)keying Conditions
	7.1.3 SAC Key Computation
	7.1.4 SAC error codes and (re) set SAC state

	7.2 Format of the SAC Message
	7.2.1 Constants
	7.2.2 Coding and Semantics of Fields

	7.3 Transmitting SAC Messages
	7.3.1 Message Authentication
	7.3.2 Message Encryption

	7.4 Receiving SAC Messages
	7.4.1 Message Counter State
	7.4.2 Message Decryption
	7.4.3 Message Verification

	7.5 SAC Integration into CI Plus

	8 Content Key Calculations
	8.1 Content Control Key refresh protocol
	8.1.1 Initialization and message overview
	8.1.2 Content Control Key re-keying conditions
	8.1.3 Content Key Lifetime
	8.1.4 Content Control Key Computation (CCK)
	Step 1: Key precursor calculation.
	Step 2: Key Material computation.

	8.1.5 Content Key for DES-56-ECB Scrambler.
	8.1.6 Content Key and IV for AES-128-CBC Scrambler.

	9 PKI and Certificate Details
	9.1 Introduction
	9.2 Certificate Management Architecture
	9.3 Certificate Format
	9.3.1 version
	9.3.2 serialNumber
	9.3.3 signature
	9.3.4 issuer
	9.3.5 validity
	9.3.6 subject
	9.3.7 subjectPublicKeyInfo
	9.3.8 issuerUniqueID and subjectUniqueID
	9.3.9 extensions
	9.3.9.1 Subject Key Identifier
	9.3.9.2 Authority Key Identifier
	9.3.9.3 Key usage
	9.3.9.4 Basic constraints
	9.3.9.5 Scrambler capabilities
	9.3.9.6 CI Plus info
	9.3.9.7 CICAM brand identifier

	9.3.10 signatureAlgorithm
	9.3.11 signatureValue

	9.4 Certificate Verification
	9.4.1 Verification of the brand certificate
	9.4.2 Verification of the device certificate
	9.4.3 Verification of the service operator certificate

	10 Host Service Shunning
	10.1 CI Plus Protected Service Signalling
	10.1.1 CI Protection Descriptor
	10.1.1.1 CI Protection Descriptor
	10.1.1.2 Private Data Specifier Descriptor

	10.2 Trusted Reception
	10.3 CI Plus Protection Service Mode
	10.4 Service Shunning
	10.4.1 Service Shunning In-active
	10.4.2 Service Shunning Active

	11 Command Interface
	11.1 Application Information resource
	11.1.1 Application Information Version 3
	11.1.2 Request CICAM Reset
	11.1.2.1 request_cicam_reset APDU
	11.1.2.2 Reset request using the IIR bit

	11.1.3 Data rate on the PCMCIA bus
	11.1.3.1 data_rate_info APDU

	11.2 Host Language and Country resource
	11.2.1 Host Language and Country resource APDUs
	11.2.1.1 Host_country_enq APDU
	11.2.1.2 Host_country APDU
	11.2.1.3 Host_language_enq APDU
	11.2.1.4 Host_language APDU

	11.3 Content Control resource
	11.3.1 Content Control resource APDUs
	11.3.1.1 cc_open_req APDU
	11.3.1.2 cc_open_cnf APDU
	11.3.1.3 cc_data_req APDU
	11.3.1.4 cc_data_cnf APDU
	11.3.1.5 cc_sync_req APDU
	11.3.1.6 cc_sync_cnf APDU
	11.3.1.7 cc_sac_data_req APDU
	11.3.1.8 cc_sac_data_cnf APDU
	11.3.1.9 cc_sac_sync_req APDU
	11.3.1.10 cc_sac_sync_cnf APDU

	11.3.2 Content Control Resource PIN APDUs
	11.3.2.1 cc_PIN_capabilities APDUs
	11.3.2.2 cc_PIN_cmd APDU
	11.3.2.3 cc_PIN_reply APDU
	11.3.2.4 cc_PIN_event APDU
	11.3.2.5 cc_PIN_playback APDU
	11.3.2.6 cc_PIN_MMI_req APDU

	11.3.3 Content Control Protocols
	11.3.3.1 Host Capability Evaluation
	11.3.3.2 Authentication
	11.3.3.3 Authentication Key verification
	11.3.3.4 CC key calculation
	11.3.3.5 SAC key calculation
	11.3.3.6 URI transmission and acknowledgement
	11.3.3.7 URI version negotiation

	11.3.4 Content License Exchange
	11.3.4.1 CICAM to Host License Exchange Protocol
	11.3.4.2 Playback License Exchange Protocol
	11.3.4.3 License Check Exchange Protocol
	11.3.4.4 Record Start Protocol
	11.3.4.5 Change Operating Mode Protocol
	11.3.4.6 Record Stop Protocol

	11.3.5 SRM file transmission and acknowledgement

	11.4 Specific Application Support
	11.4.1 Application Life-cycle
	11.4.2 Data Transfer

	12 CI Plus Application Level MMI
	12.1 Scope
	12.2 Application MMI Profile
	12.2.1 Application Domain
	12.2.2 Set of Classes
	12.2.3 Set of Features
	12.2.3.1 CI Plus Engine Profile
	12.2.3.2 Not required features
	12.2.3.3 Stream Objects
	12.2.3.4 RTGraphics / Subtitles

	12.2.4 GetEngineSupport

	12.3 Content Data Encoding
	12.3.1 Content Table
	12.3.2 Stream "memory" formats
	12.3.3 User Input
	12.3.4 Engine Events
	12.3.5 Protocol Mapping and External Connection
	12.3.6 Resident Programs
	12.3.6.1 RequestMPEGDecoder

	12.4 Engine Graphics Model
	12.4.1 LineArt and Dynamic LineArt
	12.4.2 PNG Bitmaps
	12.4.3 MPEG Stills
	12.4.4 User Input
	12.4.5 High definition graphics model.
	12.4.5.1 Discovery

	12.5 Engine Text
	12.5.1 Downloadable Fonts
	12.5.1.1 OpenType Fonts
	12.5.1.2 Presentation
	12.5.1.3 Defensive Response

	12.6 CI Application Life Cycle
	12.6.1 Application Life Cycle
	12.6.1.1 Launching and Terminating the CI Plus Application

	12.6.2 Interaction with DVB Common Interface Module
	12.6.2.1 MHEG Broadcast Profile
	12.6.2.2 MHP Broadcast Profile
	12.6.2.3 File Request and Acknowledge
	12.6.2.4 Persistent Storage

	12.6.3 Host Resource Model
	12.6.3.1 Memory Resource
	12.6.3.2 Link Recursion Behaviour
	12.6.3.3 Timer Count and Granularity
	12.6.3.4 Application Stacking

	12.7 Name Mapping
	12.7.1 Names within the Host
	12.7.2 Name Space Mapping
	12.7.3 MHEG-5 Object References
	12.7.4 Mapping Rules for GroupIdentifier and ContentReference
	12.7.4.1 Case sensitivity
	12.7.4.2 Structure of file references
	12.7.4.3 Caching

	12.8 VOD extensions
	12.8.1 Resident Programs
	12.8.1.1 Test Input Mask
	12.8.1.2 Suppress MHEG Graphics

	12.9 MHEG-5 Authoring Rules & Guidelines

	13 CI Plus Man-Machine Interface Resource
	13.1 Low Level MMI
	13.2 High Level MMI
	13.3 MMI Resources Association
	13.4 CICAM Menu

	14 Other CI Extensions
	14.1 Low Speed Communication Resource Version 3
	14.1.1 comms_cmd Modification
	14.1.2 comms_reply Modification
	14.1.3 CICAM Flow Control
	14.1.4 Host Flow Control
	14.1.5 Requirement for Buffers
	14.1.6 Disconnection Behaviour
	14.1.7 Data transfer

	14.2 Low Speed Communication IP Extension
	14.2.1 Comms Cmd Modification
	14.2.1.1 Comms Cmd IP_descriptor
	14.2.1.2 Comms Cmd Hostname_descriptor
	14.2.1.3 Maximum Number of Concurrent Connections
	14.2.1.4 Set_Params behaviour

	14.2.2 Low-Speed Communications Resource Types Modification

	14.3 CAM Upgrade Resource and Software Download
	14.3.1 Introduction
	14.3.2 Principles
	14.3.3 CAM Upgrade Process
	14.3.3.1 Delayed Process
	14.3.3.2 Immediate Process

	14.3.4 CAM Upgrade Protocol
	14.3.4.1 Delayed mode
	14.3.4.2 Immediate mode
	14.3.4.3 Upgrade Interruption
	14.3.4.4 Reset Implementation
	14.3.4.5 Host Operation
	14.3.4.6 Upgrade Cancellation

	14.3.5 CAM_Upgrade Resource
	14.3.5.1 CAM_Upgrade Resource APDUs
	14.3.5.2 cam_firmware_upgrade APDU
	14.3.5.3 cam_firmware_upgrade_reply APDU
	14.3.5.4 cam_firmware_upgrade_progress APDU
	14.3.5.5 cam_firmware_upgrade_complete APDU

	14.4 Application MMI Resource
	14.4.1 File Naming Convention
	14.4.2 FileRequest
	14.4.3 FileAcknowledge
	14.4.4 AppAbortRequest

	14.5 Application MMI Resource v2
	14.5.1 FileRequest v2
	14.5.2 FileAcknowledge v2
	14.5.3 RequestType Discovery v2

	14.6 DVB Host Control resource
	14.6.1 DVB Host Control Version 2
	14.6.2 DVB Host Control Version 2 APDUs
	14.6.2.1 tune_broadcast_req APDU
	14.6.2.2 tune_reply APDU
	14.6.2.3 ask_release APDU
	14.6.2.4 ask_release_reply APDU

	14.6.3 PMT Management
	14.6.4 Descriptors
	14.6.5 Host Tuning protocol
	14.6.6 Host Control release requests

	14.7 Operator Profile
	14.7.1 Introduction
	14.7.2 Operational Overview
	14.7.3 Host Operator Profile Handling
	14.7.4 Operator Profile Resource exchange
	14.7.4.1 Initialisation
	14.7.4.1.1 Non-profile CICAM
	14.7.4.1.2 Profiled CICAM
	14.7.4.1.3 Profile Discovery
	14.7.4.1.4 Start-up Considerations

	14.7.4.2 Moving between profiles
	14.7.4.3 Entitlement Change
	14.7.4.3.1 Simple entitlement change
	14.7.4.3.2 Entitlement change where a search is required

	14.7.4.4 Tuning and Scanning
	14.7.4.4.1 Profile Search
	14.7.4.4.2 Tuning Requests
	14.7.4.4.3 CAM Upgrade Consideration

	14.7.5 Operator Profile Resource
	14.7.5.1 Operator Profile Resource APDUs
	14.7.5.2 operator_status_req APDU
	14.7.5.3 operator_status APDU
	14.7.5.4 operator_nit_req APDU
	14.7.5.5 operator_nit APDU
	14.7.5.6 operator_info_req APDU
	14.7.5.7 operator_info APDU
	14.7.5.8 operator_search_start APDU
	14.7.5.9 operator_search_cancel APDU
	14.7.5.10 operator_search_status APDU
	14.7.5.11 operator_tune APDU
	14.7.5.12 operator_tune_status APDU
	14.7.5.13 operator_entitlement_ack APDU
	14.7.5.14 operator_exit APDU
	Annex A (normative): Random Number Generator

	A.1 Random Number Generator Definition
	Annex B (normative): Device ID Protocol

	B.1 Device ID Specification
	Annex C (normative): Checksum Algorithms

	C.1 Checksum Algorithms
	Annex D (normative): SD and HD capabilities

	D.1 SD and HD Definitions
	Annex E (normative): Clarification of DVB-CI Use Cases

	E.1 Initialisation
	E.1.1 Specification
	E.1.2 Requirement

	E.2 CA_PMT in Clear
	E.2.1 Specification
	E.2.2 Requirement

	E.3 CA_PMT Clear to Scrambled / Scrambled to Clear
	E.3.1 Specification
	E.3.2 Recommendation

	E.4 PMT Update and New CA_PMT
	E.4.1 Specification
	E.4.2 Recommendation

	E.5 Spontaneous MMI
	E.5.1 Specification
	E.5.2 Resolution

	E.6 Transport Stream to CICAM
	E.6.1 Specification
	E.6.2 Resolution

	E.7 Profile Reply
	E.7.1 Specification
	E.7.2 Recommendation

	E.8 Operation on a Shared Bus
	E.8.1 Background
	E.8.2 Recommendation

	E.9 Maximum APDU Size
	E.10 Host Control resource
	E.10.1 Specification
	E.10.2 Recommendation

	E.11 CA-PMT Reply
	E.11.1 Specification
	E.11.2 Recommendation

	E.12 CC and CP Resource
	E.12.1 Specification
	E.12.2 Recommendation

	E.13 Physical Requirements
	E.13.1 Data Interface
	E.13.2 Command Interface

	E.14 Low-Speed Communication comms reply object
	E.14.1 Specification
	E.14.2 Recommendation

	E.15 High-Level MMI Text Object Coding
	E.15.1 Specification
	E.15.2 Recommendation

	E.16 DVB Host Control Tune Object
	E.16.1 Specification
	E.16.2 Recommendation

	E.17 Conditional Access Support
	E.17.1 Specification
	E.17.2 Host Requirement
	E.17.3 CICAM Requirement

	E.18 Resource Version Handling
	E.18.1 Specification
	E.18.2 Requirement

	E.19 Open Session Request
	E.19.1 Specification
	E.19.2 Specification Correction
	E.19.3 Recommendation

	E.20 CA PMT Provision
	E.20.1 Background
	E.20.2 Specification
	E.20.3 Host Recommendation

	E.21 CICAM evaluation of CA_descriptors
	E.21.1 Specification
	E.21.2 CICAM Requirement

	E.22 CA Support session closing behaviour
	E.22.1 Specification
	E.22.2 Host Requirement
	E.22.3 CICAM Requirement

	E.23 ca_pmt commands
	E.23.1 Specification
	E.23.2 CICAM Requirement

	E.24 Open Session Response
	E.24.1 Specification
	E.24.2 CICAM Requirement

	E.25 Character Coding
	E.25.1 Specification
	E.25.2 Host Requirement
	E.25.3 Host Recommendation
	Annex F (normative) Error Code Definition and Handling

	F.1 Error Codes
	Annex G (normative): PCMCIA Optimizations

	G.1 Buffer Size
	G.2 Interrupt Mode
	G.3 CI Plus Compatibility Identification
	G.3.1 CI Plus Identification
	G.3.2 Additional CI Plus Feature Identification
	G.3.2.1 Operator Profile Resource (Bit 0 – 0x00000001)
	Annex H (normative): Credential Specification

	H.1 Parameters Exchanged in APDUs
	Annex I (normative): Use of PKCS#1

	I.1 RSA Signatures under PKCS#1
	Annex J (normative): Tag Length Format

	J.1 Tag Length Format
	Annex K (normative): Electrical Specification

	K.1 Electrical Specification
	K.1.1 General Information
	K.1.2 Connector Layout
	K.1.3 Configuration Pins
	K.1.3.1 Card Detection Pins
	K.1.3.2 Voltage Sense Pins And Socket Key
	K.1.3.3 Function Of VPP1 And VPP2

	K.1.4 Power Supply Specifications
	K.1.4.1 5V DC Supply Specification
	K.1.4.2 Host Supply Power Up Timing Diagram
	K.1.4.3 Host Supply Power Down Timing Diagram

	K.1.5 Signal Level Specifications
	K.1.5.1 Pull Up/Pull Down And Capacitive Load Requirements
	K.1.5.2 DC Specification For Signals With 5V Supply

	K.1.6 Common Interface Signal Description
	K.1.6.1 Common Interface CPU Related Signals
	K.1.6.2 MPEG Transport Stream Related Signals
	K.1.6.3 MPEG Clock Timing Considerations.

	K.1.7 Timing Specifications
	K.1.7.1 Common Interface Attribute Memory Read Diagram
	K.1.7.2 Common Interface Attribute Memory Write Diagram
	K.1.7.3 Common Interface I/O Read Timing
	K.1.7.4 Common Interface I/O Write Timing
	K.1.7.5 Common Interface MPEG Signal Timing
	Annex L (normative): Resource Summary

	L.1 Resource IDs
	L.2 Resource Summary
	Annex M (normative): MHP Application Message Format

	M.1 Background (Informative)
	M.1.1 Embedded CAS Environment (Informative)
	M.1.2 CI CAS Environment (Informative)
	M.1.3 Use of SAS for MHP Support (Informative)
	M.1.4 Key Decisions (Informative)

	M.2 Message Format (Normative)
	M.2.1 Session Establishment
	M.2.2 Session Operation

	M.3 Message Components
	M.3.1 Money
	M.3.2 Time
	M.3.3 Duration
	M.3.4 String
	M.3.5 Lstring
	M.3.6 Locator
	M.3.7 Pin Code
	M.3.8 Parental Control Level
	M.3.9 Properties

	M.4 Message Types
	M.4.1 ATR Get Request Message
	M.4.2 ATR Get Response Message
	M.4.3 Cancel Request Message
	M.4.4 Cancel Response Message
	M.4.5 Capabilities Request Message
	M.4.6 Capabilities Response Message
	M.4.7 History Get Request Message
	M.4.8 History Get Response Message
	M.4.9 History Set Request Message
	M.4.10 History Set Response Message
	M.4.11 Notification Enable/Disable Request Message
	M.4.12 Parental Level Get Request Message
	M.4.13 Parental Level Get Response Message
	M.4.14 Parental Level Set Request Message
	M.4.15 Parental Level Set Response Message
	M.4.16 Pin Check Request Message
	M.4.17 Pin Check Response Message
	M.4.18 Pin Get Request Message
	M.4.19 Pin Get Response Message
	M.4.20 Pin Set Request Message
	M.4.21 Pin Set Response Message
	M.4.22 Private Data Request Message
	M.4.23 Private Data Response Message
	M.4.24 Product Get Request Message
	M.4.25 Product Get Response Message
	M.4.26 Product Info Get Request Message
	M.4.27 Product Info Get Response Message
	M.4.28 Purchase Cancel Request Message
	M.4.29 Purchase Cancel Response Message
	M.4.30 Purchase Set Request Message
	M.4.31 Purchase Set Response Message
	M.4.32 Recharge Request Message
	M.4.33 Recharge Response Message
	M.4.34 Slot Get Request Message
	M.4.35 Slot Get Response Message
	M.4.36 SmartCard Get Request Message
	M.4.37 SmartCard Get Response Message
	M.4.38 SmartCard Set Request Message
	M.4.39 SmartCard Set Response Message
	M.4.40 Wallet Get Request Message
	M.4.41 Wallet Get Response Message

	M.5 Event Types
	M.5.1 Access Event Message
	M.5.2 Credit Event Message
	M.5.3 Message Event Message
	M.5.4 Pin Request Event Message
	M.5.5 Pin Request Response Message
	M.5.6 Private Data Event Message
	M.5.7 Product Event Message
	M.5.8 Purchase History Event Message
	M.5.9 Recharge Event Message
	M.5.10 Slot Event Message
	M.5.11 Smart Card Event Message

	M.6 Data Type Id Components
	M.6.1 Access Event
	M.6.2 Byte Data
	M.6.3 CAS Information
	M.6.4 CICAM Information
	M.6.5 Credit Status Event
	M.6.6 Error Status
	M.6.7 History
	M.6.8 History Event
	M.6.9 History Request
	M.6.10 Numeric Index
	M.6.11 Object Identity
	M.6.12 Parental Level
	M.6.13 PIN Code
	M.6.14 PIN Request Event
	M.6.15 PIN Information
	M.6.16 Product
	M.6.17 Product Event
	M.6.18 Product Info
	M.6.19 Product Request
	M.6.20 Purchase
	M.6.21 Recharge
	M.6.22 Recharge Event
	M.6.23 Service Id
	M.6.24 Slot
	M.6.25 Slot Event
	M.6.26 SmartCard
	M.6.27 SmartCard Event
	M.6.28 SmartCard Request
	M.6.29 User Data
	M.6.30 Wallet
	M.6.31 Wallet Identity

	M.7 MHP API Mapping
	Annex N (normative): CICAM Broadcast Profile

	N.1 Service Information (Normative)
	N.1.1 CI Plus Private Descriptors
	N.1.2 CICAM NIT
	N.1.2.1 system_delivery_descriptor
	N.1.2.2 linkage_descriptor
	N.1.2.3 ciplus_service_descriptor
	N.1.2.4 ciplus_content_label_descriptor

	N.1.3 SDT
	N.1.4 EIT
	N.1.4.1 EIT delivery

	N.2 Profile Behaviour
	N.2.1 Logical Channel List Organisation
	N.2.2 Logical Channel Numbering
	N.2.3 Service Types
	N.2.4 Network Updates
	N.2.5 Text Strings

	History

