

CI Plus Specification v1.3.2 (2015-03)

Technical Specification

CI Plus Specification.
Content Security Extensions to the Common Interface.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 2

CI Plus LLP
Pannell House

Park Street
Guildford
Surrey

GU1 4HN
UK

A company registered in England and Wales

Registered Number: OC341596

Copyright Notification

All rights reserved. Reproduction in whole or in part is prohibited without the

written consent of the copyright owners.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 3

Contents

Foreword .. 14

1 Scope ... 15

2 References ... 15
2.1 Normative references ... 15

3 Definitions, symbols and abbreviations ... 17
3.1 Definitions ... 17
3.2 Symbols ... 18
3.3 Abbreviations ... 18
3.4 Use of Words ... 20

4 System Overview (informative) .. 20
4.1 Introduction ... 20
4.2 Content Control System Components .. 21
4.2.1 Host .. 21
4.2.2 CICAM .. 22
4.2.3 Head-End ... 22
4.3 Implementation Outline ... 22
4.4 Device Authentication ... 23
4.5 Key Exchange and Content Encryption ... 23
4.6 Enhanced MMI .. 23
4.7 CI Plus Extensions ... 24
4.7.1 CI Plus 1.3 Extensions ... 24

5 Content Control Overview (normative) ... 24
5.1 End to End Architecture .. 24
5.2 General Interface Behaviour .. 25
5.3 Key Hierarchy .. 26
5.3.1 Keys on the Credentials Layer ... 28
5.3.2 Keys on the Authentication Layer .. 28
5.3.3 Keys on the SAC Layer .. 29
5.3.4 Keys on the Content Control Layer .. 29
5.4 Module Deployment .. 29
5.4.1 Deployment In Basic Service Mode ... 30
5.4.2 Deployment in Registered Service Mode ... 32
5.4.3 Generic Error Reporting ... 32
5.5 Introduction to Revocation (informative) .. 32
5.5.1 Host Revocation ... 32
5.5.2 Revocation Granularity .. 33
5.5.3 Revocation Signalling Data .. 33
5.5.4 Transmission Timeout .. 34
5.5.5 SOCRL and SOCWL Download Process .. 34
5.5.6 Denial of Service .. 36
5.6 (De)Scrambling of Content .. 38
5.6.1 Transport Stream Level Scrambling... 38
5.6.1.1 PES Level Scrambling .. 39
5.6.2 Scrambler/Descrambler Definition .. 39
5.6.2.1 Scrambling rules ... 39
5.6.2.2 Transport Stream Scrambling with DES .. 41
5.6.2.3 Transport Stream Scrambling with AES .. 41
5.7 Copy Control Exertion on Content .. 44
5.7.1 URI Definition ... 44
5.7.2 Associating URI with Content ... 44
5.7.3 URI transfer – Head-End to CICAM ... 44
5.7.4 URI transfer – CICAM to Host .. 44
5.7.5 URI Refresh Protocol ... 45

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 4

5.7.5.1 URI Version Negotiation Protocol ... 48
5.7.5.2 Format of the URI message .. 48
5.7.5.3 Coding And Semantics Of Fields ... 49
5.8 Modes Of Operation .. 53
5.8.1 Host Operation with Multiple CICAMs ... 53
5.8.2 Single CICAM with Multiple CA System Support .. 54
5.8.2.1 Introduction .. 54
5.8.2.2 CICAM Device Certificates ... 54
5.8.2.3 CCK Refresh .. 54
5.8.2.4 Host revocation ... 54
5.9 Authentication Overview ... 54
5.10 Content License Exchanges ... 56
5.10.1 Record Start Protocol ... 56
5.10.2 Content License Exchange on Record.. 56
5.10.3 Content License Exchange on Check ... 56
5.10.4 Content License Exchange on Playback .. 57
5.10.5 Content License and Timeshifting ... 57
5.10.6 Record Stop Protocol ... 57
5.11 Parental Control ... 57
5.11.1 CICAM PIN Capabilities ... 58
5.11.1.1 No CICAM PIN Capabilities .. 58
5.11.1.2 CICAM PIN Capabilities for CA Services Only .. 58
5.11.1.3 CICAM PIN Capabilities for CA and FTA Services .. 58
5.11.1.4 CICAM PIN Capabilities for CA Services Only (cached PIN) .. 59
5.11.1.5 CICAM PIN Capabilities for CA and FTA Services (cached PIN) .. 59
5.11.2 CICAM PIN code ... 59
5.11.3 Host PIN code .. 62
5.11.4 Notification that a PIN is required ... 63
5.11.5 Transfer of Parental Rating to CICAM .. 63
5.11.6 PIN Code Caching ... 63
5.12 Recording and Playback .. 63
5.12.1 Playback Session .. 65
5.13 SRM Delivery .. 66
5.13.1 Data file transfer protocol .. 66
5.13.1.1 Initialisation and message overview ... 66
5.13.2 Data transfer conditions .. 68

6 Authentication Mechanisms .. 69
6.1 CICAM Binding and Registration ... 69
6.1.1 Verification of Certificates & DH Key Exchange .. 69
6.1.2 Verification of Authentication Key .. 69
6.1.3 Report Back to Service Operator ... 70
6.1.4 CC System Operation ... 70
6.2 Authentication Protocol ... 72
6.2.1 Initialisation and Message Overview ... 72
6.2.2 Authentication Conditions .. 74
6.2.3 Authentication Key Computations ... 78
6.2.3.1 Diffie Hellman Parameters ... 82
6.2.3.2 Calculate DH Public Keys (DHPH and DHPM) .. 82
6.2.3.3 Calculate DH Keys (DHSK)... 82
6.2.3.4 Calculate Authentication Key (AKH and AKM) ... 83
6.3 Power-Up Re-Authentication .. 83

7 Secure Authenticated Channel ... 84
7.1 SAC Operation .. 85
7.1.1 SAC Initialisation ... 85
7.1.2 SAC (re)keying Conditions .. 86
7.1.3 SAC Key Computation .. 88
7.1.4 SAC error codes and (re) set SAC state ... 88
7.2 Format of the SAC Message .. 89
7.2.1 Constants .. 90

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 5

7.2.2 Coding and Semantics of Fields ... 90
7.3 Transmitting SAC Messages ... 92
7.3.1 Message Authentication ... 92
7.3.2 Message Encryption ... 92
7.4 Receiving SAC Messages .. 93
7.4.1 Message Counter State ... 93
7.4.2 Message Decryption ... 93
7.4.3 Message Verification ... 94
7.5 SAC Integration into CI Plus ... 94

8 Content Key Calculations .. 95
8.1 Content Control Key refresh protocol.. 95
8.1.1 Initialization and message overview .. 95
8.1.2 Content Control Key re-keying conditions .. 97
8.1.3 Content Key Lifetime ... 98
8.1.4 Content Control Key Computation (CCK) ... 98
8.1.5 Content Key for DES-56-ECB Scrambler. ... 99
8.1.6 Content Key and IV for AES-128-CBC Scrambler. .. 99

9 PKI and Certificate Details .. 100
9.1 Introduction ... 100
9.2 Certificate Management Architecture .. 100
9.3 Certificate Format .. 101
9.3.1 version .. 102
9.3.2 serialNumber .. 102
9.3.3 signature ... 102
9.3.4 issuer .. 102
9.3.5 validity ... 103
9.3.6 subject .. 103
9.3.7 subjectPublicKeyInfo ... 104
9.3.8 issuerUniqueID and subjectUniqueID.. 104
9.3.9 extensions ... 105
9.3.9.1 Subject Key Identifier... 105
9.3.9.2 Authority Key Identifier ... 105
9.3.9.3 Key usage ... 105
9.3.9.4 Basic constraints ... 105
9.3.9.5 Scrambler capabilities .. 106
9.3.9.6 CI Plus info ... 106
9.3.9.7 CICAM brand identifier ... 106
9.3.10 signatureAlgorithm .. 107
9.3.11 signatureValue ... 107
9.4 Certificate Verification .. 107
9.4.1 Verification of the brand certificate ... 107
9.4.2 Verification of the device certificate .. 107
9.4.3 Verification of the service operator certificate ... 108

10 Host Service Shunning .. 108
10.1 CI Plus Protected Service Signalling ... 108
10.1.1 CI Protection Descriptor .. 109
10.1.1.1 CI Protection Descriptor ... 109
10.1.1.2 Private Data Specifier Descriptor ... 110
10.2 Trusted Reception .. 110
10.3 CI Plus Protection Service Mode ... 110
10.4 Service Shunning ... 111
10.4.1 Service Shunning In-active .. 113
10.4.2 Service Shunning Active .. 113

11 Command Interface ... 113
11.1 Application Information resource .. 113
11.1.1 Application Information Version 3 .. 113
11.1.2 Request CICAM Reset ... 113
11.1.2.1 request_cicam_reset APDU .. 113

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 6

11.1.2.2 Reset request using the IIR bit .. 114
11.1.3 Data rate on the PCMCIA bus.. 114
11.1.3.1 data_rate_info APDU ... 114
11.2 Host Language and Country resource .. 114
11.2.1 Host Language and Country resource APDUs ... 115
11.2.1.1 Host_country_enq APDU ... 115
11.2.1.2 Host_country APDU .. 115
11.2.1.3 Host_language_enq APDU .. 115
11.2.1.4 Host_language APDU .. 116
11.3 Content Control resource ... 116
11.3.1 Content Control resource APDUs .. 116
11.3.1.1 cc_open_req APDU .. 117
11.3.1.2 cc_open_cnf APDU .. 117
11.3.1.3 cc_data_req APDU ... 118
11.3.1.4 cc_data_cnf APDU ... 118
11.3.1.5 cc_sync_req APDU .. 119
11.3.1.6 cc_sync_cnf APDU .. 119
11.3.1.7 cc_sac_data_req APDU .. 120
11.3.1.8 cc_sac_data_cnf APDU .. 121
11.3.1.9 cc_sac_sync_req APDU ... 121
11.3.1.10 cc_sac_sync_cnf APDU ... 122
11.3.2 Content Control Resource PIN APDUs ... 122
11.3.2.1 cc_PIN_capabilities APDUs... 122
11.3.2.2 cc_PIN_cmd APDU ... 123
11.3.2.3 cc_PIN_reply APDU .. 124
11.3.2.4 cc_PIN_event APDU.. 125
11.3.2.5 cc_PIN_playback APDU .. 125
11.3.2.6 cc_PIN_MMI_req APDU ... 126
11.3.3 Content Control Protocols .. 126
11.3.3.1 Host Capability Evaluation ... 126
11.3.3.2 Authentication .. 126
11.3.3.3 Authentication Key verification ... 127
11.3.3.4 CC key calculation ... 127
11.3.3.5 SAC key calculation ... 128
11.3.3.6 URI transmission and acknowledgement ... 128
11.3.3.7 URI version negotiation ... 129
11.3.4 Content License Exchange ... 129
11.3.4.1 CICAM to Host License Exchange Protocol .. 129
11.3.4.2 Playback License Exchange Protocol ... 130
11.3.4.3 License Check Exchange Protocol ... 131
11.3.4.4 Record Start Protocol ... 132
11.3.4.5 Change Operating Mode Protocol .. 133
11.3.4.6 Record Stop Protocol .. 133
11.3.5 SRM file transmission and acknowledgement ... 134
11.4 Specific Application Support ... 134
11.4.1 Application Life-cycle ... 135
11.4.2 Data Transfer .. 135

12 CI Plus Application Level MMI .. 136
12.1 Scope ... 136
12.2 Application MMI Profile ... 137
12.2.1 Application Domain ... 137
12.2.2 Set of Classes ... 137
12.2.3 Set of Features .. 138
12.2.3.1 CI Plus Engine Profile .. 138
12.2.3.2 Not required features .. 138
12.2.3.3 Stream Objects ... 138
12.2.3.4 RTGraphics / Subtitles ... 139
12.2.4 GetEngineSupport .. 139
12.3 Content Data Encoding .. 139
12.3.1 Content Table ... 139

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 7

12.3.2 Stream "memory" formats .. 139
12.3.3 User Input ... 139
12.3.4 Engine Events .. 140
12.3.5 Protocol Mapping and External Connection .. 140
12.3.6 Resident Programs ... 140
12.3.6.1 RequestMPEGDecoder ... 141
12.4 Engine Graphics Model ... 141
12.4.1 LineArt and Dynamic LineArt ... 141
12.4.2 PNG Bitmaps ... 141
12.4.3 MPEG Stills ... 142
12.4.4 User Input ... 142
12.4.5 High definition graphics model. ... 142
12.4.5.1 Discovery ... 142
12.5 Engine Text.. 142
12.5.1 Downloadable Fonts... 142
12.5.1.1 OpenType Fonts ... 142
12.5.1.2 Presentation .. 143
12.5.1.3 Defensive Response.. 143
12.6 CI Application Life Cycle ... 143
12.6.1 Application Life Cycle ... 143
12.6.1.1 Launching and Terminating the CI Plus Application ... 144
12.6.2 Interaction with DVB Common Interface Module ... 144
12.6.2.1 MHEG Broadcast Profile ... 144
12.6.2.2 MHP Broadcast Profile ... 145
12.6.2.3 File Request and Acknowledge .. 145
12.6.2.4 Persistent Storage ... 145
12.6.3 Host Resource Model ... 145
12.6.3.1 Memory Resource .. 145
12.6.3.2 Link Recursion Behaviour .. 145
12.6.3.3 Timer Count and Granularity ... 145
12.6.3.4 Application Stacking .. 145
12.7 Name Mapping .. 145
12.7.1 Names within the Host ... 145
12.7.2 Name Space Mapping .. 146
12.7.3 MHEG-5 Object References .. 146
12.7.4 Mapping Rules for GroupIdentifier and ContentReference ... 146
12.7.4.1 Case sensitivity ... 146
12.7.4.2 Structure of file references ... 146
12.7.4.3 Caching ... 146
12.8 VOD extensions ... 147
12.8.1 Resident Programs ... 147
12.8.1.1 Test Input Mask .. 147
12.8.1.2 Suppress MHEG Graphics ... 147
12.9 MHEG-5 Authoring Rules & Guidelines .. 148

13 CI Plus Man-Machine Interface Resource ... 149
13.1 Low Level MMI .. 149
13.2 High Level MMI .. 150
13.3 MMI Resources Association .. 150
13.4 CICAM Menu .. 150

14 Other CI Extensions ... 151
14.1 Low Speed Communication Resource Version 3 .. 151
14.1.1 comms_cmd Modification ... 151
14.1.2 comms_reply Modification .. 152
14.1.3 CICAM Flow Control .. 152
14.1.4 Host Flow Control .. 155
14.1.5 Requirement for Buffers .. 156
14.1.6 Disconnection Behaviour ... 156
14.1.7 Data transfer ... 156
14.2 Low Speed Communication IP Extension ... 157

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 8

14.2.1 Comms Cmd Modification ... 158
14.2.1.1 Comms Cmd IP_descriptor .. 159
14.2.1.2 Comms Cmd Hostname_descriptor .. 159
14.2.1.3 Maximum Number of Concurrent Connections ... 160
14.2.1.4 Set_Params behaviour .. 160
14.2.2 Low-Speed Communications Resource Types Modification ... 161
14.3 CAM Upgrade Resource and Software Download .. 161
14.3.1 Introduction .. 161
14.3.2 Principles .. 161
14.3.3 CAM Upgrade Process ... 162
14.3.3.1 Delayed Process ... 163
14.3.3.2 Immediate Process .. 164
14.3.4 CAM Upgrade Protocol ... 165
14.3.4.1 Delayed mode ... 165
14.3.4.2 Immediate mode ... 166
14.3.4.3 Upgrade Interruption .. 167
14.3.4.4 Reset Implementation ... 168
14.3.4.5 Host Operation ... 168
14.3.4.6 Upgrade Cancellation ... 168
14.3.5 CAM_Upgrade Resource ... 168
14.3.5.1 CAM_Upgrade Resource APDUs .. 168
14.3.5.2 cam_firmware_upgrade APDU .. 169
14.3.5.3 cam_firmware_upgrade_reply APDU .. 169
14.3.5.4 cam_firmware_upgrade_progress APDU ... 170
14.3.5.5 cam_firmware_upgrade_complete APDU .. 170
14.4 Application MMI Resource ... 170
14.4.1 File Naming Convention .. 171
14.4.2 FileRequest... 171
14.4.3 FileAcknowledge ... 172
14.4.4 AppAbortRequest ... 173
14.5 Application MMI Resource v2 .. 173
14.5.1 FileRequest v2 .. 173
14.5.2 FileAcknowledge v2 .. 174
14.5.3 RequestType Discovery v2 .. 176
14.6 DVB Host Control resource ... 177
14.6.1 DVB Host Control Version 2 ... 177
14.6.2 DVB Host Control Version 2 APDUs .. 177
14.6.2.1 tune_broadcast_req APDU ... 177
14.6.2.2 tune_reply APDU ... 178
14.6.2.3 ask_release APDU .. 178
14.6.2.4 ask_release_reply APDU .. 179
14.6.3 PMT Management .. 179
14.6.4 Descriptors ... 179
14.6.5 Host Tuning protocol ... 180
14.6.6 Host Control release requests ... 182
14.7 Operator Profile ... 183
14.7.1 Introduction .. 183
14.7.2 Operational Overview .. 183
14.7.3 Host Operator Profile Handling ... 185
14.7.4 Operator Profile Resource exchange .. 185
14.7.4.1 Initialisation .. 185
14.7.4.2 Moving between profiles .. 187
14.7.4.3 Entitlement Change .. 188
14.7.4.4 Tuning and Scanning .. 190
14.7.5 Operator Profile Resource .. 192
14.7.5.1 Operator Profile Resource APDUs ... 192
14.7.5.2 operator_status_req APDU ... 193
14.7.5.3 operator_status APDU .. 193
14.7.5.4 operator_nit_req APDU .. 196
14.7.5.5 operator_nit APDU ... 197

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 9

14.7.5.6 operator_info_req APDU ... 197
14.7.5.7 operator_info APDU .. 198
14.7.5.8 operator_search_start APDU .. 201
14.7.5.9 operator_search_cancel APDU ... 202
14.7.5.10 operator_search_status APDU .. 203
14.7.5.11 operator_tune APDU .. 203
14.7.5.12 operator_tune_status APDU ... 204
14.7.5.13 operator_entitlement_ack APDU ... 206
14.7.5.14 operator_exit APDU ... 206

Annex A (normative): Random Number Generator... 207

A.1 Random Number Generator Definition .. 207

Annex B (normative): Device ID Protocol .. 209

B.1 Device ID Specification ... 209

Annex C (normative): Checksum Algorithms ... 210

C.1 Checksum Algorithms ... 210

Annex D (normative): SD and HD capabilities ... 211

D.1 SD and HD Definitions .. 211

Annex E (normative): Clarification of DVB-CI Use Cases ... 212

E.1 Initialisation ... 212
E.1.1 Specification .. 212
E.1.2 Requirement ... 212

E.2 CA_PMT in Clear .. 212
E.2.1 Specification .. 212
E.2.2 Requirement ... 212

E.3 CA_PMT Clear to Scrambled / Scrambled to Clear .. 212
E.3.1 Specification .. 212
E.3.2 Recommendation ... 213

E.4 PMT Update and New CA_PMT .. 213
E.4.1 Specification .. 213
E.4.2 Recommendation ... 213

E.5 Spontaneous MMI ... 213
E.5.1 Specification .. 213
E.5.2 Resolution .. 213

E.6 Transport Stream to CICAM ... 214
E.6.1 Specification .. 214
E.6.2 Resolution .. 214

E.7 Profile Reply .. 214
E.7.1 Specification .. 214
E.7.2 Recommendation ... 214

E.8 Operation on a Shared Bus .. 214
E.8.1 Background .. 214
E.8.2 Recommendation ... 215

E.9 Maximum APDU Size ... 215

E.10 Host Control resource .. 215
E.10.1 Specification .. 215
E.10.2 Recommendation ... 215

E.11 CA-PMT Reply .. 215
E.11.1 Specification .. 215

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 10

E.11.2 Recommendation ... 215

E.12 CC and CP Resource ... 216
E.12.1 Specification .. 216
E.12.2 Recommendation ... 216

E.13 Physical Requirements... 216
E.13.1 Data Interface .. 216
E.13.2 Command Interface ... 216

E.14 Low-Speed Communication comms reply object .. 216
E.14.1 Specification .. 216
E.14.2 Recommendation ... 216

E.15 High-Level MMI Text Object Coding ... 216
E.15.1 Specification .. 216
E.15.2 Recommendation ... 217

E.16 DVB Host Control Tune Object .. 217
E.16.1 Specification .. 217
E.16.2 Recommendation ... 217

E.17 Conditional Access Support .. 217
E.17.1 Specification .. 217
E.17.2 Host Requirement .. 217
E.17.3 CICAM Requirement... 218

E.18 Resource Version Handling ... 218
E.18.1 Specification .. 218
E.18.2 Requirement ... 218

E.19 Open Session Request.. 218
E.19.1 Specification .. 218
E.19.2 Specification Correction .. 218
E.19.3 Recommendation ... 219

E.20 CA PMT Provision .. 219
E.20.1 Background .. 219
E.20.2 Specification .. 219
E.20.3 Host Recommendation ... 219

E.21 CICAM evaluation of CA_descriptors .. 219
E.21.1 Specification .. 219
E.21.2 CICAM Requirement... 220

E.22 CA Support session closing behaviour .. 220
E.22.1 Specification .. 220
E.22.2 Host Requirement .. 220
E.22.3 CICAM Requirement... 220

E.23 ca_pmt commands ... 220
E.23.1 Specification .. 220
E.23.2 CICAM Requirement... 220

E.24 Open Session Response ... 221
E.24.1 Specification .. 221
E.24.2 CICAM Requirement... 221

E.25 Character Coding ... 221
E.25.1 Specification .. 221
E.25.2 Host Requirement .. 221
E.25.3 Host Recommendation ... 221

Annex F (normative) Error Code Definition and Handling ... 222

F.1 Error Codes .. 222

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 11

Annex G (normative): PCMCIA Optimizations .. 225

G.1 Buffer Size ... 225

G.2 Interrupt Mode ... 225

G.3 CI Plus Compatibility Identification .. 226
G.3.1 CI Plus Identification ... 227
G.3.2 Additional CI Plus Feature Identification .. 227
G.3.2.1 Operator Profile Resource (Bit 0 – 0x00000001) ... 228

Annex H (normative): Credential Specification .. 229

H.1 Parameters Exchanged in APDUs .. 229

Annex I (normative): Use of PKCS#1 ... 230

I.1 RSA Signatures under PKCS#1 ... 230

Annex J (normative): Tag Length Format ... 231

J.1 Tag Length Format .. 231

Annex K (normative): Electrical Specification .. 232

K.1 Electrical Specification .. 232
K.1.1 General Information... 232
K.1.2 Connector Layout .. 232
K.1.3 Configuration Pins ... 234
K.1.3.1 Card Detection Pins.. 234
K.1.3.2 Voltage Sense Pins And Socket Key .. 235
K.1.3.3 Function Of VPP1 And VPP2 .. 235
K.1.4 Power Supply Specifications ... 236
K.1.4.1 5V DC Supply Specification .. 236
K.1.4.2 Host Supply Power Up Timing Diagram ... 237
K.1.4.3 Host Supply Power Down Timing Diagram .. 237
K.1.5 Signal Level Specifications ... 238
K.1.5.1 Pull Up/Pull Down And Capacitive Load Requirements ... 238
K.1.5.2 DC Specification For Signals With 5V Supply .. 239
K.1.6 Common Interface Signal Description ... 239
K.1.6.1 Common Interface CPU Related Signals ... 239
K.1.6.2 MPEG Transport Stream Related Signals .. 241
K.1.6.3 MPEG Clock Timing Considerations. ... 242
K.1.7 Timing Specifications .. 243
K.1.7.1 Common Interface Attribute Memory Read Diagram .. 243
K.1.7.2 Common Interface Attribute Memory Write Diagram ... 244
K.1.7.3 Common Interface I/O Read Timing.. 245
K.1.7.4 Common Interface I/O Write Timing ... 246
K.1.7.5 Common Interface MPEG Signal Timing .. 247

Annex L (normative): Resource Summary .. 248

L.1 Resource IDs .. 248

L.2 Resource Summary .. 248

Annex M (normative): MHP Application Message Format .. 254

M.1 Background (Informative) ... 254
M.1.1 Embedded CAS Environment (Informative) ... 254
M.1.2 CI CAS Environment (Informative) .. 254
M.1.3 Use of SAS for MHP Support (Informative) ... 256
M.1.4 Key Decisions (Informative) ... 257

M.2 Message Format (Normative) .. 257
M.2.1 Session Establishment ... 257
M.2.2 Session Operation .. 257

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 12

M.3 Message Components .. 261
M.3.1 Money .. 261
M.3.2 Time ... 262
M.3.3 Duration ... 262
M.3.4 String ... 262
M.3.5 Lstring .. 263
M.3.6 Locator ... 263
M.3.7 Pin Code .. 265
M.3.8 Parental Control Level ... 265
M.3.9 Properties ... 266

M.4 Message Types .. 266
M.4.1 ATR Get Request Message .. 266
M.4.2 ATR Get Response Message ... 266
M.4.3 Cancel Request Message ... 267
M.4.4 Cancel Response Message ... 267
M.4.5 Capabilities Request Message ... 267
M.4.6 Capabilities Response Message ... 268
M.4.7 History Get Request Message .. 268
M.4.8 History Get Response Message ... 268
M.4.9 History Set Request Message .. 269
M.4.10 History Set Response Message .. 269
M.4.11 Notification Enable/Disable Request Message .. 269
M.4.12 Parental Level Get Request Message ... 269
M.4.13 Parental Level Get Response Message .. 270
M.4.14 Parental Level Set Request Message ... 270
M.4.15 Parental Level Set Response Message ... 270
M.4.16 Pin Check Request Message .. 270
M.4.17 Pin Check Response Message.. 271
M.4.18 Pin Get Request Message .. 271
M.4.19 Pin Get Response Message .. 271
M.4.20 Pin Set Request Message ... 272
M.4.21 Pin Set Response Message ... 272
M.4.22 Private Data Request Message ... 272
M.4.23 Private Data Response Message .. 272
M.4.24 Product Get Request Message ... 273
M.4.25 Product Get Response Message ... 273
M.4.26 Product Info Get Request Message .. 273
M.4.27 Product Info Get Response Message ... 274
M.4.28 Purchase Cancel Request Message .. 274
M.4.29 Purchase Cancel Response Message .. 274
M.4.30 Purchase Set Request Message .. 275
M.4.31 Purchase Set Response Message .. 275
M.4.32 Recharge Request Message ... 275
M.4.33 Recharge Response Message ... 275
M.4.34 Slot Get Request Message ... 276
M.4.35 Slot Get Response Message ... 276
M.4.36 SmartCard Get Request Message .. 276
M.4.37 SmartCard Get Response Message .. 277
M.4.38 SmartCard Set Request Message ... 277
M.4.39 SmartCard Set Response Message ... 277
M.4.40 Wallet Get Request Message ... 278
M.4.41 Wallet Get Response Message ... 278

M.5 Event Types ... 278
M.5.1 Access Event Message ... 278
M.5.2 Credit Event Message .. 279
M.5.3 Message Event Message .. 279
M.5.4 Pin Request Event Message ... 279
M.5.5 Pin Request Response Message ... 280
M.5.6 Private Data Event Message .. 280

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 13

M.5.7 Product Event Message .. 280
M.5.8 Purchase History Event Message ... 281
M.5.9 Recharge Event Message ... 281
M.5.10 Slot Event Message.. 281
M.5.11 Smart Card Event Message .. 282

M.6 Data Type Id Components ... 282
M.6.1 Access Event .. 282
M.6.2 Byte Data ... 283
M.6.3 CAS Information ... 283
M.6.4 CICAM Information .. 284
M.6.5 Credit Status Event .. 284
M.6.6 Error Status .. 285
M.6.7 History ... 286
M.6.8 History Event ... 289
M.6.9 History Request ... 289
M.6.10 Numeric Index ... 290
M.6.11 Object Identity ... 290
M.6.12 Parental Level .. 291
M.6.13 PIN Code ... 291
M.6.14 PIN Request Event ... 291
M.6.15 PIN Information ... 292
M.6.16 Product ... 293
M.6.17 Product Event .. 294
M.6.18 Product Info ... 295
M.6.19 Product Request ... 296
M.6.20 Purchase ... 297
M.6.21 Recharge .. 297
M.6.22 Recharge Event .. 299
M.6.23 Service Id ... 299
M.6.24 Slot ... 299
M.6.25 Slot Event .. 300
M.6.26 SmartCard .. 300
M.6.27 SmartCard Event .. 302
M.6.28 SmartCard Request .. 303
M.6.29 User Data ... 303
M.6.30 Wallet .. 303
M.6.31 Wallet Identity ... 304

M.7 MHP API Mapping .. 304

Annex N (normative): CICAM Broadcast Profile ... 307

N.1 Service Information (Normative) .. 307
N.1.1 CI Plus Private Descriptors .. 307
N.1.2 CICAM NIT .. 307
N.1.2.1 system_delivery_descriptor .. 308
N.1.2.2 linkage_descriptor .. 308
N.1.2.3 ciplus_service_descriptor ... 308
N.1.2.4 ciplus_content_label_descriptor ... 309
N.1.3 SDT .. 310
N.1.4 EIT ... 311
N.1.4.1 EIT delivery ... 311

N.2 Profile Behaviour ... 311
N.2.1 Logical Channel List Organisation .. 311
N.2.2 Logical Channel Numbering .. 312
N.2.3 Service Types .. 312
N.2.4 Network Updates ... 312
N.2.5 Text Strings.. 312

History ... 313

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 14

Foreword

The DVB Common Interface specifications EN 50221 [7] and TS 101 699 [8], describe a system whereby a

removable Conditional Access Module, given the appropriate rights, unscrambles protected content and routes it

back to the Host over the same interface. The Common Interface connector is an industry standard PCMCIA

slot. This means that potentially high value content is traversing a "standard" interface without any protection.

One of the aims of this specification is to address this problem. It is intended that this specification also clarifies

some aspects of Common Interface behaviour that were undefined or ambiguous in the original specifications,

EN 50221 DVB Common Interface Specification [7] and TS 101 699 Extensions to the Common Interface

Specification [8].

The specification addresses some other requirements which have been identified by the market to make

communication and interaction between the CA system, and the user, more uniform across different Host

vendors and models.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 15

1 Scope

This specification addresses the concerns of service providers, CA operators and content owners about content

protection after the conditional access protection has been removed. Specifically at the point where it leaves the

CA module and re-enters the Host. To remove these concerns a strong and robust Content Control system is

required to protect the content at this point.

This specification describes such a system, including all the rules for authentication, key generation and copy

control information forwarding.

The domain of this system is the Common Interface CA Module to Host connection. It is not associated with a

specific CA system and it is not intended to be extended beyond the Host. It is also not limited to any particular

type of interface, however since the current base of implementations use PCMCIA slots, problems which might

arise from the use of other interfaces have not been identified or addressed.

The mechanisms defined in this specification document are referred to as Common Interface Plus or CI Plus.

This specification is based upon, and extends, the existing CI specifications; EN 50221 DVB Common Interface

Specification [7] and TS 101 699 Extensions to the Common Interface Specification [8].

To provide optimum security in an environment containing individuals willing to spend time and effort in

breaking such systems, the specification uses a collection of established, industry accepted and validated

techniques, including device and message authentication and encryption.

Authentication between the CICAM and Host provides confirmation to the CICAM that it is operating with a

legitimate Host; similarly that the Host is operating with a legitimate CICAM.

The specification uses shared private keys which are calculated by both the CICAM and Host separately and

information passing over the interface is not sufficient for a third device to calculate this key. This process uses

established, tried and tested methods which at the time of writing have no specific weaknesses.

This specification only applies to the reception of services which are controlled by a Conditional Access system

and have been scrambled by the service provider. Services that are not controlled by a Conditional Access

system are not covered by this specification.

This specification is intended to be used in combination with the appropriate certification process, and subject to

conformance by the manufacturers to the CI Plus Robustness Rules [6] controlled by the selected Certification

Authority.

This specification also provides a list of recommendations to clarify the DVB-CI standard further.

2 References

2.1 Normative references

[1] RSA PKCS#1 v2.1: June 14, 2002. RSA Cryptography Standard, RSA security

inc. TUftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdfUT

[2] FIPS PUB 46-3: October 25, 1999. National Institute of Standards and Technology, Data

Encryption Standard (DES). Tuhttp://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdfUT

[3] FIPS PUB 180-3: October 2008. Secure Hash Signature Standard, NIST.

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

[4] FIPS PUB 197: November 26, 2001. Specification for the Advanced Encryption Standard

(AES), National Institute of Standards and Technology.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[5] SCTE 41:2004. POD copy protection system. Society of Cable Telecommunications

Engineers. Tuhttp://www.scte.org/documents/pdf/ANSISCTE412004.pdf UT

[6] CI Plus Device Interim License Agreement. http://www.ci-plus.com

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.scte.org/documents/pdf/ANSISCTE412004.pdf
http://www.ci-plus.com/

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 16

[7] CENELEC EN 50221: February, 1997. Common Interface Specification for Conditional

Access and other Digital Video Broadcasting Decoder

Applications Tuhttp://pda.etsi.org/pda/queryform.asp UT

[8] ETSI TS 101 699 V1.1.1: November, 1999. Digital Video Broadcasting (DVB);

Extensions to the Common Interface Specification Tuhttp://pda.etsi.org/pda/queryform.asp UT

[9] ETSI TS 101 812: August 2006. Digital Video Broadcasting (DVB); Multimedia Home

Platform (MHP) Specification 1.0.3. Tuhttp://pda.etsi.org/pda/queryform.asp UT

[10] ETSI EN 300 468 V1.12.1 (2011-01): Digital Video Broadcasting (DVB); Specification

for Service Information (SI) in DVB systems. Tuhttp://pda.etsi.org/pda/queryform.asp UT

[11] SHS validation list. http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm

[12] ANSI X 9.31: September 9, 1998. American National Standards Institute, Digital

Signatures using reversible public key cryptography for financial services industry (rDSA).

[13] ISO/IEC 13818-1:2000(E). Information technology – Generic coding of moving pictures

and associated audio information: Systems.

[14] ISO/IEC 13818-6:1998(E). Information technology – Generic coding of moving pictures

and associated audio information, Extensions for DSM-CC.

[15] ISO/IEC 8859-1:1998. 8-bit single-byte coded graphic character sets, Part 1: Latin

alphabet No. 1

[16] ISO/IEC 13522-5:1997, Information technology – Coding of multimedia and hypermedia

information – Part 5: Support for base-level interactive applications

[17] ISO 3166-1:1997. Codes for the representation of names of countries and their

subdivisions – Part 1: Country codes

[18] ISO 639-2:1998. Codes for the representation of names of languages – Part 2: Alpha-3

code.

[19] RFC3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile (version 3). Tuhttp://www.ietf.org/rfc/rfc3280.txt UT

[20] RFC 3566, The AES-XCBC-MAC-96 Algorithm and Its Use With Ipsec, S. Frankel

(NIST) H. Herbert (Intel), September 2003

[21] RFC4055: Additional Algorithms and Identifiers for RSA Cryptography for use in the

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile. Tuhttp://www.ietf.org/rfc/rfc4055.txt UT

[22] ITU-T Rec X.501: Series X: Data Networks And Open System Communications,

Directory.

[23] DTG D-Book 5.0: Digital Terrestrial Television, Requirements for Interoperability Issue

5.0. Tuhttp://www.dtg.org.uk/publications/books.html UT

[24] R206-001:1998. Guidelines for implementation and use of the common interface for DVB

decoder applications. http://www.cenelec.org/Cenelec/Homepage.htm

[25] NIST Special Publication 800-38A, 2001 Edition, Computer Security Division, National

Institute of Standards and Technology. Tuhttp://csrc.nist.gov/publications/nistpubs/800-

38a/sp800-38a.pdfUT

[26] ATSC Doc. A/70A:2004, July 22, 2004: Advanced Television Systems Committee, ATSC

Standard: Conditional Access System for Terrestrial Broadcast, Revision A.

[27] OC_SP_CCIF2.0-I23-110512: 2011-05-11. Cable Card Interface 2.0 Specification, Cable

Television Laboratories

http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.dtg.org.uk/publications/books.html
http://www.cenelec.org/Cenelec/Homepage.htm
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 17

[28] PC Card Standard version 8.0 Volume 2 Electrical Specification: 2001-04.

PCMCIA/JEITA Standardisation Committee

[29] PC Card Standard version 8.0 Volume 3 Physical Specification: 2001-04. PCMCIA/JEITA

Standardisation Committee

[30] PC Card Standard version 8.0 Volume 4 Metaformat Specification: 2001-04.

PCMCIA/JEITA Standardisation Committee

[31] PKCS #3: Diffie-Hellman Key Agreement

Standard, Tuftp://ftp.rsasecurity.com/pub/pkcs/ascii/pkcs-3.asc UT

[32] ETSI TS 101 162 V1.4.1 (2011-05): Digital Video Broadcasting (DVB); Allocation of

Service Information (SI) codes for DVB systems

[33] CI Plus Licensee Specification, available under licence from the CI Plus Trust Authority.

[34] High-bandwidth Digital Content Protection System, Interface Independent Adaptation,

Revision 2.0.

[35] ETSI TS 102 757; Content Purchasing API.

[36] A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications. http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-

22b.pdf

[37] Supplementary CI Plus Specification for Service / Network Operators. http://www.ci-

plus.com

[38] ETSI ES 202 184 V2.1.1. MHEG-5 Broadcast Profile

[39] ITU-T J.96:2001; Technical method for ensuring privacy in long-distance international

MPEG-2 television transmission conforming to ITU-T J.89

[40] RFC1123; Requirements for Internet Hosts -- Application and Support

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

authentication: A procedure to securely confirm that a Host or CICAM has a genuine certificate and that the

certificate has not been revoked. Also: a means to confirm securely that a message originated from a trusted

source.

Authenticated: A quality resulting from the application of an Authentication procedure; securely confirmed.

bypass mode: A Host mode of operation where the TS input to the Host Demux is taken directly from the

source (tuner) and not from the CICAM.

Carousel: Method for repeatedly delivering data in a continuous cycle. In this case, via an MPEG 2 Transport

Stream.

CA-only: The CICAM mode of CA-descrambling EMI=00 content and returning it to the Host CC-

unscrambled.

cached PIN: The PIN code that is sent in the record_start protocol.

ftp://ftp.rsasecurity.com/pub/pkcs/ascii/pkcs-3.asc
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 18

controlled content: Controlled content means content that has been transmitted from the headend with (a) the

Encryption Mode Indicator ("EMI") bits set to a value other than zero, zero (0,0), (b) the EMI bits set to a value

of zero, zero (0,0), but with the RCT value set to one (1).

CICAM: Common Interface Conditional Access Module.

CICAM Certificate: The unique certificate issued to each CICAM and used for CICAM authentication.

Parameter name: CICAM_DevCert.

Data Carousel: One of the two forms of carousel defined by DSM-CC, ISO 13818-6 [14], part of the MPEG 2

Specification.

Host: Any device that includes a CI Plus compliant CAM slot.

Host Certificate: The unique certificate issued to each Host device and used for Host authentication. Parameter

name: Host_DevCert.

Encrypted: Data modified to prevent unauthorized access (compare with "scrambled").

Nonce: A randomly chosen value inserted in a message or protocol to protect against replay attacks.

pass-through: A Host mode of operation where the TS input to the Host Demux has previously passed through

the CICAM from the source (tuner).

re-scramble: The CICAM mode of CA-descrambling and CC-scrambling content.

Secure Authenticated Channel: A secure communication path that exists between the Host and CICAM.

Scrambled: Content modified to prevent unauthorized access (compare with "encrypted").

trusted reception: Reception of SI data which has not been through a CICAM, i.e. bypass mode.

uncontrolled content: Uncontrolled content is content that is indicated by EMI value = 00.

viewing PIN: The PIN used to enable viewing of content in live or recording playback mode.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

E{K}(M) Encryption of message 'M' using key 'K'

D{K}(M) Decryption of message 'M' using key 'K'

P Public key

Q Private key

DQ Device private key

DP Device public key

A{K}(M) Authentication of message 'M' with key 'K'

V{K}(M) Verification of message 'M' with key 'K'

A  B Bit-wise exclusive OR of 'A' and 'B'

A | B Bit-wise OR of 'A' and 'B'

A || B Concatenation of 'A' and 'B'

0x… This prefix indicates a hexadecimal value follows.

0b… This prefix indicates a binary value follows.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

APS Analogue Protection System

ASN.1 Abstract Syntax Notation One

AV Audio Video

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 19

BAT Bouquet Association Table

bslbf bit serial leftmost bit first

BSM Basic Service Mode

CA Conditional Access

CAM Conditional Access Module

CAS Conditional Access System

CBC Cipher Block Chaining

CC Content Control

CCK Content Control Key

CI Common Interface

CICAM Common Interface Conditional Access Module

CICAM_ID CICAM's unique identification number

CRL Certificate Revocation List

CWL Certificate White List

DES Data Encryption Standard

DH Diffie-Hellman

DOT Digital Only Token

DSM-CC Digital Storage Media – Command and Control

DTV Digital Television

DVB Digital Video Broadcast

ECB Electronic Code Book

ECM Entitlement Control Message

EIT Event Information Table

EMI Encryption Mode Indicator

EMM Entitlement Management Message

FQDN Fully Qualified Domain Name

FTA Free-To-Air

HOST_ID The Host device unique identification number

ICT Image Constraint Token

IV Initialisation Vector

LSB Least Significant Bit

MAC Message Authentication Code

mjdutc Modified Julian Date UTC

MMI Man Machine Interface

MPEG Motion Pictures Experts Group

NIT Network Information Table

PCMCIA PC Memory Card International Association

PIN Personal Identification Number

PMT Programme Map Table

PPV Pay-Per-View

PSI Program Specific Information

RCT Redistribution Control Token

RFC Request For Comment

ROT Root Of Trust (i.e. Trust Authority)

RSA Rivest Shamir Adleman public key cryptographic algorithm

RSD Revocation Signalling Data

RSM Registered Service Mode

SAC Secure Authenticated Channel

SAK SAC Authentication Key

SDT Service Descriptor Table

SEK SAC Encryption Key

SHA Secure Hash Algorithm

SIV SAC Initialisation Vector

SOCRL Service Operator Certificate Revocation List

SOCWL Service Operator Certificate White List

SOPKC Service Operator Public Key Certificate

SMS Short Message Service (mobile phone)

SRM System Renewability Message

SSAC Single Source Authenticity Check

SSU System Software Update

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 20

TLF Tag Length Format

TS Transport Stream

TSC Transport Scrambling Control

UCK URI Confirmation Key

uimsbf unsigned integer most significant bit first

URI Usage Rules Information

UTC Coordinated Universal Time

VOD Video On Demand

3.4 Use of Words

The word shall is used to indicate mandatory requirements strictly to be followed in order to conform to the

specification and from which no deviation is permitted (shall equals is required to).

The word should is used to indicate that among several possibilities one is recommended as particularly suitable,

without mentioning or excluding others; or that a certain course of action is preferred but not necessarily

required (should equals is recommended that).

The word may is used to indicate a course of action permissible within the limits of the specification (may

equals is permitted to).

4 System Overview (informative)

4.1 Introduction

The Content Control system (CC System) described in this specification is intended to support a secure link for

transport stream packets between one CICAM and a Host. This CC system specifies extensions to the DVB-CI

specification to add protocol messages and features on both devices in order to protect selected content from

being copied.

If the content (CA scrambled content or clear content) selected by the user does not require protection (i.e. no

copy protection information in the transport stream related to this content) then both devices shall have

behaviour fully compliant with DVB-CI EN 50221 [7] & TS 101 699 [8].

The end-to-end system overview is depicted in Figure 4.1. High value content may be protected from the head-

end to the Host by the CA system. However, once the content has been demodulated and the CA system

scrambling has been removed it is vulnerable to being copied as it travels across the Common Interface. It is the

job of the Content Control system specified in this document to protect AV content while it is transferred across

the Common Interface and passed to external AV interfaces.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 21

Head-End DTV Receiver

Content Provider

CICAM

CA System

Decryption Cipher
CC Encryption

CA System

Key Calculation

CC System

Crypto Tools

Smart Card

Demod

Tuner CC Decryption

Demux

Head End

MUX/Modulator

CA System

ECM/EMM

CA System

Key Generator

CA System

Encryption Cipher

Common Interface

Host

Bypass

CICAM Pass Through

Figure 4.1: System Overview

4.2 Content Control System Components

For the purposes of this specification the Content Control (CC) system as a whole comprises the following

components (see Figure 4.1):

 The DTV Receiver (Host)

 The CICAM

 The Head-end

Protection of the media before the CA system applies its scrambling is not considered in this specification.

Likewise, apart from the propagation of Usage Rules Information (URI), what happens to the media after re-

entering the Host and being decrypted is not considered in this specification.

The three aforementioned components are briefly described in the following sections:

4.2.1 Host

In the context of this specification the Host is a consumer electronics device that is used to receive and navigate

the broadcast digital media. This device shall include one or more Common Interface slots which accept

CICAMs.

Typically the Host device contains some form of tuner, a demodulator, a demultiplexer (Demux) and media

decoders. These are pre-requisites for the reception of digital TV. For free-to-air material this is all that is

required to receive and decode digital content, for content protected by a CA system then a CICAM is required.

DVB CICAMs that comply with EN 50221 [7] have no Content Control system to protect the descrambled

content. Content where the CA system protection has been removed is passed to the Host unprotected. Hosts

compliant with this specification may interoperate with CICAMs to provide a secure content control system to

protect high value content which has been CA descrambled.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 22

A Host is able to determine whether any CICAM inserted into the interface complies with only EN 50221 [7] or

whether it additionally complies with this specification. A Host shall operate with both CI Plus and EN 50221

[7] CICAMs as outlined in Table 4.1. Free to view content shall never be impeded by CI Plus.

Table 4.1: CICAM and Host Interoperability (Informative)

 Host

CI CI Plus

CICAM

CI

Default CI behaviour as described by EN
50221 [7].

Host shunning may optionally protect
controlled content when signalled in the
broadcast stream.

Default CI behaviour as described by EN
50221 [7] if Host shunning is not activated by
the broadcaster.

Content decrypted by the CI CICAM is not re-
encrypted on the Common Interface.

CI Plus

Some controlled content may optionally be
descrambled and passed to the Host under
control of the CA System.

Content decrypted by the CI Plus CICAM is
not re-encrypted on the Common Interface.

Controlled content is not displayed unless the
CICAM and Host have authenticated and the
Host supports the encryption algorithm(s) as
prescribed by CI Plus and required by the
CICAM.

Controlled content decrypted by the CICAM is
re-encrypted on the Common Interface
subject to the EMI value in the URI.

The Host includes a set of cryptographic tools and features that enable it to verify that any CICAM that has been

inserted is both an authentic and trusted CICAM.

4.2.2 CICAM

The CICAM contains the consumer end of the CA system. It comprises a CA decryption cipher, optional smart

card interface and software to enable decryption keys to be calculated using data from the received stream.

For non-CI Plus versions of the common interface the content is transferred to the Host in the clear across the CI

connection leaving the content open to be intercepted and copied. This specification ensures any content that is

signalled to be copy restricted is locally encrypted by the CICAM with a Content Control system before being

passed to the Host.

In addition to the CA delivery protection system, CICAMs contain cryptographic tools and features which

enable it to authenticate the trustworthiness of the Host it has been inserted into. If the CICAM authenticates

with the Host it descrambles a broadcast service and applies Content Control encryption to the content.

4.2.3 Head-End

The head-end is where the CA system scrambles content using the CA system cipher. The head-end also

introduces into the stream other CA specific information which enables the CICAM to descramble the content

and to manage the subscriber access and entitlements.

4.3 Implementation Outline

The CICAM CC System consists of the following three operational elements:

 Host Authentication; based on the exchange of Host and CICAM certificates. Each device verifies the

others certificate using signature verification techniques. The Host ID is checked by the CICAM (in a

Basic Service Mode) against a revocation list and appropriate revocation action against compromised

devices is taken. Optionally, further Service Operator specific checks may be undertaken in the Head-

end (Registered Service Mode).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 23

 Content Control; Content Control scrambling by the CICAM of content that requires protected

transmission from the CICAM to the Host.

 Content Security; secure propagation of content usage rules from the CA system to the Host in order to

enable the application of appropriate restrictions to any output connections.

The CICAM first CA-descrambles the content and then re-scrambles 'high value' content using the Content

Control Key before delivery to the Host. A similar Content Control de-scrambling process occurs in the Host.

4.4 Device Authentication

The Content Control System requires authentication of the Host and CICAM prior to the CICAM descrambling

any CA-scrambled content requiring Content Control. The CICAM requests the Host's certificate and the Host

provides it. The Host requests the CICAM's certificate and the CICAM provides it.

Authentication is based on:

 The CICAM being able to verify the signature of the Host device certificate containing the Host ID.

 The Host being able to verify the signature of the CICAM certificate containing the CICAM ID.

 CICAM and Host proving they each hold the private key paired with the public key embedded in the

certificate by signing a DH session key and sending it to the other device for signature verification.

 CICAM and Host proving that they can derive the authentication key.

4.5 Key Exchange and Content Encryption

The Content Control mechanism itself consists of four phases:

 Setup

 Key Derivation

 Content Encryption.

 Content encryption is subject to URI values, which are transferred securely by the Content Control

mechanism.

Version 1.3 of this specification extends the Content Control with:

 Parental control (PIN code management)

 Entitlement binding to recordings, which are transferred securely by the Content Control mechanism.

 URI version 2 extending the retention limit and includes a Digital Only Token (DOT).

The CICAM and Host both contain algorithms for Diffie-Hellman (DH) key negotiation, SHA-256 hashing,

DES and AES. The CICAM and Host also hold private keys and the corresponding public keys.

4.6 Enhanced MMI

CI Plus introduces a standardised presentation engine into the CI profile to present text and images on the Host

display without necessitating any further extensions to the Application MMI. The presentation engine enables

the CICAM to present information with the look and feel specified by the service operator rather than being

constrained to the manufacturer High Level MMI.

Version 1.3 of this standard extends the Application Profile to include support for VOD applications.

It is mandatory for a Host to support the "CI Plus browser" application MMI which is described in Chapter 12.

The existing High Level MMI resource requirements are described in Chapter 13.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 24

4.7 CI Plus Extensions

CI Plus introduces some refinements of the existing DVB-CI resources in addition to some new resources which

are described in Chapter 14, including:

 Provision for Low Speed communication over IP connections which may be used to support

Conditional Access functions.

 CAM Software Upgrade facilitates the software upgrade of the CICAM in cooperation with the Host,

standardising the CICAM and Host interaction. Host support of the software upgrade is mandatory.

The CI Plus security requirements and CI Plus extensions require faster transfers over the CI link which is dealt

with in Annex G. Clarifications of DVB-CI use cases are specified in Annex E.

4.7.1 CI Plus 1.3 Extensions

CI Plus version 1.3 introduces some refinement of the existing CI Plus version 1.2 and DVB-CI resources in

addition to some new resources which are described in Chapter 14, including:

 Extensions to the Low Speed Communication resource which removes some constraints of the

previous version in order to improve throughput. The Low Speed Communication resource is

mandatory for all Hosts that support an IP connection.

 The new Operator Profile resource provides a CI Plus standardised broadcast profile and uses the

CICAM to translate any network private signalling into a uniform information structure allowing all CI

Plus Host devices to perform a full installation and a channel listing of all of the services required by

the Service Operator.

 Host control version 2 adds new commands for the CICAM to tune the Host to a service which is not

part of the Host channel line-up. The service selected is based on the physical description of the

Transport Stream that carries the service and the service identification.

5 Content Control Overview (normative)

The main aim of this specification is to protect the received content, after any CA system scrambling has been

removed, as it passes across the Common Interface to the Host. This is performed by:

 Mutual authentication of CICAM and Host.

 Verification of Host and CICAM.

 Encryption key Calculation.

 Communication using a Secure Authenticated Channel.

These procedures are described in detail in this specification.

5.1 End to End Architecture

For the purposes of this specification the complete system comprises everything from the head-end to the Host

including the CICAM. Anything upstream of the head-end is not in the scope of this specification. Any

connection between the Host and another device is not considered in this specification. This specification does

address the propagation of Usage Rules Information which the Host shall use when making media available on

any relevant external interface.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 25

Head-End Host

CICAM

Other

Device

Key

Out Of Scope

CA Protected

CC Protected

Figure 5.1: End-To-End Diagram Showing Scope of Protection Schemes

Figure 5.1 shows the end-to-end system and indicates the scope of the CA protection and Content Control

system which is described in this specification. This specification addresses the interface between the CICAM

and the Host which is protected by the CC system. This operates with the assistance of the CA system and a set

of cryptographic tools to provide protection for the media passing to the Host. The Host, using a similar set of

cryptographic tools, removes the protection and makes the content available to the Host decoder(s).

5.2 General Interface Behaviour

The start-up behaviour on power up is described in the document EN 50221 [7].

The CC resource, defined in this specification, is used to protect the content a) when it is in transit from the

CICAM to the Host and b) if and when it is made available on external interface(s) of the Host. Multiple steps

are involved in this process. The system components use the CC resource to start a mutual authentication

process. When the CICAM and Host have mutually verified that they are communicating with legitimate CI

Plus components, a Secure Authentication Channel (SAC) is initialised. The SAC is used to transfer messages

that are authenticated and encrypted. The system components establish a common CC scramble/descramble key

and exchange Usage Rules Information and optional license. The process is explained in Figure 5.2, while table

5.1 refers to sections in this specification that provide the detailed mechanisms.

Step5

Step2

Step3

Step4

Step1

[3] CICAM requests authentication key host

[4] Host confirms authentication key.

[5] establish SAC

[6] establish SAC

[7] establish content re-/de-scrambler key

[8] establish content re-/de-scrambler key

[9] CICAM initiates transfer of URI info

[10] Host applies URI settings

[11] Host acknowledges

CICAM Host

[1] CICAM triggers authentication process

[2] Host engages in mutual authentication process

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 5.2: High Level Interface Behaviour (Informative)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 26

The process is defined as described in Table 5.1:

Table 5.1: High Level Interface Behaviour (Normative)

No. Description Refer to

Start Authentication step #1 – certificate verification and DH key exchange

1 CICAM triggers authentication process.

The CICAM initiates the authentication process when there is no
authentication key present from a previous successful binding. The
authentication process is introduced in section 5.9. Refer to listed reference for
full details.

Section 6

2 Host engages in mutual authentication process.

The Host verifies the received protocol data to determine if it originated from a
legitimate CICAM and engages in a mutual authentication process.

Section 6

Start Authentication step #2 – authentication key verification

3
4

CICAM requests authentication key Host.

The CICAM requests the authentication key (AKH) from the Host, in order to
determine that both CICAM and Host have calculated the same key. The Host
replies to this request with its computed authentication key.

Section 6

Start step #3 – establish SAC

5
6

Establish SAC.

After successful authentication, the CICAM and Host start to exchange data
and compute key material for the encryption (SEK) and authentication (SAK) of
messages that are to be transmitted over the SAC. Upon establishing the SAK
and SEK keys, the CICAM shall synchronize with the Host to start using the
new keys within a predefined timeout. The SAC is initialised using this key
material.

Section 7

Start step #4 – establish CC key

7
8

Establish CC key.

After successful authentication, the CICAM may start computing the Content
Control key (CC key). After successful initialisation of the SAC the CICAM may
inform the Host to compute CC key. Upon establishing the CC key the CICAM
shall synchronize with the Host to start using the new CC key within a
predefined timeout. The (de)scrambler is initialised using this CC key. Note
that this step may be performed repeatedly based on the maximum key
lifetime setting.

Section 8

Start step #5 – transfer and exert copy control on content

9 CICAM initiates transfer of URI info and optional license.

The CICAM transfers the Usage Rules Information (URI) and optional license
that matches the current copy control constraints on the selected service to the
Host. Note that this step may be performed repeatedly during a programme
event, based on the actual setting of the URI. See Note 2.

Section 5.7.4

10
11

Host applies URI settings, associate the license recording and Host
acknowledges.

After reception of the URI information the Host shall reply to the CICAM within
a predefined timeout and then apply the copy control constraints to the
external interfaces, as defined in the CI Plus Compliance Rules for Host
Device [6].

Section
5.7.5.3

NOTE:
1. Refer to referenced sections for a detailed description of the mechanisms.
2. The URI version used shall have been negotiated see 5.7.5.1

5.3 Key Hierarchy

A layered key hierarchy is used to implement content protection and copy control, as is shown in Figure 5.3.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 27

CICAM

DH_p

DH_g

MDQ

PRNG_seed

Root certificate

Device certificate

Manufacturer certificate

CICAM_ID

Host

HOST_ID

DH_p

DH_g

HDQ

PRNG_seed

Root certificate

Device certificate

Manufacturer certificate

DHPM (DH Public key Module)

DHY (DH nonce y)

DHPH (DH Public key Host)

DHX (DH nonce x)

AKM (Authentication Key Module) AKH (Authentication Key Host)

Ns_Module (nonce from Module) Ns_Host (nonce from Host)

SAK (SAC Authentication Key)

SEK (SAC Encryption Key)

SIV (SAC Initialisation Vector) SIV (SAC Initialisation Vector)

Kp_module (nonce from Module)

CCK (CC Key)

CIV (CC Initialization Vector)

CCK (CC Key)

CIV (CC Initialization Vector)

SAK (SAC Authentication Key)

SEK (SAC Encryption Key)

verify

DHSK (DH Secret Key)DHSK (DH Secret Key)

Content control layer

SAC layer

Authentication layer

Credentials layer

exchange

exchange

exchange

exchange

Figure 5.3: Key Hierarchy

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 28

Table 5.2: Key to the Credentials

Key Description Stored or Volatile Exchanged or Keep Local

Root cert Root certificate stored (license constant) keep local (not replaceable)

Brand cert Brand certificate stored (license constant) exchange (not replaceable)

Device cert Device certificate stored (license constant) exchange (not replaceable)

prng_seed Per manufacturer seed for PRNG stored (license constant) keep local (not replaceable)

DH_p Diffie-Hellman prime modulus stored (license constant) keep local

DH_g Diffie-Hellman generator modulus stored (license constant) keep local

DH_q Diffie-Hellman Sophie Germain
constant

stored (license constant) keep local

MDQ Module Device Private key stored (license constant) keep local (not replaceable)

MDP Module Device Public key stored exchange

HDQ Host Device Private key stored (license constant) keep local (not replaceable)

HDP Host Device Public key stored exchange

DHX Diffie-Hellman nonce (exponent x) volatile keep local

DHY Diffie-Hellman nonce (exponent y) volatile keep local

DHPM Diffie-Hellman Public key Module volatile exchange

DHPH Diffie-Hellman Public key Host volatile exchange

DHSK Diffie-Hellman Secret Key stored keep local

AKM Authentication Key Module stored (on module) keep local

AKH Authentication Key Host stored (on Host) exchange (protected)

Ns_Module Nonce SAC Module volatile exchange

Ns_Host Nonce SAC Host volatile exchange

SEK SAC Encryption Key volatile keep local

SAK SAC Authentication Key volatile keep local

SIV SAC Initialisation Vector stored (license constant) keep local

Kp Key precursor volatile exchange (protected)

CCK Content Control Key volatile keep local

CIV CC Initialisation Vector volatile keep local

5.3.1 Keys on the Credentials Layer

There are a pair of public and private keys defined for the CICAM and for the Host. The CICAM has a Device

Private key (MDQ) and the corresponding Device Public key (MDP) which is embedded in the CICAM's device

certificate. The Host similarly carries HDQ and HDP. There is a unique certificate chain for both CICAM and

Host. There are constants that are used in computations, such as the prime (DH_p) and generator (DH_g) for the

Diffie-Hellman authentication process.

The data on the credential layer (such as keys, seeds, certificates and constants as suggested in table 5.2) are

involved in operations on the authentication layer. The credential layer contains parameters that are not to be

replaced. This specification does not specify the exact mechanisms used to protect the credentials, which is out

of scope.

5.3.2 Keys on the Authentication Layer

The device public key, from the device certificate, and the device private key are involved in two operations.

(Not shown in Figure 5.3):

1) Protect the parameter exchange during authentication. The authentication is based on Diffie-Hellman,

which requires the CICAM and Host to exchange parameters which must be protected against

alteration by a malicious source. Refer to section 6.1.2 for full details.

2) Verification of the certificate chain. The certificate chain contains information that is used in

subsequent steps in the key hierarchy. The received certificates must be mutually verified, refer to

section 9.4 and section 9 for full details.

The resultant keys for the authentication layer are the Diffie-Hellman Secret Key (DHSK) and the

Authentication key (AKM for CICAM and AKH for Host). The CICAM requests the Authentication Key used

by the Host. Refer to section 6 for details.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 29

The DHSK and AKM or AKH are protected and managed by the authentication layer. Other layers (such as the

SAC layer and the Content Control layer) may occasionally require these keys for calculation of their volatile

secrets. The Authentication Layer passes the requested keys but the consuming layer shall not maintain or store

them.

5.3.3 Keys on the SAC Layer

The SAC layer uses keys to authenticate and encrypt a message before it is transmitted. The receiving part uses

the identical calculated keys to decrypt and verify a message. The SAC Authentication Key (SAK) is used to

authenticate and verify a SAC message. Similarly the SAC Encryption Key (SEK) is used to encrypt and

decrypt the SAC message payload. SAK and SEK are calculated together independently on CICAM and Host.

SAK and SEK are both volatile short term secrets. Refer to section 7 for full details.

E{SEK}(m)

A{SAK}(m)
Authenticated and encrypted SAC messagem m

credentials credentials

SEK

SAK

SEK

SAK

D{SEK}(m)

V{SAK}(m)

Auth. and

verify

Auth. and

verify
authentication

nonces

Exchange

and

confirm

Exchange

and

confirm

DHSK

AKH

DHSK

AKM

Authentication layer

SAC layer

Credentials layer

Figure 5.4: Keys on the SAC Layer

5.3.4 Keys on the Content Control Layer

The CC layer uses keys to scramble AV content before it is transmitted from CICAM to Host. The Content

Control Key, CCK, (and if required CIV) are used to scramble AV. On the receiving side the Host uses the

identical calculated keys to descramble the AV content. CCK (and if required CIV) are calculated together

independently on the CICAM and Host. CCK (and if required CIV) are both volatile, short term secrets. Refer to

section 8 for full details.

E{CCK}(C) encrypted MPTS trafficC C

CCK

(CIV)

CCK

(CIV)

Key precursor

Propagate

and

confirm

Propagate

and

confirm

Content control layer

D{CCK}(C)

Figure 5.5: Keys on the CC Layer

5.4 Module Deployment

CICAMs may be deployed in a Basic Service Mode (BSM) or a Registered Service Mode (RSM). Basic Service

Mode is mandatory, Registered Service Mode is optional. Registered Service Mode consists of three phases:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 30

1) Certificate Verification & DH Key Exchange

2) Authentication Key Verification

3) Head-end Report Back

Both Service Modes support phase 1 and 2. Only the Registered Service Mode supports the third phase: Head-

end Report Back (see Table 5.3).

Table 5.3: Supported Phases per Service Mode

Mode / Phases Certificate Verification &
DH Key Exchange

Authentication
Key Verification

Head-end
Report Back

Basic Service Mode ● ●

Registered Service Mode ● ● ●

In Basic and Registered Service Mode, the CICAM may operate in two states:

 Limited Operational; EN 50221 [7] compatible mode. No services which require CI Plus protection are

CA descrambled.

 Fully Operational; CI Plus compatible mode. All CI Plus protected services are CI Plus re-scrambled.

The next two sections explain both modes in more detail, the third section describes how errors are handled by

the CICAM and the Host.

5.4.1 Deployment In Basic Service Mode

The Basic Service Mode defines the operation of the CICAM in a broadcast environment (i.e. no online

bidirectional communication channel). The CICAM does not become operational immediately when inserted

into the Host device and the power is applied; the following protocol has to be executed first:

 Power up Re-authentication (see section 6.3)

 Certificate Verification & DH Key Exchange (see section 6.2)

 Authentication Key Verification (see section 6.3)

 Secure Authenticated Channel (SAC) establishment (see section 7)

 Content Control (CC) key establishment (see section 8)

Figure 5.6 gives an overview of the authentication process in Basic Service Mode. At power up the CICAM first

determines if the Host device is CI Plus compatible. A CI Plus compatible Host announces the CC resource

during the resource manager protocol at start-up, see section 12.3 and EN 50221 [7] section 8.4.1.1 (2). Where

the Host device is not compatible a descriptive error (see Figure 5.10) is given using the High-Level or

Application MMI (3) and the CICAM becomes Limited Operational (10) (i.e. EN 50221 compatible). When the

Host device is CI Plus compatible it checks if Power up Re-authentication is possible (4). Power up Re-

authentication is possible when the CICAM has previously successfully bound with the Host device. On a

successful binding then Certificate Verification and DH Key Exchange (5) and Authentication Key Verification

(6) may be skipped, and the CICAM may start immediately with SAC establishment (7). After SAC

establishment follows CC Key establishment (8). With the SAC and CC Key established the CICAM becomes

fully operational (9).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 31

Start (1)

Host CI Plus

Compatible (2)

CICAM Module

Error Notification

MMI Dialog (3)

Limited

Operational (10)

Power-on re-

authentication

(4)

Certificate

Verification & DH

Key Exchange (5)

SAC

Establishment (7)

CC Key

Establishment (8)

Fully

Operational (9)

Yes

Yes

No

No

Authentication Key

Verification (6)

A

A

Figure 5.6: Authentication Process in Basic Service Mode

The SAC is used to communicate the content Usage Rules Information (URI) in a secure manner. The URI is

associated with a service/event that is CA protected and conveys copy control information for analogue (APS)

and digital (EMI) Host device outputs (see section 5.7.5.3). The Host device uses the default, and most

restrictive, Usage Rules until the URI delivery protocol is concluded successfully (see section 5.7.5) and the

event related Usage Rules are communicated to the Host device.

The CC Keys are used for the encryption of CI Plus protected services by the CICAM and for the decryption of

CI Plus protected services by the Host device. The Host device deduces the CC Key as a result of a DH Key

Exchange; no CC Key is transferred from the CICAM to the Host device. Figure 5.7 gives an overview of the

SAC and CC Key establishment process, which are executed (3) and (5) when a key refresh (2) and (4) is

required. If for some reason the SAC or CC Key can not be renewed (6) and (7) then the CICAM reverts to the

Limited Operational State (8) otherwise its state remains Fully Operational (1).

Fully Operational

(1)

SAC

Renewal (2)

CC Key

Renewal (4)

SAC

Establishment (3)

CC Key

Establishment (5)

No

No

Yes

Yes

SAC timeout

(6)

CC Key

timeout (7)

No

No

Limited

Operational (8)

Yes

Yes

Figure 5.7: SAC and CC Key Renewal Process

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 32

Basic Service Mode supports the revocation of Host devices by means of a Certificate Revocation List (CRL)

that is transmitted by the Head-end to the CICAM using a DSM-CC data carousel. In case of a Host device

revocation, the CICAM informs the user that their Host device is black-listed using the Generic Error Reporting

feature (see section 5.4.3).

In addition to the CRL, the Basic Service Mode supports a Certificate White List (CWL) that enables the

Service Operator to revert a previous revocation of a single Host device. See section 5.5 for a detailed

description of the CI Plus revocation mechanism.

5.4.2 Deployment in Registered Service Mode

Registered Service Mode is an extension of Basic Service Mode and is intended for networks that include a bi-

directional communication channel from the CICAM to a network subscriber management system. To

implement Registered Service Mode the CICAM may use the High Level or Application MMI to present

instructions and registration data to the user to communicate back to the network subscriber management

system.

The operational behaviour of Registered Service Mode is defined by the Service Operator and is outside the

scope of this specification.

5.4.3 Generic Error Reporting

Errors may be detected and reported by either the CICAM or Host. When an error is detected by the CICAM

then it shall use the High-Level or Application MMI to display a pre-defined error code. When the Host device

detects an error then it may use some Host specific method to display the pre-defined error code. The error-code

may be accompanied by descriptive text and shall be acknowledged by user interaction. Annex F defines

standard error conditions and error codes.

Where the CICAM supports Registered Service Mode the CA Vendor or Service Operator may define a

mapping between Action and Error Codes. The CA vendor or Service Operator shall determine the Action

Codes supported in a Registered Service Mode and is out of scope of this specification.

An example of an Action Request Code mapping is 'invalid Host certificate', Annex F.1 defines this error

condition as Error Code 16, which may be mapped to any Action Request Code by the CA Vendor or Service

Operator. The resulting Notification Message provides information to the customer and may also provide

instructions to call a service number.

5.5 Introduction to Revocation (informative)

The CI Plus specification includes revocation as a method to deal with Host devices whose security has been

compromised. The specification distinguishes three mechanisms of revocation:

1) Host Service Shunning

2) Revocation by CAS

3) Host Revocation

Host Service Shunning is described in detail in section 10. The revocation by CAS is defined by a particular

CAS and is out of scope for this specification. The remainder of this section describes the Host Revocation

mechanism. The CI Plus CICAM Licensee Specification [33] and Supplementary CI Plus Specification for

Service / Network Operators [37] specifies the requirements for Host Revocation implementation.

5.5.1 Host Revocation

Host Revocation is revocation by denial of service i.e. the CICAM ceases CI Plus operation, starving the Host

device of CI Plus Content Control services. Host devices to revoke are listed in a Certificate Revocation List

(SOCRL). The following revocation lists are defined for this purpose

 Service Operator Certificate Revocation List (SOCRL)

 Service Operator Certificate White List (SOCWL)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 33

A SOCRL is created by the Root-of-Trust on request of a Service Operator specifically for their operation.

Revocation is always tied to a specific Service Operator. A Host device may be revoked for one Service

Operator and be functional for others. Host device revocation only applies to those services that are required by

the Service Operator to be CI Plus protected (e.g. HD premium content) allowing other services (e.g. CA

protected low value content) to remain accessible to the Host. Entries in the SOCWL undo a revocation defined

in the SOCRL.

To ensure reception of a SOCRL by the CICAM, the SOCRL should be part of each Transport Stream (TS) that

carries services belonging to the Service Operator. Where the TS contains services belonging to two or more

Service Operators a SOCRL for each Service Operator must be added to the TS.

The exact rules for revoking a device are determined by the CI Plus license, and are therefore out-of-scope for

this specification, see CI Plus Licensee Specification, [33].

The trust model for revocation identifies two entities: 1) the CICAM and 2) the Host device. The Host device is

the target of revocation and is considered as untrusted. The following threats are considered:

1) Replay; the Host device may replay a SOCRL that does not contain its own identity.

2) Blocking; the Host device may prevent the SOCRL from reaching the CICAM.

3) Tampering; the Host device may change or remove a SOCRL entry that contains its identity.

The first threat is countered by adding a timestamp or counter to the SOCRL. The second threat is countered by

defining a mandatory cycle constraint; the CICAM must receive a SOCRL within a pre-determined time-

window (with a considerable grace-period to prevent race conditions). To prevent tampering the SOCRL is

signed by the Service Operator's private RSA key and distributed by the Service Operator to CICAMs in their

network. A CICAM can verify the integrity of an SOCRL using the RSA public key in the Service Operator's

certificate. This certificate in turn is verified by the Root-of-Trust certificate (See chapter 9).

5.5.2 Revocation Granularity

The CI Plus specification supports different levels of revocation granularity:

1) Unique Host devices

2) Ranges of Host devices

3) Host devices of a certain Model-type

4) Host devices of a certain Brand

A Service Operator may use any of these granularities when requesting Host revocation. The SOCWL supports

only single Host devices to be un-revoked from a revoked range. This feature may be used for testing individual

devices from a device set that is revoked.

5.5.3 Revocation Signalling Data

The availability of a SOCRL, SOPKC (and SOCWL) in the network is indicated by the Revocation Signalling

Data (RSD) information. The RSD shall carry:

1) Service Operator identity; identifies the provider of the CI Plus protected services, SOCRL and

SOCWL.

2) SOCRL and/or SOCWL download information; contains the information that the CICAM requires to

find the SOCRL and SOCWL in the Transport Stream. If no download information is specified then

the Service Operator is not transmitting a SOCRL and SOCWL.

3) Latest SOCRL and/or SOCWL version numbers; the version numbers for the latest SOCRL and

SOCWL instance that are currently broadcast.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 34

4) SOCRL and SOPKC transmission timeouts; the SOCRL and SOPKC downloads have a transmission

timeout and these values are conveyed by the RSD. Each of these files must be received before the

timeout period has elapsed otherwise the CICAM becomes Limited Operational.

The RSD is protected against replay, blocking and tampering. Every CICAM has the capability to detect the

RSD on the network. The CAS shall provide the CICAM with the capability to switch the detection of the RSD

on or off, but the exact mechanism is out of scope for this specification and CAS specific. If the service operator

switches detection of the RSD on, the RSD shall be present on the network and the RSD shall be transmitted

repeatedly. The exact requirements and format of the RSD is defined in the Supplementary CI Plus Licensee

Specification for Service / Network Operators [37].

The CICAM shall ensure that it has the latest versions of the RSD, SOCRL and SOCWL.

5.5.4 Transmission Timeout

The cycle-time of the RSD should be significantly shorter than its transmission timeout to guarantee reception.

The SOCRL download has a transmission timeout and this value is conveyed by the RSD.

5.5.5 SOCRL and SOCWL Download Process

Download (using a carousel) of the SOCRL and SOCWL is executed according to Figure 5.8, which is

informative and does not preclude other implementations. Each of the process steps is briefly discussed.

 Start (1). The download of RSD may commence after the CICAM and Host have bound successfully.

 Download RSD (2). The CICAM receives the RSD of the Service Operator.

 RSD Download timeout (3). On a RSD transmission timeout the Host device is temporarily revoked

(18). When the download has successfully completed, the CICAM determines if a SOCRL or, SOCRL

and SOCWL should be downloaded.

 Download SOPKC (4). The CICAM downloads the SOPKC.

 SOPKC Not Present (5). If the SOPKC is not present, or invalid, then the Host is temporarily revoked

(20).

 RSD valid (6). Using the SOPKC the CICAM shall determine that the RSD is valid. Refer to CI Plus

Licensee Specification [33] for more details.

 Download SOCRL (7). The CICAM compares the SOCRL version number' in the RSD with the

'version number' of a previously stored SOCRL. Where the RSD indicates a newer version, the SOCRL

must be downloaded, similarly for the SOCWL. The location of the data carousel containing the

SOCRL and SOCWL is found in the RSD.

 SOCRL download timeout (8). On a SOCRL transmission timeout the Host is temporarily revoked

(18). When the download has completed successfully, the CICAM processes the SOCRL (7).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 35

Start (1)

Download RSD

(2)

RSD

download time-

out (3)

Download

SOCRL

(7)

SOCRL

download

timeout

(8)

SOCRL Valid

(10)

Process SOCRL

(9)

Host

device on

SOCWL

(15)

Un-revoke:

CICAM fully

operational (17)

Update revoked

host devices in

binding history

(19)

Temp. Revoke

CICAM limited

operational (20)

Host

device on

SOCRL

(16)

Revoke:

CICAM limited

operational (18)

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

RSD Valid

(6)

YES

NO

Process SOCWL

(13)

SOCWL Valid

(14)

NO

SOCWL

Signalled in

RSD

(11)
YES

NO

YES

Download

SOCWL

(12)

Download SOPKC

(4)

SOPKC Not

Present (5)
YES

NO

Figure 5.8: SOCRL and SOCWL Download Flow Chart

 Process SOCRL (9). When the SOCRL download has successfully completed, the CICAM verifies the

digital signature of the SOCRL. The SOCRL is signed with the Service Operator credentials. The

version number of the SOCRL and that specified in the RSD are checked for equality.

 SOCRL Valid (10). The digital signature of the SOCRL is checked for authenticity and the version

number of the SOCRL is equal to the version number that is contained in the RSD file otherwise the

Host is temporarily revoked (20).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 36

 SOCWL Signalled in RSD (11). If no SOCWL is signalled in the RSD then the CICAM proceeds to

check if the Host is in the SOCRL (16).

 Download SOCWL (12). If a SOCWL is signalled in the RSD it is downloaded.

 Process SOCWL (13). When the SOCWL has been successfully downloaded, the CICAM verifies the

digital signature of the SOCWL. The SOCWL is signed with the Service Operator credentials.

 SOCWL Valid (14). The following conditions shall be met in order to validate the SOCWL:

o The SOCWL digital signature over the SOCWL is valid

o The SOCWL 'version number' is equal to the ‘version number’ that is contained in the RSD

Otherwise the SOCWL is considered invalid and ignored (16).

 Host device on SOCWL (15). Where the Host that is currently bound to the CICAM is listed in the

SOCWL then CI Plus protected services shall be un-revoked (17), otherwise the SOCRL is checked

(16).

 Host device on SOCRL (16). Where the Host that is currently bound to the CICAM is listed in the

SOCRL then the Host shall be revoked (18), otherwise the Host device is not revoked (17).

 Un-revoke: CICAM fully operational (17). The Host that is bound to the CICAM is not revoked, it is

either on the SOCWL or is not listed on the SOCRL. Any existing (temporary) revocation is overruled

or removed.

 Revoke: CICAM limited operational (18). The Host that is bound to the CICAM is revoked; all CI

Plus protected services remain CA scrambled until a SOCRL is received that does not contain an entry

for the Host or a SOCWL is received that contains an entry for the Host. The revocation state overrules

any temporary revocation state.

 Update Revoked Host Device in Binding History (19). The CICAM maintains a list in non-volatile

memory of Hosts that have successfully bound to the CICAM. This list must be updated:

o Where the Host is on the SOCWL then its entry in the binding history shall be updated by

removing a revocation flag for the current Service Operator.

o Where the Host is on the SOCRL then its entry in the binding history shall be updated by

setting a revocation flag for the current Service Operator.

o Each Host that is in the binding history for the current service operator shall be verified

against the SOCRL (and SOCWL) and revocation flags adjusted appropriately.

 Temporary Revoke: CICAM limited operational (20). As a result of a RSD transmission timeout, a

SOCRL transmission timeout, an invalid SOCRL or SOPKC the CICAM temporarily revokes the Host

by becoming limited operational. Any temporary revocation is removed when the RSD, SOPKC and

SOCRL are all valid (10).

5.5.6 Denial of Service

The revocation process is based on a denial of service by the CICAM and is executed according to Figure 5.9,

which is informative and does not preclude other implementations. Each of the process steps are briefly

discussed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 37

Start (1)

Service CI Plus

protected (3)

Host device

revoked (4)

Output to

host device (7)

CA descramble

and CI Plus

rescramble

service (6)

NO NO

YES YES

CA descramble

service (5)

Service Selection

(2)

Figure 5.9: Revocation by Denial of Services Flow Chart

 Start. After the CICAM and the Host have bound successfully, the descrambling of CA protected

services and re-scrambling of CI Plus protected services may commence.

 Service Selection. The user selects a service and the Host tunes to the requested service. The CICAM

first checks if the selected service is CI Plus protected before the CA protection may be removed (3).

 Service CI Plus Protected. The CICAM determines by means of the EMI value if the selected service

is CI Plus protected. If CI Plus protection is required then the CICAM checks if the Host is not revoked

(4) otherwise the CA protected service may be descrambled (5).

 Host device revoked. The CICAM uses the binding history to check if the Host to which it is bound, is

flagged as (temporary) revoked. If the bound Host is revoked then the CA protected service is not

descrambled otherwise the service is descrambled (6).

 CA Descramble Service. The selected service is CA descrambled but not CI Plus re-scrambled. The

unprotected service is transmitted to the Host (7).

 CA Descramble Service and CI Plus Re-scramble Service. The selected service is a CI Plus

protected service and the bound Host is not revoked, the service is first CA descrambled and then CI

Plus re-scrambled. The CI Plus protected service is transmitted to the Host (7).

 Output to Host device. The CICAM may transmit the selected service to the bound Host for

consumption. The service is either unencrypted (CA protection removed) or encrypted (CA protection

removed but CI Plus protection is added).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 38

5.6 (De)Scrambling of Content

5.6.1 Transport Stream Level Scrambling

To protect high value content, a service provider may choose to "scramble" (encrypt) the content of the service

elementary streams. The receiving device uses a descrambler to "descramble" (decrypt) the elementary streams

so they may be consumed. The descrambler determines when to descramble by interrogating the transport

scrambling control (TSC) bits in the TS packet as defined in Table 5.4

Table 5.4: Definition of Transport Scrambling Control Bits

Transport scrambling control bits Description Comment

00 No descrambling Support required.

01 Scrambling with DEFAULT content key Not supported by CICAM and Host.

10 Scrambling by the EVEN content key Support required.

11 Scrambling by the ODD content key Support required.

NOTE: Limitations to TS level scrambling adhere to ISO 13818-1 [13].

Dual-key descramblers use two registers to store two keys: the first register may contain the key the descrambler

is currently using. During this key period the second register may be updated with a new key for the next keying

period. To distinguish the registers they are identified as the odd and even key register. The TSC bits in the TS

packet indicates if the descrambler is to use the key in the odd or even key register in order to descramble the TS

packet and flips to the corresponding register when necessary. Refer to Figure 5.10 for details.

Scrambled,

using key A,

TSC indicates odd

X s X s X s

t

Dual key TS

descrambler

registers
even

odd
CC key A

empty

CC key A

CC key B

CC key C

CC key B

CC key C

CC key D

t0 t1 t2 t3 t4

Scrambled,

using key B,

TSC indicates even

Scrambled,

using key C,

TSC indicates odd

Key: active register is underlined.

Figure 5.10: Relation between Descrambler Registers and TS

The odd/even key refresh is signalled by the CICAM in the data request APDU, the Host knows in advance

which descrambler register it has to store the Content Control Key (CCK) that the CICAM commands it to start

computing. To determine if the Host has actually computed the CC key and loaded it into the requested register

(odd or even) the CICAM and Host synchronize with each other; the CICAM initiates a sync request APDU

which the Host has to confirm. If the key refresh timer expires the CICAM shall start using the new CC key

(CCK) and modifies the TSC bits of the TS packet header. Directly after the CICAM changes the TSC value the

Host shall detect the change and switch to the alternate key register. The URI protocol transfers the URI value to

the Host. The URI indicates content restrictions. Refer to Figure 5.11 for details.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 39

Program with EMI = 00

Content in cleartext

« new

C
o

n
te

n
t

0 108 9 1

Key lifetime period using

CCK-1 in e.g. odd

CICAM starts CC encryption with

“new” CCK-2 and updates TSC bits.

Host detects TSC change and switches

to indicated key register.

Host replies with sync confirm (i.e.

CC_SAC_sync_cnf) before timer = 10

CICAM sends sync request (i.e.

CC_SAC_sync_req)

URI transfer confirmed < 1 sec

Host applies URI to

external interface < 1 sec

Host confirms with

CC_SAC_data_cnf

 before timer = 1

Host applies URI to

external interface

within 1 sec

Start of CCK computation

Host replies with CC_SAC_data_cnf

 before timer = 1

Max_key_session_period expires. CICAM

initiates key refresh (i.e. CC_SAC_data_req)

and starts 10 sec. key refresh timer

0 1 2 0 1 2

Program change A occurs.

CICAM encrypts content. Host sets

URI to default. CICAM initiates URI

refresh (i.e. CC_SAC_data_req)

Program change B occurs.

CICAM encrypts content. Host sets

URI to default. CICAM initiates URI

refresh (i.e. CC_SAC_data_req)

CICAM and host each calculate “new”

CCK before timer = 9

Key lifetime period using

CCK-2 in e.g. even

Timer for

key refresh period

Timer for

Max_key_session_period

Timer for

Max_key_session_period

Program with EMI > 00

Encrypted using

» CCK-2« old

Program with EMI > 00

Encrypted using

» CCK-1

Notes:

1. Refer to section 5.7.5 for details on the URI refresh protocol.
2. Refer to section 8.1 for details on the Content Control key refresh protocol.
3. Refer to section 11.3.1for details on the APDUs.
4. For the duration of a key lifetime period the CICAM re-scrambles all Elementary Streams under CC

control with the same CCK and, where AES is chosen, IV.

Figure 5.11: Dual Key Refresh and URI Transfer

5.6.1.1 PES Level Scrambling

Where the service provider uses PES Level Scrambling of the elementary streams, i.e. the

PES_scrambling_control bits of the PES_packet are non-zero, then any re-scrambling by the CICAM shall be

re-applied at the Transport Stream level and the PES_scrambling_control field shall be set to Not Scrambled.

5.6.2 Scrambler/Descrambler Definition

5.6.2.1 Scrambling rules

This specification defines two scramblers for Transport Stream Output protection, DES and AES. Table 5.5

describes the mandatory Host and CICAM capabilities.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 40

Table 5.5: Host and CICAM Capabilities

Scrambler option CICAM Host

DES-56-ECB Mandatory Mandatory for both SD and HD Hosts

AES-128-CBC Optional Mandatory for HD Hosts only.

The definition of SD and HD Hosts for the purposes of this document is specified in Annex D.

The Host and CICAM negotiate scrambler capabilities during certificate exchange. Each device determines the

opposite device's scrambler capability, see 9.3.9.5. Both devices shall decide which cipher to use, see table 5.6.

If there is an existing binding, i.e. matching authentication keys, the previously negotiated cipher shall be used,

see section 6.3.

Table 5.6: Scrambling Cipher Selection Rules

Module Host Decision Comment

none none CC stopped and TS output for clear content. "none" for either Host or

module

DES DES Transport Steam Output re-scrambling utilizes DES.

DES AES Transport Steam Output re-scrambling utilizes DES.

AES DES Transport Steam Output re-scrambling may utilize DES. See Note 3.

AES AES Transport Steam Output re-scrambling utilizes AES.

Notes
1. The content owner could accept to use either DES or AES, meaning that a provider may make the

technology choice to use DES or AES enabled CICAMs.
2. Transport Stream Output as defined in EN 50221 [7]
3. The CA System may decide that DES is not suitable and choose not to descramble the content.

The CI Plus Content Control system adheres to the following scrambling rules:

 The Transport Stream packets of the Elementary Streams of the selected programme that are in the

clear on the network side shall not be scrambled by the CI Plus Content Control and shall remain in the

clear.

 Content that has been descrambled by the network CA system and where the CI Plus Content Control

delivers a URI carrying EMI with value 0x00 shall not be re-scrambled by the CI Plus Content Control.

In this case the Transport Stream packets of the Elementary Streams belonging to the selected

programme that were scrambled on the network are passed to the Host in the clear.

 Content that has been descrambled by the network CA system and where the CI Plus Content Control

delivers a URI carrying EMI with any other value than 0x00 are re-scrambled by the CI Plus Content

Control. In this case the Transport Stream packets of the Elementary Streams belonging to the selected

programme that were scrambled on the network are passed to the Host re-scrambled by CI Plus

Content Control.

 The CI Plus Content Control shall always use the same scrambler cipher for all types of content (audio,

video or some other component of the selected programme) and use the highest negotiated cipher.

 The CICAM shall only descramble, and possibly re-scramble, elementary streams that have been

notified for descrambling in the CA_PMT according to EN 50221 [7] section 8.4.3.4.

 The CICAM is not obliged to pass content over a DES encrypted channel. i.e. it is at the service

operators discretion whether to deliver high value HD (or SD) content over DES and may select to

deliver the content to AES devices only, effectively disabling DES only devices for those services.

Apart from the rules defined in Table 5.9, the scrambling rules of SCTE41 [5], section 7.1.1 apply. In the case

of conflict the rules above take precedence. (e.g. apart from DES the usage of AES is allowed and specified.)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 41

5.6.2.2 Transport Stream Scrambling with DES

The payload of Transport Stream packets may be encrypted using DES-56 in ECB mode with residual blocks

left in the clear. The DES scrambler and descrambler adheres to SCTE41 [5], Appendix B.

NOTE: There are differences in bit and byte numbering used in MPEG2 (see ISO 13818-1 [13]) and the

specification of DES (see FIPS 46-3 [2]). The numbering system mapping is defined in ATSC

Document A/70A [26], Annex A.

5.6.2.3 Transport Stream Scrambling with AES

The payload of Transport Stream packets may be encrypted using AES-128 in CBC mode with CC key and IV

changing per key lifetime period and residual blocks left in the clear. Refer to FIPS 197 [4] for AES-128 and

refer to NIST Special Publication 800-38A [25] for usage of AES-128 in CBC mode.

Encryption of the content is based on ATSC A/70A [26], Appendix D.3. The following section describes the

AES scrambler and descrambler for this specification.

Figure 5.12 shows the high level format of a Transport Stream packet (see ISO 13818-1 [13]).

hdr payload

hdr Adaptation field

hdr Adaptation field payload

0 1884

Figure 5.12: Transport Stream Packet

Transport Stream packets comprise a header (shaded grey) and payload field. Depending on the size of the

adaptation field (grey), the length of the payload varies between 0 and 184 bytes. Only the payload is scrambled.

The payload is segmented into blocks of 128 bits (16 bytes) and passed through the AES scrambling engine as

described below.

5.6.2.3.1 Scrambling

An encryption function commonly defines b as clear text and its scrambled version s as cipher text. The AES

encryption function is represented by s = EAES-128-CBC{CCK}(b), where a Content Control Key (CCK, defined in

section 8.1.4) is used to encrypt / scramble a binary block b of length equal to 128 bits (16 bytes). Encryption

processes b into a block of the same size, s.

When the clear text is larger than 128 bits the content is encrypted using AES in CBC mode (i.e. Cipher Block

Chaining), using the following operation:

  )1()(}{)(128   msmbCCKEms CBCAES
 Eq.5.1

Where:

 CCK is the Content Control Key.

 b(m) represents the m
 th

 block of 128 bits in the sequence, where m = 2..n. Encryption of the current

block b(m) requires knowledge of the cipher text s(m-1) (i.e. the output of the previously scrambled

block).

Notice that Equation (5.1) does not work for m = 1. For the first block (i.e. m = 1), the data for s(0) does not

exist. Therefore it is necessary to define an Initialization Vector (IV), which is used to compute the first

scrambled block s(0) with the following operation:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 42

  IVbCCKEs CBCAES  )1(}{)1(128
 Eq.5.2

Where:

 CCK is Content Control Key and IV (CIV) is an initialization vector, as defined in section 8.1.4.

The appropriate vector IV shall be used at the beginning of a Transport Packet. The data payload of a TS packet

is maximally 184 bytes long, the maximum number of blocks for encryption with AES-128-CBC is 11 (since

residual blocks remain in the clear 184*8/128 is rounded to 11).

The Transport Stream packets of all selected elementary streams use the same key and initialisation vector.

There are two special cases of residual blocks: terminating and solitary short blocks. Both blocks remain in the

clear and do not require scrambling or descrambling.

5.6.2.3.2 Terminating short block:

Assume that a certain TS packet may be divided into M blocks: {b(1), b(2), …., b(M)}, a frequent occurrence is

that the size of the last block is less than 128 bits. In this case, b(M) is by definition a terminating short block.

Refer to Figure 5.13 for details.

key

b(1)

AES AES AES

key key key

Headers and

Adaptation field
Data payload

b(2) b(3) b(4)

MPEG2 TS packet

Terminating

short block

IV

s(1) s(2) s(3)

b(4)

“clear”

Figure 5.13: Scrambling of Data and Terminating Short Block

5.6.2.3.3 Solitary Short Block:

The second case, solitary short block, occurs when the TS packet to encrypt has only one block b(1) and its size

is less than 128 bits. Refer to Figure 5.14 for details.

Headers and

Adaptation field

Data

payload

b(1)

MPEG2 TS packet

Solitairy

short block

b(1)

“clear”

Figure 5.14: "Scrambling" of Solitary Short Block

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 43

5.6.2.3.4 Descrambling

Similar to scrambling above, the AES decryption function is represented by b = DAES-128-CBC{CCK}(s), where a

Content Control Key (CCK, defined in section 8.1.4) used to decrypt / descramble a binary block s of length

equal to 128 bits (16 bytes). Decryption processes s into a block of the same size b.

When the cipher block is larger than 128 bits the content is decrypted using AES-128 in CBC mode using

following operation:

  )1()(}{)(128   msmsCCKDmb CBCAES
 Eq. 5.3

Where:

 CCK is Content Control Key.

 s(m) represents the m
th

 block of 128 bits in the sequence, where m = 2..n. Decryption of the current

block s(m) requires knowledge of the cipher text s(m-1) (i.e. the previously scrambled block).

Equation 5.3 does not work for m = 1. For initialization we use following operation:

   IVsCCKDb CBCAES  )1(}{)1(128
 Eq. 5.4

Where:

 CCK is Content Control Key and IV (CIV) is an initialization vector, as defined in section 8.1.4.

key

s(1)

AES AES

key

Headers and

Adaptation field
Data payload

s(2) s(3) b(4)

MPEG2 TS packet

Terminating

short block

IV

b(1) b(2)

clear

“b(4)”

AES

key

b(3)

Figure 5.15: Descrambling of Data and Terminating Short Blocks

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 44

Headers and

Adaptation field

Data

payload

b(1)

MPEG2 TS packet

Solitairy

short block

b(1)

“clear”

Figure 5.16: "Descrambling" Solitary Short Blocks

5.7 Copy Control Exertion on Content

5.7.1 URI Definition

The content provider and the content distributor determine Usage Rules Information (URI) values for each

programme (i.e. service or event) off-line. The CA system delivers the URI securely from the network head-end

to the CICAM. The CICAM passes URI to the Host using a SAC protocol. The Host uses the URI to control

copy creation, analogue output copy control encoding, constrained image triggering and to set copy control

parameters on Host outputs.

5.7.2 Associating URI with Content

The CA System shall securely associate the URI with content, i.e. a specific MPEG Service / Event. The URI is

associated with the selected service via the 16-bit MPEG2 programme number, as specified in ISO 13818-1

[13].

All PIDs that belong to a programme (as indicated in the PMT) are associated with only one URI.

NOTE: content (i.e. MPEG2 events) covered by this specification shall not use a programme number with

value 0 (zero).

5.7.3 URI transfer – Head-End to CICAM

The URI may be transmitted from the DVB head end to the CICAM in undisclosed ways. An example is to

carry actual URI information and programme number information in an EMM or ECM message, protected by

the network CA system. The exact transport mechanism used to carry the URI data from head-end to CICAM is

out of scope for this specification.

5.7.4 URI transfer – CICAM to Host

Once the CICAM receives URI data this shall be transmitted from CICAM to Host via the URI message format.

The URI message format is described in section 5.7.5.2.

The CICAM transfers the URI to the Host under different operating conditions using the following methods:

 When watching live content, using the URI transmission and acknowledgement protocol (See section

11.3.3.6)

 When recording content with EMI=1,1, using the License Exchange protocol (See section 11.3.4.1)

 When playing back recorded content which has a license, using the Playback License Exchange

protocol (See section 11.3.4.2)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 45

A CI Plus CICAM shall not send a URI transmission unless it has been selected by the Host for descrambling

the current service.

Immediately after power up or channel change to a CAS controlled service, the Host shall use the initial default

URI values shown below.

Table 5.7: Default Values for CI Plus URI Version 1

Field Default Initial Value

protocol version 0x01
emi_copy_control_info 0b11
aps_copy_control_info 0b00
ict_copy_control_info 0b0
rct_copy_control_info 0b0
rl_copy_control_info 0b000000
reserved bits 0b0

Table 5.8: Default Values for CI Plus URI Version 2

Field Default Initial Value

protocol version 0x02

emi_copy_control_info 0b11

aps_copy_control_info 0b00

ict_copy_control_info 0b0

rct_copy_control_info 0b0

dot_copy_control_info 0b0

rl_copy_control_info 0b00000000

reserved bits 0b0

After setting this initial default URI the Host shall start a 10-second timer. If the Host has not yet successfully

completed the URI delivery protocol when the timer reaches ten (10) seconds, the Host shall change URI values

to the Error Value which is the same as the initial default value except that the ICT bit is set to 0b1: in that case

the Host shall apply Image Constraint as if the ICT bit was set to one. The URI after timeout is called the final

default URI.

A CI Plus compliant device shall support URI version 0x01 and 0x02 and may ignore other URI versions. Any

future URI version shall incorporate EMI and APS bits as defined in version 0x01.

Future URI versions shall not override existing bits in URI version 0x01. This means that future URI versions

may add additional content restrictions, which a future device may support, as long as the content limitations are

not made less restrictive. The settings of the EMI, APS and ICT bits shall always be respected.

The Host is expected to cache the URI whilst tuned to a given service regardless of the signal state, i.e. if the

signal is lost due to antenna disconnection or the signal falling below the required minimum level then any

previously received URI shall remain in force.

5.7.5 URI Refresh Protocol

The URI message delivered from the CICAM to the Host is protected by the SAC (refer to section 7). The

CICAM and Host shall jointly execute the steps below, once for each transfer of the URI. Any failure of the

steps described below shall result in a failed URI delivery. If the protocol is not completed successfully before

the one second timeout expires the CICAM shall disable CA-descrambling and the Host shall set the URI to the

default URI value until the URI refresh protocol successfully completes.

The CICAM shall send a URI to the Host only after the CICAM and Host have successfully bound and

negotiated a shared Content Control Key (CCK). The CICAM shall initiate URI transfer to the Host on a CAS

controlled service immediately after:

 the Host sends a ca_pmt to the CICAM, or

 the Programme Number changes on a tuned 'channel', or

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 46

 any change in the URI bits during a programme, or

 any change in the MPEG packet ID (PID) values that the CICAM is descrambling.

The exact process is explained in Figure 5.17.

[1] associate URI and program

[2] deliver URI in e.g. EMM (out of scope)

[3] generate URI message

[4] start 1 second timeout

[5] transmit Sac msg(URI_message+program_nr)

[6] verify message

[7] confirm SAC msg(uri_confirm)

[8] verify host confirm

[9] exert copy control settings

headend CICAM Host

Notes

1. This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.
2. Steps 1 and 2 are shown for completeness, but are out of scope for this specification.
3. Refer to Figure 5.11 for an overview showing both URI refresh protocol and CCK refresh protocol.

Figure 5.17: URI Refresh Protocol (informative)

The process is defined as described in Table 5.9:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 47

Table 5.9: URI Protocol Behaviour (normative)

No. Description Refer to

1 Association of URI with programme.

The URI is associated with the content (DVB service or event). The exact process;
including alternating URI values is out of scope.

2 Delivery of URI in e.g. EMM (out of scope).

The delivery of the URI is typically protected by the CA system to preserve the
association between URI and programme number. The exact delivery process is out
of scope.

3 CICAM generates URI message.

The CICAM calculates uri_confirm to authenticate Host acknowledgment of receipt
(Note 5), as:

)||_(_ 256 UCKmessageuriSHAconfirmuri 

where:

 UCK = SHA256 (SAK)

The value uri_confirm is locally kept for comparison in step 8.

The CICAM shall generate a cc_sac_data_req APDU for the URI message, carrying:

 the uri_message,

 the program_number

Section 5.7.5.1

4 CICAM starts 1 second timeout.

The CICAM starts a 1 second timeout in which the URI protocol has to complete.
(Note 1)

Figure 5.15

5 CICAM transmit SAC message with URI payload.

The CICAM transmits a SAC message with payload from step 3 and transmits this to
the Host. (Note 2).

Section 7.3 and
11.3.1

6 Host verifies message.

After the Host verifies the SAC message is correct, the Host extracts the URI value
and programme number.

7 Host transmits SAC message with URI confirmation.

The Host checks it supports the URI version requested by the CICAM. The Host
confirms URI delivery with the cc_sac_data_cnf APDU, carrying

 uri_confirm

and uses the SAC to transmit this to the CICAM. (Note 2)

The Host calculates uri_confirm in an similar way to the CICAM in step 3 above.

Failure to respond constitutes a failure of the copy protection system and sets the URI
to the default value (Notes 3 & 4).

Section 7.3 and
11.3.1

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 48

8 CICAM verifies Host confirm.

The CICAM compares the received uri_confirm from the Host with the value
calculated in step 3 above.

Failed equivalence constitutes a failure of the copy protection system and sets the
URI to the default value (Notes 3 & 4).

9 Exert copy control settings

The Host shall control its outputs based on the valid URI immediately.

Notes:
1. If the steps above are not completed before the one-second timeout expires the CICAM SHALL

disable CA descrambling of copy protected content (i.e. EMI ≠ 0x0) for the associated MPEG
programme until the URI delivery protocol completes successfully. When the protocol completes then
the CICAM shall wait for one second before the URI protocol is reinitiated.

2. Refer to section 7.2 for an explanation how the URI protocol data is packed into a SAC message.
3. The Host shall apply the default URI settings. The default URI values are defined in section 5.7.4.
4. Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.
5. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations

adhere to the SHS validation list. See SHS Validation List [11].

5.7.5.1 URI Version Negotiation Protocol

[1] request host supported URI versions

[2] confirm URI version(s)

CICAM Host

Figure 5.18: URI Version Negotiation Protocol

The URI version negotiation is performed once after (re)initialisation of the SAC. The CICAM sends a message

to the Host requesting the URI versions it is capable of supporting. The Host replies with a bitmask of the URI

versions it supports. Refer to section 11.3.3.7.

The CICAM shall determine matching combinations of URI versions supported by both the CICAM and Host.

The CICAM shall decide what URI version to use, the exact process is out of scope of this specification.

If no matching combinations of URI versions other than the default are found, the system shall use the default

URI version.

5.7.5.2 Format of the URI message

The URI version 1 message syntax is defined in Table 5.10, version 2 syntax is shown in Table 5.11.

Table 5.10: URI Version 1 Message Syntax

Field length Mnemonic
uri_message() {

 protocol_version

 aps_copy_control_info

 emi_copy_control_info

 ict_copy_control_info

 rct_copy_control_info

 reserved for future use

 rl_copy_control_info

 reserved for future use

}

8
2
2
1
1
4
6

40

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 49

Table 5.11: URI Version 2 Message Syntax

Field length Mnemonic
uri_message() {

 protocol_version

 aps_copy_control_info

 emi_copy_control_info

 ict_copy_control_info

 if (emi_copy_control_info == 00) {

 rct_copy_control_info

 }

 else {

 reserved = 0

 }

 reserved for future use

 if (emi_copy_control_info == 11) {

 dot_copy_control_info

 rl_copy_control_info

 }

 else {

 reserved = 0x00

 }

 reserved for future use

}

8

2

2

1

1

1

1

1

8

9

40

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

5.7.5.3 Coding And Semantics Of Fields

protocol_version: This parameter indicates the version of the URI definition and is defined in Table 5.12:

Table 5.12: Allowed Values for protocol_version

Contents Meaning Comment

0x00 Forbidden not used in this specification

0x01 URI protocol version 1 specification version 1.2

0x02 URI protocol version 2 specification version 1.3

0x03-0xFF reserved for future use

Note: A device made according to this version of the CI Plus specification shall understand
values 0x01 and 0x02 and ignore URI messages that have a protocol_version value that
it does not support.

aps_copy_control_info: This parameter describes the Analogue Protection System (APS) bits which define the

setting of analogue copy protection used on the analogue output, as explained in Table 5.13:

Table 5.13: Allowed Values for aps_copy_control

Contents Value in Binary Comment

0x0 00 Copy Protection Encoding Off

0x1 01 AGC Process On, Split Burst Off

0x2 10 AGC Process On, 2 line Split Burst On

0x3 11 AGC Process On, 4 line Split Burst On

emi_copy_control_info: This parameter describes the Encryption Mode Indicator (EMI) bits. The CI Plus

system shall use the EMI bits to exert copy control permissions of digital and analogue outputs as explained in

Table 5.14.

Table 5.14: Allowed Values for emi_copy_control

Contents Value in Binary Comment

0x0 00 Copying not restricted

0x1 01 No further copying is permitted

0x2 10 One generation copy is permitted

0x3 11 Copying is prohibited

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 50

ict_copy_control_info: This parameter describes the Image Constrained Trigger (ICT) bit. The Host shall use

the ICT bit to control a constrained image quality on high definition analogue component outputs explained in

Table 5.15.

Table 5.15: Allowed Values for ict_copy_control_info

Contents Value in Binary Comment

0x0 0 No Image Constraint asserted

0x1 1 Image Constraint required

rct_copy_control_info: This parameter describes the Encryption Plus Non-assert (RCT) bit. The Host shall use

the RCT bit to trigger redistribution control on Controlled Content when the RCT value is set to a value of one

(1) in combination with the EMI bits set to a value of zero, zero (0,0), which signals the need for redistribution

control to be asserted on Controlled Content without the need to assert numeric copy control as explained in

Table 5.16.

Table 5.16: Allowed Values for rct_copy_control_info

Contents Value in Binary Comment

0x0 0 No Redistribution Control asserted. Default.

0x1 1 Redistribution Control asserted

dot_copy_control_info: This parameter describes the Digital Only Token (DOT) bit. The Host shall use the

DOT bit to control analogue video outputs as explained in Table 5.17. When the EMI bits are equal to (1,1) the

CICAM may set the dot_copy_control_info bit to a value other than (0) to prohibit the output of analogue video

content by the Host.

Table 5.17: Allowed Values for dot_copy_control_info

Contents Value in Binary Comment

0x0 0 No Digital Only Constraint asserted (default)

0x1 1 Digital Only Constraint asserted; output on analogue video
outputs is prohibited.

rl_copy_control_info: This field describes the retention limit of the recording and/or time-shift of content from

the time that it is retained. Figure 5.19 shows how the retention limit is applied. The default

rl_copy_control_info bits in the URI message shall always be filled with the default retention limit value 0x00

except when the EMI bits are set to a value of one, one (1,1). When EMI is (1,1) the CICAM may set the

rl_copy_control_info bits to a value other than 0x00 (zero) to override the default 90 minutes retention limit,

other values may signal a retention limit in hours or days. When EMI is (1,1) and the CICAM has not received

information from the network then the default rl_copy_control_info value in the URI message is filled with the

default retention limit value 0x00.

Table 5.18: URI Version1 Allowed Values for rl_copy_control_info

Contents Value in Binary Comment

0x00 000000 Default retention limit of 90 minutes applies

0x01 000001 Retention limit of 6 hours applies

0x02 000010 Retention limit of 12 hours applies

0x03-0x3F 000011-111111 Retention limit of 1-61 multiples of 24 Hrs applies as signalled
by bits

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 51

Table 5.19: URI Version 2 Allowed Values for rl_copy_control_info

Contents Value in Binary Comment

0x00 00000000 Default retention limit of 90 minutes applies

0x01 00000001 Retention limit of 6 hours applies

0x02 00000010 Retention limit of 12 hours applies

0x03-0xFE 00000011-11111110 Retention limit of 1-252 multiples of 24 Hrs applies as signalled
by bits

0xFF 11111111 Unlimited retention period.

If the CICAM receives rl_copy_control_info from the network which is for a higher URI version than the Host

can support, the CICAM shall use the highest rl_copy_control_info value capable for the matching URI version.

For Example:

 Network rl_copy_control_info = 0xf0 (238 days)

 Host with URIv2 rl_copy_control_info = 0xf0 (238 days)

 Host with URIv1 rl_copy_control_info = 0x3f (61 days)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 52

18:00 23:00

18:00 23:00

18:00 23:00

18:00 23:00

deleted

content
90 mins of event currently viewable

1 Hour of event currently

viewable

Empty Buffer
1 hr of event currently

viewable

Empty Buffer90 mins of event currently viewable

deleted content

18:30 - 20:00

90 mins retention limit

19:00 - 20:30

90 mins retention limit

18:00 23:00

deleted content

19:00

Event Start

20:00

Now
21:00

Event End

19:00 - 21:00

2 Hr Event

21:00

Event End

20:30

Now
19:00

Event Start

19:00 - 21:00

2 Hr Event

21:00

Event End

19:00 - 21:00

2 Hr Event

19:30 - 21:00

90 mins retention limit

21:00 - 22:30

90 mins retention limit

21:00

Now
19:00

Event Start

19:00 - 21:00

2 Hr Event

19:00 - 21:00

2 Hr Event
20:00 - 21:30

90 mins retention limit

19:00

Event Start

22:30

Now

21:00

Event End

19:00

Event Start

21:30

Now

21:00

Event End

Figure 5.19: Example of a Retention Time Limit of 90 mins

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 53

5.8 Modes Of Operation

Hosts and CICAMs that meet this specification shall be completely compatible with the Common Interface

specified in EN 50221 [7] and TS 101 699 [8]. A DVB CICAM inserted into a CI Plus Host shall function as

normal. The Host shall recognise that it is DVB CI and use the resources that it has. If a CI Plus CAM is

inserted into a DVB CI Host, the Host shall recognise it as a valid DVB CI device and function normally. Table

5.20 describes the various operating modes of CICAMs and Hosts.

Table 5.20: Operating Modes of CICAM and Host

Host CICAM State EMI>0 EMI=0

CI Plus DVB CI DVB CI (Note 1) DVB CI

DVB CI CI Plus No Descrambling (Note 2) DVB CI (Note 4)

CI Plus CI Plus Authenticated Descramble + CC (Note 4) Descramble

CI Plus CI Plus SAC Failed No Descrambling DVB CI (Note 4)

CI Plus CI Plus CCK Failed No Descrambling DVB CI (Note 4)

CI Plus CI Plus CICAM Shunned Shunning Active (See section
10.4.2)

Shunning Active (See section
10.4.2)

CI Plus CI Plus Host Revoked CICAM Pass-through (Note 3) CICAM Pass-through (Note 3)

CI Plus CI Plus Authentication Failed No Descrambling No Descrambling

Notes:
1. Only if CI Plus descriptor absent in SDTActual.
2. CICAM shall detect EMI >0 and shall not descramble.
3. Content is passed through the CICAM un-altered.
4. The service operator and CAS may choose under what Content Control conditions to descramble

content to a DVB CI device

5.8.1 Host Operation with Multiple CICAMs

A CI Plus compliant Host may support a maximum of 5 CI Plus slots. Each slot may contain either a DVB

CICAM or a CI Plus CAM. All combinations are allowed. There may be additional slots that support DVB CI

only.

For a single tuner Host the TS shall be daisy-chained through each inserted CICAM. See Figure 5.20. For dual-

tuner systems, there is no need for daisy-chaining and it's up to the Host manufacturer to route the two TS in a

suitable way.

Host

CICAM 1

CICAM N

CICAM 2, ..., N-1

Figure 5.20: Daisy Chaining Of Transport Stream Through CICAMs

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 54

The Host and single CICAM shall be able to descramble one service, and possibly re-scramble it according to

this specification. A situation where two or more modules descramble a different service of the TS may be

optionally performed by the Host and CICAM.

When a CICAM is plugged in, the Host starts the communication with the CICAM as described in EN 50221

[7]. The CICAM opens the sessions required for its operation. The Host remembers the corresponding slot

number for each open session. When more than one CICAM is present during start-up of the Host, the Host may

initialize the CICAMs one by one, i.e. it may delay initialization of the next CICAM until the previous one is

complete.

At start-up, a CI Plus CAM first performs the verification of the Host's Authentication Key (AKH). If this

succeeds, the complete authentication protocol may be skipped. Section 6.3 explains this procedure. When a

CICAM tries to open a session to a resource, the Host may be busy for various reasons. A CICAM shall accept a

response "resource busy" when it tries to open a session.

Compliant CICAMs shall fully support the CA resource as defined in EN 50221 [7]. When a service is to be

descrambled, the Host may send a ca_pmt command with ca_pmt_cmd_id query to all inserted CICAMs. Each

CICAM checks if it can descramble the service. For this check, the CICAM refers to private data from the CA

system. After receiving the ca_pmt_reply from each CICAM, the Host may select one to descramble by sending

a ca_pmt with ca_pmt_command_id set to ok_descrambling to this CICAM. A CICAM that is not selected for

descrambling shall pass the TS unaltered.

CICAMs shall support Host implementations where multiple slots share the same address, data and some

control lines. Each CICAM shall check its Card Enable #1 pin (CE1# pin) before acting on any signals on the

shared bus.

When a module requests a CC key recalculation while the Host is running a CC key recalculation with another

module, the Host may indicate that it is busy.

When a CICAM encounters data in the TS which is not understood, it shall relay the TS unaltered.

5.8.2 Single CICAM with Multiple CA System Support

5.8.2.1 Introduction

This section defines how a single CICAM with multiple CA Systems and multiple smartcard readers shall

operate with the CI Plus requirements.

5.8.2.2 CICAM Device Certificates

The CICAM shall have only one Device Certificate; the certificate is not dependent on the number of CA

Systems supported by the CICAM.

5.8.2.3 CCK Refresh

The CCK is independent of the CA System; the CA System is responsible for controlling the CCK refresh.

At CICAM start-up the CCK is created as defined in section 8.1.4.

Only one CA System shall be active at any one time, only the active CA System shall control the CCK refresh

command. CCK refresh is defined in section 8.1.2.

5.8.2.4 Host revocation

Revocation of the Host shall only be performed by the active CA system.

5.9 Authentication Overview

The CI Plus specification requires mutual authentication of both the Host and CICAM. Before the CICAM may

start descrambling CA protected content, the Host and CICAM shall pass an authentication procedure, which is

based on successfully completing the following:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 55

 CICAM requests and Host provides its certificate chain. CICAM verifies the signature of the Host

device certificate that contains HOST_ID and the CICAM verifies the signature of the Host Brand

certificate.

 Host requests and CICAM provides its certificate chain. Host verifies the signature of the CICAM

device certificate that contains the CICAM_ID and the Host verifies the signature of the CICAM

Brand certificate.

 CICAM and Host prove they possess the private key corresponding with the public key embedded in

the certificate by signing a DH public key, together with other protocol data, and sending it to the other

device for signature validation.

 CICAM and Host prove that they can derive the authentication key.

This process is described in detail in section 6.

The mutual authentication mechanism is based on Diffie-Hellman (DH). Refer to PKCS #3 [31] for a detailed

explanation of DH. The CI Plus authentication protocol utilizes a 3 pass protocol, applied to the standard DH

algorithm for key agreement. A simplified explanation of the 3 pass DH is given in Figure 5.21.

[1] generate nonce

[2] send (nonce)

[3] generate random x

[4] DH Public key Host = g
x
 mod p

[5] send(DH Public key Host)

[6] generate random y

[7] DH Public key Module = g
y
 mod p

[8] send(DH Public key Module)

[9] DH private key = (g
x
)
y
 mod p

[10] DH private key = (g
y
)
x
 mod p

CICAM Host

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked

Figure 5.21: Diffie-Hellman Three Pass Process (informative)

Note that both sides compute a DH private key. Each side computes the key starting with a different private

values (e.g. x and y) and end up with the same secret (DH private) key.

Several measures are taken to protect the DH parameters in transit between the CICAM and Host:

 The CICAM starts the communication by sending a nonce to the Host. This nonce shall be covered by

the complete protocol and used in signatures for parameter exchange in the protocol.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 56

 The CICAM and Host shall mutually exchange their stored device and brand certificates which are

created by the ROT. The Host shall verify the signature of the opposite certificate.

 The CICAM and Host shall mutually exchange protocol parameters protected with a signature using

the public / private key framework from the certificates. The sender shall create a signature on all

exchanged protocol parameters using its private key and the Host shall positively verify a signature

using the opposite public key received from its certificate.

Refer to section 6 for a detailed description of the exact authentication mechanisms.

5.10 Content License Exchanges

When an item of content to be recorded has a URI with EMI = “1,1”, the CICAM has the option to provide a

license at the time of recording. The Host shall associate this license with the item of content for the lifetime of

the recording. If a license exists for an item of content, the license shall be checked by the original CICAM

when the content is played back to determine if the Host still has entitlement rights to the content. The content

license checking requires that the CICAM and Host securely transfer licenses to each other over the Common

Interface. On recording, the license supplied by the CICAM contains CAS specific data that is stored by the

Host and is associated with the recorded content. On playback of the recorded content then the associated

license is transferred back to the original CICAM that created the license without any change. The CICAM

evaluates the license and returns a playback status in addition to a new license and playback URI which replaces

the existing content license. The Host is required to return the license to the CICAM which originally issued the

license; the Host uses the CICAM_ID to identify the CICAM used for recording and for subsequent playback.

The licenses are always exchanged via the SAC using the cc_sac_data_req and cc_sac_data_cnf APDUs, see

sections 11.3.1.3 and 11.3.1.4.

5.10.1 Record Start Protocol

The Host shall signal the start of a CA protected service recording to the CICAM with the Record Start protocol

using the SAC, see section 11.3.4.4 for protocol details. This exchange informs the CICAM of the current

operating mode of the Host and optionally allows the Host to provide the CICAM PIN. The CICAM may cache

the CICAM PIN for unattended recording or timeshift. The CICAM PIN shall only be used to enable

uninterrupted recording when a future parental control event may occur. The CICAM PIN shall not be used to

enforce parental control on playback and live viewing where the user shall be asked to enter the CICAM PIN by

means of the MMI.

The Host may initiate a Record Start protocol on a FTA service in anticipation that the service may change to

CA protected service later. The CICAM should not expect another Record Start protocol at any future transition

between FTA and CA protected.

5.10.2 Content License Exchange on Record

If a license is required to be associated with an item of content, then at the start of recording the CICAM sends

the Host a license using the SAC. This license exchange process uses the CICAM to Host License Exchange

Protocol, see section 11.3.4.1 for more detail. The URI which accompanies the license shall be applied

immediately and supersedes any previous URI.

5.10.3 Content License Exchange on Check

The Host may determine the current state of a content license associated with a recording by using the License

Check Exchange Protocol, see section 11.3.4.3. The Host shall send the message to the CICAM that originally

issued the license. The License Check Exchange Protocol is provided for Host information only and is not used

for evaluating playback rights.

The CICAM responds to the License Check Exchange with status information of the license. The status

information provides information on content availability and may be used when displaying a recording library.

The status information includes a play_count which is an 8-bit field containing the remaining number of plays

that the user is entitled to.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 57

5.10.4 Content License Exchange on Playback

On playback of content which has an associated license then the Host shall send the license to the original

content recording CICAM for evaluation. The license is sent to the CICAM securely on the SAC using the

Playback License Exchange Protocol, see section 11.3.4.2. The CICAM processes the license to establish

whether it still has rights to play the content. A new license and URI are returned to the Host to replace the

originals in case the information contained has changed, e.g. play count. The Playback License Exchange

Protocol is performed while playing the content to ensure that playback start is not delayed. If the Playback

License Exchange response is not OK, or the response takes longer than 10 seconds, then the playback shall be

stopped. The URI which accompanies the license in the Playback License Exchange Protocol shall be applied

immediatly.

5.10.5 Content License and Timeshifting

The Host is not required to store or exchange the content licenses when buffering content for timeshift, e.g. live-

pause (90 minute retention). However, if the Host subsequently changes the buffered content into a recording, it

shall associate the received licenses with the item of content for the lifetime of the recording.
Note: This implies that if timeshifting is implemented with the ability to convert the timeshift buffer into a

recording then all content licenses received during the timescale of the buffer contents must be retained until the

buffer contents are no longer able to be converted into a recording.

5.10.6 Record Stop Protocol

The Host shall signals the end of a recording using the Record Stop Protocol using the SAC, see section

11.3.4.6. For every Record Start Protocol for a given program_number the Host shall execute a corresponding

Record Stop Protocol. e.g. on a channel change the Host shall send a Record Stop Protocol for the current

service, initiate a tune to the new location and then send Record Start Protocol for the new service.

5.11 Parental Control

For Free-To-Air services age rating for content may be signalled with the DVB parental rating descriptor. The

Host may optionally offer a mechanism for:

 Setting a maximum age rating of content above which a PIN is required to be entered before viewing.

 For entering the PIN that will authorise the exception to this limit. For the purposes of this document

this PIN will be referred to as the Host PIN.

For CA protected services the age rating may be delivered via the CA system or in the broadcast stream using

the DVB parental_rating descriptor. On CA protected services the derivation of parental control is out of scope

of this specification and is determined by the CAS and/or CICAM. The CICAM may offer a menu item to set

the PIN that authorises an exception. For the purposes of this document this will be referred to as the CICAM

PIN. The exact method used for the delivery of the age rating in this case is out of scope of this specification.

CI Plus version 1.3 adds features to the Content Control resource to enable these two potential parental control

systems to be handled as one for the convenience of the user. The parental control for CA protected services is

handled as normal depending on the CICAM PIN capabilities. The CICAM informs the Host of the minimum

age rating where it starts to handle PIN code management; this allows the Host to exert parental control when

the Host rating is set to a lower level than the CICAM rating. For FTA services, when the Host determines that

the current content has an age rating that exceeds the user age threshold, then the Host may pass PIN entry

control to the CICAM with a cc_PIN_MMI_req() message containing the Host FTA PIN code (depending on

the reported CICAM PIN capabilities). The CICAM then creates an MMI prompting the user to enter the PIN.

The CICAM compares the PIN entered with both the CICAM PIN and with the Host PIN passed in the message

and if the user entered PIN matches with either then the content is allowed to be viewed.

During normal viewing the user may be asked to enter a PIN code to continue viewing a service or event. This

may occur on service selection or at the start of a new event. In the normal course of events the viewer will enter

the correct PIN and continue to watch the service or event. The video and audio shall be unavailable until the

correct PIN is entered.

During recording or timeshifting of CA protected content the aforementioned behaviour would cause

unacceptable blank periods where the content is not being descrambled for the recording and therefore could not

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 58

be viewed during playback. CI Plus version 1.3 specifies a record start protocol whereby the Host passes the

PIN to the CICAM which shall be cached by the CICAM (depending on the CICAM PIN capabilities) in case it

is required during the recording. To ensure that this mechanism is not misused the CICAM shall clear any stored

cached PIN codes at the end of the recording.

Within the scope of this specification the Host and CICAM PINs are assumed to be numerical digits 0-9 and

shall be no longer than 8 digits.

Within the context of parental control the term AV includes all associated elementary stream components that

may be presented to the viewer. e.g. “AV blanking” means the Host shall disable the presentation of audio,

video, subtitles, etc.

The Host must abide by the parental control rules defined in the CI Plus Device Interim License Agreement [6].

5.11.1 CICAM PIN Capabilities

The Content Control resource PIN provides features that allow for different levels of PIN management by the

CICAM. The CICAM reports its capabilities in response to a capabilities request from the Host. The CICAM

may offer no PIN code management at all or may report the capability to handle PIN code management for CAS

controlled content, the capability to handle PIN code management for both CAS controlled and Free-To-Air

content.

The cc_PIN capabilities APDUs, see section 11.3.2.1, enables the Host to determine how any PIN code parental

controls for programme events and services are to be managed. The resource shall be interpreted and

implemented by all Host devices.

The PIN capabilities are sent to the Host using cc_PIN_capabilities_reply() APDU. This APDU is sent in

response to a cc_PIN_capabilities_req() from the Host. The cc_PIN_capabilities_reply() APDU is also sent to

the Host whenever the PIN capabilities change including when the effective age rating at which the CAM starts

managing the PIN code is changed in the CICAM.

The PIN capabilities APDU contains information allowing the CICAM to inform the Host as to how any PIN is

being handled ensuring that the Host does not interfere with the operation. The APDU contains a time and date

of the last PIN change which enables the Host to determine if any outstanding scheduled recordings require a

new PIN code.

The CICAM PIN capability is defined in the following sections.

5.11.1.1 No CICAM PIN Capabilities

The CICAM does not perform any parental rating on any services (FTA and CAS). The Host may optionally

provide a mechanism to do parental rating at the discretion of any user parental rating setting. The Host provides

a native user interface for PIN entry.

5.11.1.2 CICAM PIN Capabilities for CA Services Only

The CICAM does not perform any rating management on FTA services. The CICAM performs the CAS PIN

code management for services that the CICAM is capable of descrambling (e.g. matching CA_system_ID). The

CICAM shall use a high level or application MMI message to get the PIN from the user. The Host shall ignore

any PIN code management from a CICAM which is not capable of descrambling the content. The Host may

optionally do parental rating on FTA services at the discretion of the user setting a parental rating and CA

services if the parental rating set in the Host is lower than the rating provided in the CICAM PIN capabilities, in

which case the Host provides a native user interface for PIN entry.

5.11.1.3 CICAM PIN Capabilities for CA and FTA Services

The Host may request the CICAM to display a MMI screen for FTA services and CA services where the

parental rating set in the Host is lower than the rating provided in the CICAM capabilities. The Host does not

need to provide a native user interface for PIN entry and may use the CICAM to perform PIN entry. The

CICAM shall not indiscriminately show a PIN MMI unless explicitly requested by the Host on FTA services.

The CICAM confirms the PIN entered is correct with the CICAM PIN or the Host PIN sent in the

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 59

cc_PIN_MMI_req() before returning the status in the cc_PIN_reply(). The CICAM performs the CAS PIN

management and shall use a high level or application MMI message to get the PIN from the user.

5.11.1.4 CICAM PIN Capabilities for CA Services Only (cached PIN)

The CICAM does not perform any rating management on FTA services. The CICAM performs the CAS PIN

code management and shall use the High-Level or Application MMI to get the PIN from the user. The Host may

optionally perform parental rating, at the discretion of the user setting a parental rating, on both FTA services

and CA services when the parental rating set in the Host is lower than the rating provided in the CICAM PIN

capabilities, in which case the Host provides a native display for PIN entry.

The Host may use the Record Start Message to provide the CICAM with the CICAM PIN. In this case the

CICAM shall use the cached PIN code for enabling uninterrupted recording. The viewing PIN provided by the

user via the MMI shall be used for control of the live viewing of the content and shall not interrupt any ongoing

recording.

Moving to a timeshift or watch and buffer mode, if the cached PIN was entered incorrectly (via the record start)

then the viewing PIN shall replace the cached PIN.

5.11.1.5 CICAM PIN Capabilities for CA and FTA Services (cached PIN)

The Host may request the CICAM to display a MMI screen for FTA services and CA services where the

parental rating set in the Host is lower than the rating provided in the CICAM capabilities. The Host does not

need to provide a native interface for PIN entry and uses the CICAM MMI. The CICAM shall not

indiscriminately show a PIN MMI unless explicitly requested by the Host on FTA services. The CICAM

confirms the PIN entered is correct after comparison with the CICAM PIN and/or the Host PIN sent in the

cc_PIN_MMI_req() before returning the status in the cc_PIN_reply(). The CICAM performs the CAS PIN

management and shall use the High-Level or Application MMI message to get the PIN from the user.

The Host may use the Record Start Message to provide the CICAM with the CICAM PIN. In this case the

CICAM shall use the cached PIN code for enabling uninterrupted recording. The viewing PIN provided by the

user via the MMI shall be used for control of the live viewing of the content and shall not interrupt any ongoing

recording.

Moving to a timeshift or watch and buffer mode, if the cached PIN was entered incorrectly (via the record start)

then the viewing PIN shall replace the cached PIN.

5.11.2 CICAM PIN code

The CICAM may offer the management of a PIN code and age rating value to provide parental controlled access

to content. The CAS may obtain the requirement for a PIN directly from the CAS system (e.g. ECM) or by

using SI information in the broadcast stream such as the DVB parental_rating_descriptor.

In an unattended recording mode the entry of a PIN code may be required and the cc_PIN_cmd() is used to pass

the PIN code to the CICAM at the point the user booked a recording event to confirm the PIN is correct. The

CICAM shall acknowledge the PIN code using a cc_PIN_reply(). The PIN sent in the cc_PIN_cmd() shall not

be stored or used for unattended recording or timeshift by the CICAM, instead the CICAM shall only use the

PIN provided in the Record Start protocol.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 60

User HOST CICAM

Set record event with optional Pin

cc_PIN_cmd()

cc_PIN_reply()

cc_PIN_event()

cc_PIN_event()

Record Stop message

Start playback

cc_PIN_playback()

cc_PIN_reply()

CAM Detected

cc_PIN_capabilities_reply()

Capability_field == “03” or “04”

cc_PIN_playback()

CAM Detected

cc_PIN_capabilities()

Capability_field == “03” or “04”

cc_PIN_reply()

Timer recording start: HOST

wakes up, tunes to service

(Optional) Confirms pin is

correct at the time of

setting the record event

Parental rating updated

CICAM checks Parental

rating is higher than rating on

the CAS/CICAM; if yes

CICAM displays MMI

Parental rating updated

Record Start message
operating_mode == “02"

cc_PIN_capabilities_req()

The Host shall blank the AV

to the user until the next

positive PIN_reply

Figure 5.22: Unattended Record Sequence Diagram (Informative)

To start a recording a PIN code may be required to start the CICAM descrambling, in this case the Record Start

SAC message may be used to pass the PIN code to the CICAM with no user interaction. The CICAM shall

provide the PIN to the CAS if the PIN is required to descramble the recorded program and acknowledge the PIN

code using the cc_PIN_event() containing the parental control rating for users during playback. If the parental

rating for the program changes the Host is not required to resend the PIN and the CICAM provides the PIN to

the CAS and sends an updated cc_PIN_event() to the Host.

When the Host stops an unattended recording the Host sends a Record Stop message, the CICAM stops using

the cached PIN for descrambling the content.

During playback, Figure 5.22 shows that the CICAM receives a cc_PIN_playback() APDU when the Host

encounters a ‘pin_event’ in the recording. Depending on the Operator requirements or local legislation, the

CICAM determines if parental control should be enforced. In the case that the CICAM decides parental control

does not have to be enforced the CICAM sends a cc_PIN_reply() APDU with a status of “PIN code correct” or

“Video Blanking Not Required”. The Host blanks the AV for the period between the ‘pin_event’ in the

recording and receiving a cc_PIN_reply() APDU with a status of “PIN code correct” or “Video Blanking Not

Required”, this may cause a flicker. The flicker may be prevented by scheduling the cc_PIN_playback() APDU

one or more seconds early thereby allowing the CICAM sufficient time to send the cc_PIN_reply() APDU

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 61

before the actual ‘pin_event’ is encountered in the recording. If the ‘pin_event’ in the recording is encountered

before the cc_PIN_reply() APDU is received by the Host then the Host shall blank the AV until the

cc_PIN_reply() APDU is received with “PIN code correct” or “Video Blanking Not Required”.

User HOST CICAM

Start Timeshift

Pause/Rewind

Record Start message
operating_mode == “00"

cc_PIN_event()

PINcode_status == 0x02

Start playback

cc_PIN_playback()

cc_PIN_reply()

CAM Detected

cc_PIN_capabilities_reply()

Capability_field == “01” or “02”

cc_PIN_reply()

CICAM checks Parental

rating is higher than rating on

the CAS/CICAM; if yes

CICAM displays MMI

Parental rating updated

cc_PIN_playback()

Playback cancelled

cc_PIN_capabilities_req()

Change Operating Mode message
operating_mode == “01"

cc_PIN_event()

cc_PIN_reply()

Parental rating update –

CICAM provides a MMI for

PIN if required.

CICAM continues to

descrambles the content. If

the PINcode_status ==

“0x00”, “0x01” or “0x03” the

CICAM stops descrambling

During this mode the CICAM

will not provide MMI for PIN.

The Host shall blank the AV

to the user until the next

positive cc_PIN_reply

Channel selected/change

cc_PIN_event()

cc_PIN_event()

PINcode_status == 0x04

Parental rating updated

CICAM continues to

descrambles the content.

The Host shall blank the AV

to the user until the next

positive cc_PIN_reply

The Host is not required to

blank the AV.

No cc_PIN_reply will be sent

by the CICAM

Change Operating Mode message
operating_mode == “00"

cc_PIN_event()

Figure 5.23: Timeshift Sequence Diagram (Informative)

At playback the Host shall send the cc_PIN_playback() APDU with the age rating supplied by the CICAM on a

cc_PIN_event() when the recording was made to the CICAM which originally sent the cc_PIN_event(). The

CAS checks the rating and requests a high level or application MMI to obtain the PIN information, if required,

before returning a cc_PIN_reply() to the Host. The CICAM responds to the Host with the cc_PIN_reply() to

confirm if the Host may continue playback of the recording.

Figure 5.23 shows that during the viewing of live broadcasted content the Host receives a cc_PIN_event()

APDU after which it blanks the AV. It is not necessary for the Host to pro-actively blank the AV when the

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 62

PINcode status field in the cc_PIN_event() APDU is equal to ‘0x04’ (Video blanking not required). The ‘PIN

event’ must be stored with the associated content for the possible enforcement of parental control during

playback.

If the Host stops recording it shall send a Record Stop message. The CICAM shall stop using the cached PIN to

descramble the content. If the previously entered viewing PIN was correct this shall be used to allow the viewer

to watch the content with no interruption. If the previously entered viewing PIN was incorrect then the CICAM

shall enforce the appropriate parental control.

5.11.3 Host PIN code

The Host PIN code is a private PIN code normally managed by the Host and end-user only. The Content Control

resource allows the CICAM PIN code to be used by the Host to present age rated Free-To-Air content. Host PIN

code management is a optional feature that may or may not be implemented by a Host manufacturer.

On a Free-To-Air service, if the Host determines that the parental control rating of the service is higher than the

rating set by the user then the Host sends the cc_PIN_MMI_req() with the Host PIN to the CICAM to use a high

level or application MMI message to get the PIN from the user. The CICAM confirms the PIN entered matches

the CICAM PIN or the PIN sent in the cc_PIN_MMI_req() before returning the cc_PIN_reply(). Figure 5.24 is

provided for informative purposes:

User HOST CICAM

EIT with age rating

cc_PIN_MMI_req()

MMI

PIN entered

MMI response

cc_PIN_reply()

CAM Detected

cc_PIN_capabilities_reply()

Capability == “02” or “04”

MMI

cc_PIN_capabilities_req()

MMI

MMI

PIN entered

MMI response

Figure 5.24: Free to Air PIN (Informative)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 63

5.11.4 Notification that a PIN is required

The cc_PIN_event() APDU is sent by the CICAM to notify the Host that a PIN is required to view the recorded

program and to provide the parental rating for use during playback and the time at which it has changed. If the

parental rating of the program changes the Host is not required to resend the PIN and the CICAM provides the

PIN to the CAS and sends an updated cc_PIN_event().

The CICAM shall send the cc_PIN_event() APDU to the Host whenever the parental rating changes, this

includes the transition from when a PIN is required to when a PIN is no longer required. i.e. parental rating has

been removed. The CICAM shall send a rating of 0x00 (parental rating undefined) to inform the Host that the

PIN is no longer required.

CICAMs with a CA_system_ID that does not match that of the program to be recorded shall not send

cc_PIN_event(). Hosts shall ignore cc_PIN_events() from any CICAM where the CA_system_ID does not

match the currently selected service. The CICAM shall not send a cc_PIN_event() APDU when the Host is not

recording i.e. the Host has not completed the Record Start Protocol.

CICAMs with a CA_system_ID that matches that of the program to be recorded but are not able to descramble

the program to record (e.g. No Rights available) shall send a cc_PIN_event() with the status "Error - Content

still CA scrambled".

CICAMs with a CA_system_ID that matches that of the program to be recorded but are not able to descramble

due to incorrect PIN entry shall send a cc_PIN_event() with the status "Error - Bad PIN code".

5.11.5 Transfer of Parental Rating to CICAM

In recorded content the point at which parental rating changes, e.g. at event boundaries, is indicated by the

cc_PIN_event() which is stored with the content, see section 11.3.2.4. During playback when the parental rating

of the content changes the Host sends a cc_PIN_playback() to the CICAM, see section 11.3.2.5.

The Host is required to return the cc_PIN_playback() to the CICAM which originally descrambled the content;

the Host uses the CICAM_ID to identify the CICAM used for descrambling and subsequent playback. When

playback is attempted and the CICAM is not present or not responding then the Host shall continue to blank the

parental controlled content until such time that the original CICAM is again present in the Host and is able to

process the PIN playback request.

5.11.6 PIN Code Caching

The Host may provide the capability to store a PIN to be used as part of a record start message so that the

CICAM is able to continue descrambling the content on encountering parental rating control. The Host shall

only use this cached PIN for recording or confirming the cached PIN for a future record event.

The Host shall not reveal the cached PIN to the user in any form e.g. via the native UI or menu.

5.12 Recording and Playback

This section discusses the recording storage and subsequent playback requirements of a Host that records CI

Plus protected content using the Content Control resource. The Host is always required to honour the URI

settings, Parental Control (PIN) notifications and Content License.

The URI, License and PIN changes shall be accurately stored with the programme content such that each

transition may be accurately reproduced by the Host on subsequent playback matching the events with the

original delivery content position. The PIN notification contains a time stamp and may be accurately aligned

with the stream. The URI and License do not contain a time stamp and shall be aligned with the content based

on their reception time at the Host.

The Host shall not aggregate Licenses or PINs. The Content Control protection of Licenses, URIs and PINs

shall apply from the position in the stream where the protection was applied in the recording until the next

protection position in the recording or the end of the stream. The scope of each content protection component is

defined as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 64

 A URI extends from the reported position to the next URI reported position, or to the end of the

recording, in a forwards direction.

 A License extends from the reported position to the next URI or License reported position, or to the

end of the recording, in a forwards direction.

 A PIN extends from the reported position to the next PIN reported position, or to the end of the

recording, in a forwards direction.

Event 1

Event 2

Event 3

00:00:00:000 URI #1, License #1

00:01:00:000 PIN #1

01:30:00:000 URI #2

02:00:00:000 URI #3, License #2

03:00:00:000

01:30:00:000 PIN #2

Figure 5.25: Example recording sequence

Any of the aforementioned transitions may occur at any time in the recording as shown in Figure 5.25 which

depicts a time, rather than event based, recording.

The content in Figure 5.25 is protected as follows, where URI#n is a change in the URI, License#n is the content

license and PIN#n is a parental control event where the parental rating has changed. For the purposes of the

example then we assume that the recording spans three events, typically we would expect a single event to be

recorded.

Event#1: is content that is license protected with License#1 and URI#1 there is a parental control PIN#1 one

minute into the recording.

Event#2: is content that is not licence protected and has URI#2, there is a parental control PIN#2 in effect.

Event#3: is content that is licence protected with License#2 and URI#3 and there is a parental control PIN#2 in

effect.

It should be noted that License#1 and License#2 may be the same or a different license. Whilst in a recording

mode then the URI and License are dispatched together in a single message. The Host does not interpret the

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 65

license and simply returns it on a playback operation at the appropriate time in the stream when a new license

block is entered.

5.12.1 Playback Session

On playback of a recording the Host shall effectively include the concept of a session. On playing a recording

then the session shall be opened, the session is not closed until the playback is stopped, a pause does not

constitute a session close. A session may be closed by the Host as a result of the content retention time limit

being exceeded, at which point the content protected by the retention time limit is made inaccessible.

Licenses are consumed, typically as encountered, during the playback. Consumption of a License requires a

license exchange with the CICAM and the License and URI associated with the recording are exchanged with a

new License and URI to be associated with the recording replacing each of the existing stored values. A license

is only consumed once in the context of a playback session, irrespective of the user navigation moving between

different license blocks that have already been consumed in the current session.

A parental rating (PIN) transition in the recording requires the Host to remove all displayable components of the

recording (i.e. blank video, mute audio, disable subtitles, etc.) until a PIN valid is acquired from the CICAM, via

the user, when the content may be restored. A PIN exchange must be performed with the CICAM when crossing

any PIN event in the recording in either a forward or backward direction if the content is to be displayed. The

CICAM (Service Operator) may reduce user interaction within the context of a playback once a valid PIN has

been entered and any further PIN requests from the Host should ideally not invoke a user interaction provided

that the parental rating of the first PIN entry is not exceeded, the exact operation of the CICAM is determined by

the Service Operator and country regulations.

Navigation in a forwards and backwards direction in the recording requires the Host to honour all the License,

URI and PIN constraints at each transition point in the recording. When moving in a backwards direction then

the Host is required to re-evaluate the constraints when crossing a constraint event in the recording, this requires

the Host to find the previous transition type and appropriately apply the constraint. Within the context of a

playback session, on encountering a:

PIN Constraint: a PIN exchange shall be performed with the CICAM

License Constraint: each license is exchanged with the CICAM only once in a playback session, at first

encounter. On any subsequent encounter of a successfully exchanged license, there is no requirement to

exchange that license with the CICAM again.

URI Constraint: the URI shall be applied as described in section 5.7.

The URI returned from a CICAM license exchange may change the existing recorded License and URI and shall

be associated with the content at the same position as the original, displacing the existing License and URI. The

new URI shall be used immediately for playback. The new URI may alter the retention time limit which shall be

applied in a similar way to the recording process, taking into consideration the length of the material when

viewed with a normal playback time. e.g. Consider a 2 hour (120 minute) programme that changes its retention

limit from 30 days to 90 minutes. At the instant the URI is changed then the first byte of the recorded material at

the URI transition has a new retention time limit of 90 minutes, the last byte of the 120 minute recorded event

has a retention time limit of 120+90 or 210 minutes. A URI that exists without a License is not re-presented to

the CICAM on playback and is not replaced in the recording.

Where a recording has multiple URIs with different retention limit values then the Host is required to manage

the retention limits of each URI region according to the CI Plus License Agreement [6]. The Host may choose to

handle each URI region retention limit separately or apply the most restrictive retention limit to the whole of the

material. In either case the Host shall not exceed the stated retention limit for any URI region. The exact method

by which the Host manages different retention times within a single recording is implementation specific, but in

all cases must be managed according to the CI Plus License Agreement.

A Host is not obliged to remove recording content from storage which has exceeded its play count. If the

Service Operator requires the content to be removed once it has been viewed on playback, when a transition

from a play count of one to zero occurs, then the retention limit should be set appropriately through the playback

URI to force the Host to remove or render unusable the content once the retention time limit has been exceeded.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 66

5.13 SRM Delivery

The CICAM may receive System Renewability Messages (SRM) data files, as specified in [34]. SRM data files

perform the function of blacklist for HDCP [34]. These SRM data files are to be applied to the HDCP function

of a Host, subject to the Host deploying a HDCP output in source or repeater mode.

The implementation of a HDCP function in a CI Plus Host shall be in compliance with the CI Plus Licensee

Specification [33]. A CI Plus Host requiring SRM files shall accept these files if the CICAM initiates the

transfer of those SRM files.

5.13.1 Data file transfer protocol

This section describes the mandatory protocol to transfer SRM data files from CICAM to Host. The

responsibility of CI Plus is to transfer the SRM data files safely. The correct application of SRM files is part of

the HDCP function and out of scope of the CI Plus specification.

5.13.1.1 Initialisation and message overview

The process is explained in figure 5.26:

[1] assign correct SRM

(out of scope)

[2] deliver SRM data (out of scope)

[3] generate message

[4] start 10 second timeout

[5] transmit Sac msg(datafile)

[6] verify message

[7] confirm SAC msg(status+datafile_confirm)

[8] verify host confirm

[9] apply SRM data

(out of scope)

headend CICAM Host

Figure 5.26: Delivery of SRM data files

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 67

Table 5.21: SRM Data file Transfer Protocol Behaviour (normative)

No. Description Refer to

1 Assign correct SRM (out of scope).

The correct SRM is assigned to the CICAM Host combination. The exact process is
out of scope.

2 Delivery of SRM (out of scope).

The delivery of the SRM is typically protected by the CA system or delivered to the
CICAM by other means (for example: preloading). The exact delivery process is out
of scope.

3 CICAM generates message.

The CICAM calculates datafile_confirm to authenticate Host acknowledgment of
receipt (Note 3), as:

)||(_ 256 UCKdatafileSHAconfirmdatafile 

where:

 datafile is the SRM file.

 UCK = SHA256 (SAK).

The value datafile_confirm is locally kept for comparison in step 8.

The CICAM shall generate a cc_sac_data_req APDU for the (SRM) data file
message, carrying:

 the SRM data file (datatype_id = DTCP.srm etc.)

Section 11.3.5

4 CICAM starts 10 second timeout.

The CICAM starts a 10 second timeout in which the SRM data transfer protocol has
to complete. (Note 1)

5 CICAM transmit SAC message with SRM datafile payload.

The CICAM transmits a SAC message with payload from step 3 and transmits this to
the Host. (Note 2).

Section 7.3 and
11.3.1

6 Host verifies message.

After the Host verifies the SAC message is correct, the Host extracts the SRM data
file. The Host may pass the SRM data file to the consuming function, which is out of
scope.

Section 7.4

7 Host transmits SAC message with SRM data file confirmation.

The Host calculates the datafile_confirm in exactly the same way as the CICAM did
in step 3.
The Host confirms SRM data file delivery with the cc_sac_data_cnf APDU, carrying

 datafile_confirm (datatype_id = datatransfer_confirm)

 status

and uses the SAC to transmit this to the CICAM. (Note 2)

Failure to respond constitutes a failure of the data file transfer (Note 1).

Section 7.3, 11.3.1
and 11.3.5

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 68

8 Verify Host confirm.

The CICAM compares the received datafile_confirm from the Host with the value
calculated in step 3 above.

Failed equivalence constitutes a failure of the data file transfer and may be followed
up by the CICAM. (Note 1)

9 Apply SRM data (out of scope).

The application of the SRM data file is out of scope.

Notes:
1. If the steps above are not completed before the 10 second timeout expires the CICAM shall consider

that the data file transfer failed. Any subsequent actions from the CICAM are out of scope.
2. Refer to section 7.2 for an explanation how the SRM data is packed into SAC message.
3. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations

adhere to the SHS validation list. See SHS Validation List [11].

5.13.2 Data transfer conditions

The CICAM starts initiating a data file transfer the first time it detects a SRM data file. In case the Host is not

requiring this file, it may notify this in the confirmation message, and the CICAM shall refrain from sending

subsequent SRM data files. In any case the Host shall follow up with a confirmation to detect message deletion.

When the Host indicated that it received the SRM data file, the CICAM shall refrain from sending identical files

multiple times.

Figure 5.27 explains the CICAM operation for data file transfer.

(3) host

response status

requires

datafile?

(1) init data file transfer

Yes

Not required

Ok / Host busy

(3) CICAM sends (SRM)

file to host

(2) CICAM detects (SRM) file

(4) host

responds within

timeout?

No

(6) follow up (out of scope)

Note: timeout is defined as 10 seconds.

Figure 5.27: CICAM sided overview of data files delivery conditions (informative)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 69

6 Authentication Mechanisms

6.1 CICAM Binding and Registration

CICAM binding and registration is performed in three steps:

Verification of Certificates & DH Key Exchange.

Verification of Authentication Key.

Optional Report Back to Service Operator (Registered Service Mode only).

These steps are described in the following sections.

6.1.1 Verification of Certificates & DH Key Exchange

The Host and CICAM start the authentication protocol by exchanging the Host certificate chain, CICAM

certificate chain, signed data and Diffie-Hellman public keys. Before authentication is complete the CICAM is

authorized only for programmes with EMI data set to a value of 00 (copying allowed).

The CICAM verifies the signatures contained in the Host certificate chain and the signature on the Diffie-

Hellman public key. This is a mutual authentication protocol and the Host shall verify the signatures contained

in the CICAM certificate chain along with the signature on the Diffie-Hellman public key. The DHPH is

protected by the Host with a signature that involves the Host's HDQ. The CICAM side verifies the received

DHPH with the HDP of the Host, which it obtains from the Host device certificate. The DHPM is protected in

an identical way, using the MDQ for signing and the MDP for verification.

If the Host certificate chain verifies together with the signature on the Diffie-Hellman public key, the HOST_ID

shall be extracted from the Host device certificate. Similarly, if the CICAM certificate chain verifies together

with the signature on the Diffie-Hellman public key, the CICAM_ID shall be extracted from the CICAM device

certificate.

If the certificate or signature verification fails the CICAM shall not remove the network CA (i.e. shall not

decrypt the network CA from the incoming TS) even if the subscriber would otherwise be authorized to receive

the service. The CICAM attempts to display an error message using the MMI resource on the Host, see section

5.4.3 for details about the error messages and EN 50221 [7], section 8.6 for an explanation of the MMI resource.

If the Host is temporarily unable to service the request for an MMI dialogue, the CICAM shall keep retrying

while the Host is tuned to a CA service for which it is responsible for.

6.1.2 Verification of Authentication Key

The CICAM and Host derive a long-term Authentication Key from data exchanged between the CICAM and

Host during the first phase of the authentication procedure. The authentication key is computed from the DH

private key together with unique data from this particular binding, the HOST_ID and CICAM_ID (refer to

section 6.2.3.4 for details).

The CICAM sends a request message to the Host to request the Authentication Key derived by the Host. The

Host follows this with a confirm message which includes the requested authentication key. After reception the

CICAM compares the received authentication key with the one it previously stored. If the CICAM comparison

is successful the Host has proved that it derived the same authentication key and the CICAM accepts that Host

as legitimate allowing communication. Both sides store the derived authentication key in non-volatile memory

so that it is available for computation of key material for the SAC and the CC. Refer to section 7 (SAC) and

section 8 (Content Control Key) for details.

If a matching Authentication key has not been received within 5 seconds of the request message, the CICAM

shall not remove the network CA (i.e. shall not decrypt the incoming TS), even if the subscriber would

otherwise be authorized to receive the service.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 70

6.1.3 Report Back to Service Operator

When the system is deployed in Registered Service Mode the CICAM may initiate an MMI "registration"

message, allowing an exchange of information between the CICAM and the service operator. The exact

mechanism is not in the scope of this specification.

6.1.4 CC System Operation

Figure 6.1 explains how the 3-step authentication is integrated into the overall CC operation. This is informative

and other implementations of network related components are possible. The 3-step authentication process is

mandatory.

The CICAM Content Control System (CC) shown in Figure 6.1 comprises the following basic steps:

1) The CC resource shall be provided by the Host and any attempt by modules to provide a CC resource

shall be ignored by the Host's resource manager. The Host shall support one session of the CC resource

for each CI slot. During the profile inquiry process (see Figure 6.1 and Figure 6.2) the Host shall report

that a Content Control resource is available. If the resource is not reported this constitutes a failure of

the Content Control system and the system shall continue at step (13).

2) A session to the Content Control resource shall be opened by the CICAM, section 11.3. If a valid

session is not successfully opened the Content Control system shall be considered failed. The CICAM

shall send a cc_open_req APDU to the Host. The Host shall respond with a cc_open_cnf APDU within

5 seconds (see section 6.2.1).

Failure to respond to this request within 5 seconds constitutes a failure and the system shall continue at

step (14).

The cc_system_id_bitmask in the Host response shall include CC version 1, see section 11.3.1.2. If the

cc_system_id_bitmask does not include CC version 1 the system shall continue at step (13).

3) The CICAM checks if there is an authentication key stored in non-volatile memory. If the CICAM

contains a valid authentication key (AKM) it shall request the Host to send its authentication key

(AKH). If the CICAM does not have a valid AKM then the CICAM and Host shall continue with step

(6).

4) The CICAM requests the Host to send its authentication key (AKH). The Host shall respond with its

AKH within 5 seconds. If the AKH is not available, then it shall transmit a value of all zeros. A value

of all zeros shall be recognized by the CICAM as an invalid AKH.

5) The CICAM shall compare its stored AKM with the received AKH. If the authentication keys match

then a previous authentication has been completed successfully and the certificates are considered

valid. The DH Secret Key (DHSK) and authentication keys (AKM/AKH) computed on both sides are

then preserved, the key material for the SAC (SAK and SEK) and the Content Control Key (CCK) are

independently (re)generated and synchronized on both sides. The system shall then continue with step

10). If the authentication keys do not match then the system is required to authenticate and shall

continue with step (6). Note that Host behaviour for multiple modules and multiple slots is defined in

section 6.3.

6) The CICAM triggers the start of the DH protocol and certificate exchange. The exact DH based

authentication protocol is described in Figure 6.2 step (1).

7) If the DH protocol completed successfully, the system shall continue at step (8). Any failure in the

completion of the DH protocol constitutes a failure of the Content Control system and the system shall

continue at step (11).

8) The CICAM shall request the Host to confirm its authentication key (AKH) within 5 seconds.

9) The CICAM shall compare its authentication key AKM with the received AKH. If they are not equal,

this constitutes a failure of the Content Control system (see section 6.1.1) and the system shall continue

at step (11). If they are equal, then the CICAM and Host concludes the Diffie-Hellman operation

completed successfully and shall store the derived authentication keys (DHSK and AKM/AKH) into

non-volatile memory.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 71

No

(response

timed out)

(1)

CC resource

reported by host

?

(2) success

 opening CC

resource ?

(4) CICAM requests host

to send AKH within 5 secs

Yes

(5)

AKH matches

stored AKM ?

(6) CICAM triggers DH 3 pass

protocol

(8) CICAM requests host

to send AKH within 5 secs

(7) Success

performing DH

protocol?

Yes

No

(9) AKH matches

computed AKM?

No

No

No

(10) Fully operational

for clear and network

encrypted content

(11) CICAM initiates MMI

dialogue with end user

(12) Limited Operation

Yes

(3)

CICAM

stores valid AKM

?

Yes

No

(13) CICAM is DVB CI and

operate with limitations.

(14) Reset.
No

(wrong system id)

Yes

Yes

Figure 6.1: Overview of CICAM and Host in the CC Operation (Informative)

10) The system is fully operational to process clear and CA encrypted content provided that the user has

the necessary entitlements and after successful computation of the SAC (see section 7) and CC keys

(see section 8) the Host will be able to display content.

11) The CICAM initiates a dialogue indicating a failure to authenticate.

12) The system is limited to processing only clear content.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 72

6.2 Authentication Protocol

Section 6.2.1 explains the authentication protocol messages exchanged over the external interfaces. Section

6.2.2 explains the authentication conditions. Section 6.2.3 explains the authentication protocol local verification

and key computations.

The CICAM should not attempt authentication until the date has been obtained by both the CICAM and Host to

ensure that certificates can be verified. E.g. this may be accomplished using the date and time resource, see EN

50221 [7], section 8.5.2.

6.2.1 Initialisation and Message Overview

Authentication is performed in three steps:

[1] open_session_request()

[2] open_session_response()

[3] cc_open_req()

[4] cc_open_cnf()

[5] cc_data_req(nonce)

[6] cc_data_cnf(DHPH+signature_A+host_dev_cert+host_brand_cert)

[7] cc_data_req(DHPM+signature_B+CICAM_dev_cert+CICAM_brand_cert)

[8] cc_data_cnf(status)

[9] cc_data_req(AKH)

[10] cc_data_cnf(AKH)

[11] compare AKM=AKH

CICAM Host

Validate signatures

on protocol data and

certificates

Validate signatures

on protocol data and

certificates

Authentication

Step 1

Authentication

Step 2

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked. This
diagram also assumes that the CICAM does not store a valid AKM.

Figure 6.2: Authentication Exchange Sequence Diagram (Informative)

The process is defined as described in Table 6.1:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 73

Table 6.1: Authentication Exchange (normative)

No. Description Refer to

1 The CICAM shall open a session to the Content Control resource

Section 11.3

2 The Host shall confirm with a session response. Failure to open a valid session
constitutes a failure of the Content Control system.

Section 11.3

3 The CICAM shall send a cc_open_req APDU to the Host.

Section 11.3.1.1

4 The Host shall confirm with the cc_open_cnf APDU, carrying:

 cc_system_id_bitmask

Section 11.3.1.2

5 The CICAM shall send a cc_data_req APDU to the Host, carrying:

 a nonce (i.e. auth_nonce).

 Requests for datatype IDs to be delivered by Host as listed in referenced
subsection.

Section 11.3.3.2

6 The Host shall confirm with the cc_data_cnf APDU, carrying:

 DH public key of the Host (DHPH, refer to section 6.2.3.2),

 the signature A (refer to section 6.2.3),

 the Host brand certificate (Host_BrandCert, refer to section 9.2),

 the Host device certificate (Host_DevCert, refer to section 9.2).

Failure to respond with a cc_data_cnf constitutes a failure of the Content Control
system; this may occur when the Host failed to verify the received CICAM data (see
Note 2).

Section 11.3.3.2

7 The CICAM shall follow up with an cc_data_req APDU, carrying:

 DH public key of the CICAM (DHPM, refer to section 6.2.3.2),

 the signature B (refer to section 6.2.3),

 the CICAM brand certificate (CICAM_BrandCert, refer to section 9.2),

 the CICAM device certificate (CICAM_DevCert, refer to section 9.2).

 requests for datatype IDs to be delivered by Host as listed in referenced
subsection.

Failure to respond with cc_data_req constitutes a failure of the Content Control system;
this may occur when the CICAM failed to verify the received Host data (see Note 2).

Section 11.3.3.2

8 The Host shall confirm with the cc_data_cnf APDU, carrying:

 the status of the Host.

Failure to respond with cc_data_cnf constitutes a failure of the Content Control system;
this may occur when the Host failed to verify the received CICAM data (see Note 2).

Section 11.3.3.2

9 The CICAM shall send a cc_data_req APDU to the Host to request the Host
authentication key (AKH, refer to section 6.2.3.4), carrying:

 request for datatype ID of AKH (as specified in Annex H.1).

Section 11.3.3.3

10 The Host shall confirm with the cc_data_cnf APDU, carrying:

 AKH, either valid or filled with 0 (zero, indicating "invalid") (refer to section
6.2.3.4).

Failure to respond within 5 seconds with cc_data_cnf constitutes a failure of the
Content Control system (see Note 2).

Section 11.3.3.3

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 74

11 The CICAM shall compare the AKH with the newly computed AKM. If they fail to match
this constitutes in a failure of the Content Control system (see Note 2).

Note
1. Refer to Annex H for an overview of the parameters involved.
2. Behaviour on failure of the Content Control System is defined in Section 6.1 and Figure 6.1, step 11.

Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

6.2.2 Authentication Conditions

The following limits are defined in this section:

Table 6.2: Authentication Exchange (normative)

Limit Description Defined as

Nonce retry Maximum number of CICAM retries to create a valid nonce 3

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 75

(1) CC resource and session

opened

yes

No

(retries

exhausted)

(re)boot and/or reinsertion

(3)

valid nonce ?

No

(2) init nonce

(5) receive confirm from host

with requested data

(4) send nonce to host,

request data back

(6) valid

certificate

signatures?

(7) valid

signature A ?

(8)

valid DHPH ?

yes

yes

(9) generate random DHY

(10) compute DHPM

yes

(11)

valid DHPM ?

No

(12) create signature B

(16) compute DHSK & AKM

(14) receive confirm from host

with status data

(13) send data +

signature B to host

yes

(15)

status host ok?

yes

(17)

valid keys ?

No

No

(18) send request for

AKH to host

(19)

Receive AKH <=

5 sec. ?

yes

yes

(20)

AKH valid ?

(21)

AKH = AKM ?

yes

No

No

(22) authentication sucessfull (24) authentication failed

(23) notify error

dialogue (optional)

No

No

No

No

(retry < limit)

yes

Note: Retry limit defined in Table 6.2

Figure 6.3: CICAM sided overview of authentication conditions (Informative)

The CICAM authentication conditions shown in Figure 6.3 are described below:

Note: Refer to Table 6.3 for details on the computations and to Table 6.1 for details on the message

exchange.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 76

1) CC resource and session shall be opened before the CICAM starts the authentication procedure.

2) The CICAM initializes a protocol nonce "auth_nonce".

3) The auth_nonce shall be a valid length as listed in Annex H, Table H.1. If this is not the case the

CICAM retries until it reaches the retry limit (Refer to Table 6.2). If the retry limit is reached the

authentication fails and the CICAM continues at step 23.

4) The CICAM sends the auth_nonce to the Host and requests data back in the confirmation message.

5) The CICAM waits until it receives the confirmation from the Host carrying the requested parameters.

6) The CICAM verifies that the certificates received from the Host are valid by checking the SSAC.

Otherwise the authentication fails and the CICAM continues at step 23.

7) The CICAM verifies that the signature A received from the Host is valid by checking the SSAC.

Otherwise the authentication fails and the CICAM continues at step 23.

8) The CICAM verifies that the DHPH key received from the Host is valid by checking length according

to Annex H, Table H.1 and value according to control check in section 6.2.3.2. Otherwise the

authentication fails and the CICAM continues at step 23.

9) The CICAM generates a random nonce DHY for use in the DH computations.

10) The CICAM computes a DH public key DHPM.

11) The CICAM checks that the computed key DHPM is valid by checking length according to Annex H,

Table H.1 and value according to control check in section 6.2.3.2. Otherwise the authentication fails

and the CICAM continues at step 23.

12) The CICAM creates a unique signature B for the data to be exchanged with the Host.

13) The CICAM sends the protocol data to the Host with a request to receive the status of the Host.

14) The CICAM waits until it receives a confirmation from the Host with its status.

15) The CICAM checks if the status of the Host is OK. Otherwise the authentication fails and the CICAM

continues at step 23.

16) The CICAM computes the DHSK and AKM keys.

17) The CICAM checks if the DHSK and AKM are valid according to sections 6.2.3.3 and 6.2.3.4.

Otherwise the authentication fails and the CICAM continues at step 23.

18) The CICAM requests the Hosts AKH key.

19) The CICAM shall receive the Host response within 5 seconds. Otherwise the authentication fails and

the CICAM continues at step 23.

20) The CICAM checks that the response contains a valid AKH key. If the key is all zeros then the AKH is

considered invalid and the authentication fails, the CICAM continues at step 23.

21) The CICAM checks the received AKH from the Host matches the AKM of the CICAM. Otherwise the

authentication fails and the CICAM continues at step 23.

22) The CICAM completes the authentication successfully.

23) The CICAM may initiate an authentication failed MMI dialogue.

24) Authentication failed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 77

(1) CC resource and session

opened

yes

No

(re)boot and/or reinsertion

(3)

valid nonce ?

(4) generate random DHX

(19) authentication sucessful (20) authentication failed

(2) receive nonce from CICAM

with request for data

(5) compute DHPH

(7) create signature A

(6)

valid DHPH ?

(8) send confirm with

requested data to CICAM

yes

(9) receive data from CICAM

with request for host status

(10) host status = error

(11) valid

certificate

signatures?

(12) valid

signature B ?

(13)

valid DHPM ?

yes

yes

No

No

No

(15) host status = ok

yes

(16) send confirm with

host status to CICAM

(14) send confirm with

host status to CICAM

No

(17) compute DHSK & AKH

(18)

valid keys ?
No

(21) receive request for AKH

from CICAM

(22) send confirm with

AKH

yes

(23) authentication completed

Figure 6.4: Host sided overview of authentication conditions (Informative)

The Host authentication conditions shown in Figure 6.4 are described below:

Note: Refer to Table 6.2 for details on the computations and to Figure 6.2 for details on the message

exchange.

1) CC resource and session are opened successfully.

2) The Host receives a nonce from the CICAM.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 78

3) The Host checks if the received nonce is valid as listed in Annex H, Table H.1. This nonce is used

throughout the authentication protocol.

4) The Host generates a random nonce DHX for use in the DH computations.

5) The Host computes a DH public key DHPH.

6) The Host checks that the computed key DHPH is of valid by checking length according to Annex H,

Table H.1 and value according to control check in section 6.2.3.2.

7) The Host creates a unique signature A for the data that is to be exchanged with the CICAM.

8) The Host sends the protocol data to the CICAM.

9) The Host waits for response from the CICAM carrying the required parameters to complete the

authentication.

10) The Host sets Host status to error.

11) The Host verifies the certificates received from the CICAM are valid by checking the SSAC.

12) The Host verifies that the signature B received from the CICAM is valid by checking the SSAC.

13) The Host verifies that the DHPM key received from the CICAM is valid by checking length according

to Table H.1 and value according to control check in section 6.2.3.2.

14) The Host sends a confirmation with the local status.

15) The Host sets Host status to ok.

16) The Host sends local status as confirmation.

17) The Host computes the DHSK and AKH keys.

18) The Host checks if the DHSK and AKH are of valid according to sections 6.2.3.3 and 6.2.3.4.

19) Valid keys shall mean the Host authentication is successful but not yet completed.

20) Invalid keys or any other error during the authentication protocol shall mean the authentication has

failed.

21) The Host receives a request from the CICAM to report the Host AKH key.

22) The Host shall confirm with the value of the AKH. An invalid AKH key is filled with all zeros. Note

that the CICAM may retry, repeating steps 21 and 22.

23) The authentication is complete.

6.2.3 Authentication Key Computations

If a matching authentication key is not found (see section 6.1.2) the system performs an authentication session

as described in Figure 6.5.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 79

[1] generate nonce

[2] send nonce

[3] check params

[4] generate random x

[5] compute DHPH

[6] create signature A

[7] send (DHPH + signature A) to CICAM

[8] check params

[9] generate random y

[10] compute DHPM

[11] create signature B

[12] send (DHPM+signature B) to Host

[13] check params

[14] confirm

[15] compute DHSK and AKM

[16] compute DHSK and AKH

[17] request AKH

[18] confirm AKH

[19] compare AKM=AKH

CICAM Host

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 6.5: Authentication Key Material Computation Sequence Diagram (Informative)

The process is defined as described in Table 6.3:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 80

Table 6.3: Authentication Key Material Computation (Normative)

No. Description Refer to

0 On start-up the Host performs checks if the DH parameters are valid.

Section 6.2.3.1

1 The CICAM shall generate a random nonce of 256 bits (auth_nonce), which is
included in the signature of exchanged parameters of the 3 pass DH protocol.
The nonce shall be generated by a suitable PRNG.

Annex A

2 The CICAM shall send the auth_nonce to the Host using the appropriate APDU
message.

Section 11.3.2.2

3 The Host shall check that the received auth_nonce parameter is the correct size
(256 bits).

Annex A

4 The Host shall generate a random value for DH exponent x. The value x (DHX)
shall be generated by a suitable PRNG.

Annex A

5 The Host shall compute the DH public key of the Host (DHPH).

Section 6.2.3.2

6 The Host shall create a signature A over the auth_nonce and DHPH, so that:

DHPH)||auth_nonce||msg_label||(versionmessage_A 

)_,(_ AmessageHDQSIGNPSSRSASSAAsignature 

where:

 RSASSA-PSS shall be used as referred in Note 2 below.

 HDQ is the device private key, as defined in Section 5.3.

 version = 0x01 and msg_label = 0x2.

 Auth_nonce is identical to value received in step 3.

Annex I

7 The Host shall send the signature A and the DHPH key, together with the Host
brand certificate and the Host device certificate to the CICAM.

Section 11.3.3.2

8 The CICAM shall check the received parameters as follows:

a) CICAM shall verify signature on the certificates.

b) CICAM shall verify the signature A, so that:

)| |_| |_| |(_ DHPHnonceauthlabelmsgversionAmessage 

TRUEAsignatureAmessageHDPVERIFYPSSRSASSA )_,_,(

where:

 RSASSA-PSS shall be used as referred in Note 2 below.

 HDP is the device public key received in step 7.

 Version = 0x01 and msg_label = 0x2.

 Auth_nonce is identical to the value generated in step 1.

 DHPH is identical to the value received in step 7.

 TRUE means ‘valid signature’

c) The CICAM shall verify that:

1_mod and _1 _  pDHDHPHpDHDHPH qDH

Section 9.4

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 81

9 The CICAM shall generate a random value for DH exponent y. The value y (DHY)
shall be generated by a suitable PRNG.

Annex A

10 The CICAM shall compute the DH public key of the CICAM (DHPM).

Section 6.2.3.2

11 The CICAM shall create a signature B over the DHPM key and the exchanged
parameters auth_nonce and DHPH, so that:

)| || |_| |_| |(_ DHPMDHPHnonceauthlabelmsgversionBmessage 

)_,(_ BmessageMDQSIGNPSSRSASSABsignature 

where:

 RSASSA-PSS shall be used as referred in Note 2 below.

 MDQ is the device private key, as defined in Section 5.3.

 version = 0x01 and msg_label = 0x3.

 Auth_nonce is identical to value received in step 1.

Annex I

Section 5.3

12 The CICAM sends the signature B and the DHPM key, together with the CICAM
brand certificate and the CICAM device certificate to the Host using the
appropriate APDU message.

Section 11.3.3.2

13 The Host shall check the received parameters as follows:

a) Host shall verify signature on the certificates.

b) Host shall verify the signature B, so that:

)| || |_| |_| |(_ DHPMDHPHnonceauthlabelmsgversionBmessage 

TRUEBsignatureBmessageMDPVERIFYPSSRSASSA )_,_,(

where:

 RSA shall be used as referred in Note 2 below.

 MDP is the device public key received in step 12.

 Version = 0x01 and msg_label = 0x3.

 Auth_nonce is identical to value received in step 3.

 DHPH is identical to the value generate in step 5.

 DHPM is identical to the value received in step 10.

 TRUE means ‘valid signature’

c) The Host shall verify that:

1_mod and _1 _  pDHDHPMpDHDHPM qDH

d) The Host shall confirm the CICAM brand identifier is present in the certificate
and is an integer in the range 1..65535

Section 9.4

14 The Host shall confirm it is ready by sending a status using the appropriate APDU
message.

Section 11.3.3.2

15 The CICAM shall compute and store the DHSK key.
The CICAM shall compute and store the AKM key.

Section 6.2.3.3
Section 6.2.3.4

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 82

16 The Host shall compute and store the DHSK key.
The Host shall compute and store the AKH key.

Section 6.2.3.3
Section 6.2.3.4

17 The CICAM shall start the authentication verification (step 2 in the authentication
process) by sending a request for the current authentication key AKH to the Host
using the appropriate APDU message.

Section 11.3.3.3

18 The Host confirms the request from step 17 and sends the AKH to the CICAM
using the appropriate APDU message.

Section 11.3.3.3

19 The CICAM shall check if the AKH received from the Host matches the AKM
computed by the CICAM. Failure to match constitutes a failure of the
authentication protocol (see Note 3).

Notes:
1: Refer to Annex H for an overview of parameters involved.
2: RSA is used for SSAC authentication and verification as described in Annex I. The data fields in the

signature are concatenated utilizing the tag length format described in Annex J.
3: Failure of the Content Control System is defined in Section 6.1 and Figure 6.1.

Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

6.2.3.1 Diffie Hellman Parameters

The Diffie Hellman parameters and their requirements are not defined in this document and can be found in the

CI Plus Licensee Specification [33].

6.2.3.2 Calculate DH Public Keys (DHPH and DHPM)

The Diffie Hellman public keys (DHPH and DHPM) are volatile and shall be deleted after completion of the

authentication protocol.

The Host shall compute its Diffie Hellman public key as follows:

 pgKeypublicDHDHPH x
Host mod__  Eq.6.1

The CICAM shall compute its Diffie Hellman public key as follows:

 pgKeypublicDHDHPM y
Module mod__  Eq. 6.2

Where:

 Exponent x (DHX) and exponent y (DHY) are random and generated by a PRNG as defined in Annex

A. The exponents DHX and DHY shall be kept local and secret and shall be deleted after completion

of the authentication protocol. The value of g and p are defined in the CI Plus Licensee Specification

[33].

After computation of a DH public key following checks shall be performed:

 check if 1_mod_____1 _  pDHkeypublicDHpDHkeypublicDH qDH .

NOTE: refer to Annex H for an overview of parameters involved.

6.2.3.3 Calculate DH Keys (DHSK)

The Diffie Hellman secret key (DHSK) shall be stored in non-volatile memory. The key shall be computed as

follows:

Module

yx

Host KeyprivateDHpDHDHPHpDHDHPMKeyprivateDHDHSK ___mod)(_mod)(__  Eq. 6.3

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 83

6.2.3.4 Calculate Authentication Key (AKH and AKM)

The Authentication key AKH/AKM shall be used for the SAC key (refer to section 7.1.3) and Content Control

Key (CCK) calculation (refer to section 8.1.4). The authentication key generation occurs only once (per Host-

CICAM pair) when the CICAM and Host are first connected. The resulting authentication keys (AKM for

CICAM and AKH for Host) shall be stored in non-volatile memory. The keys shall be computed as follows:

)DHSK | | Host_ID | | CICAM_ID(256SHAAKHAKM  Eq. 6.4

Input parameters shall adhere to Table 6.4.

Table 6.4: Input Parameters in Key Computation

Key or variable Size (bits) Comments Refer to

DHSK 2048 The complete DH secret from the authentication
process.

Section 6.2.3.3

HOST_ID 64 Generated by the ROT and included in the
X.509 certificate of the Host.

Section 9.3.6

CICAM_ID 64 Generated by the ROT and included in the
X.509 certificate of the CICAM.

Section 9.3.6

Notes:
1. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations

adhere to the SHS validation list. See SHS Validation List [11].
2. Refer to Annex H for overview of parameters involved.

6.3 Power-Up Re-Authentication

After establishing the CC session, CICAM and Host perform the Authentication Key Verification protocol to

check if there is an existing binding between the two devices and re-authentication is unnecessary.

The authentication context contains the data required for Authentication Key Verification and start-up without

full authentication. This comprises of:

 AKM / AKH

 DHSK

 CICAM ID / Host ID

 CICAM Brand ID used for host service shunning

 scrambler algorithm that was negotiated during the binding

A Host shall store 5 authentication contexts. A CICAM shall support at least one authentication context, it may

support more.

If the CICAM has a valid authentication context, it requests the AKH from the Host and checks if the received

AKH matches with the AKM in its authentication context. If there is no match the CICAM shall retry until a

match is found or the maximum of 5 attempts has been made. The Host goes through its authentication contexts

and sends back the corresponding AKHs. When there is a match, the fast authentication is finished and Host and

CICAM continue with SAC establishment. When the Host does not have another valid authentication context it

replies with the AKH value filled with zeros. When receiving this invalid AKH the CICAM stops retrying and

starts the authentication protocol.

Implementations on the CICAM and the Host should try to minimize the cases where a full authentication is

required.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 84

7 Secure Authenticated Channel

The SAC encrypts and decrypts data into SAC messages. A contextual high level diagram is shown in Figure

7.1:

Auth

&

encrypt

Decrypt

&

validate

SAC

control

SAC

control
Init and sync

datadata Secured message pipe

Keys,

Etc.

Keys,

Etc.

NOTE: The SAC may send and receive messages in both directions.

Figure 7.1: Contextual Overview of SAC (informative)

Figure 7.2 is provided for informative purposes:

[1] authentication protocol

[2] authentication protocol

[3] init Sac

[4] ok

[5] init Sac

[6] ok

[7] APDU request SAC sync

[8] APDU confirms SAC sync

[9] generate data

[10] pass data

[11] ok

[12] check state

[13] generate msg

[14] send msg

[15] ok

[16] receive msg

[17] ok

[18] check state

[19] process msg

[20] pass data

[21] ok

CICAM CC

resource
CICAM Sac PCMCIA Host Sac Host CC resource

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 7.2: SAC Sequence Diagram (informative)

The process is defined as described in Table 7.1:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 85

Table 7.1: Contextual Overview of the SAC (normative)

No. Description Refer to

1
2

Authentication protocol.

The CICAM and Host shall successfully complete the mutual authentication protocol.
Section 6.2

3
..
6

Init SAC.

The SAC shall be initialized on the CICAM and the Host. This concerns key material
derivation and (re)setting the initial SAC state.

Section 7.1.1

7
8

Request SAC sync and confirm SAC sync.

If the CICAM has correctly initialized the SAC, the CICAM shall issue an APDU to
synchronize with the Host. After successful confirmation, both sides may start to use the
SAC.

Section 7.1.1

9
..
15

Generating and transmitting SAC message.

The SAC message is generated for the payload, by adding a message header,
authentication field and optionally encrypting.

Section 7.3

16
..
21

Receiving and validating SAC message.

Upon reception of the SAC message it shall be validated and if valid its payload may be
processed further.

Section 7.4

Notes:
1. The SAC may send and receive messages in both directions.
2. Refer to section 7.5 for an explanation how the SAC is integrated into CI Plus architecture.
3. Refer to Tables 11.28 and 11.30 for an overview of the messages that are exchanged through the

SAC.

7.1 SAC Operation

7.1.1 SAC Initialisation

This section specifies in detail how the SAC is initialized. Figure 7.3 is provided for informative purposes:

[1] SAC (re)keying required

[2] generate Ns_module

[3] send cc_data_req(Ns_module+CICAM_ID)

[4] generate Ns_Host

[5] confirm cc_data_cnf(Ns_Host+Host_ID)

[6] derive SAK&SEK and reset SAC state

[7] derive SAK&SEK and reset SAC state

[8] send cc_sync_req()

[9] confirm cc_sync_cnf()

CICAM Host

NOTE: This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 7.3: SAC Key Material Computation Sequence Diagram (informative)

The process is defined as described in Table 7.2:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 86

Table 7.2: SAC Key Computation (normative)

No. Description Refer to

1 When the CICAM detects that a (re)keying of the SAC is required, the CICAM shall
start the process of SAC initialisation. The exact conditions for (re)keying are specified
in the referenced subsection.

Section 7.1.2

2 The CICAM shall generate a nonce used in SAC key material computation.

Section 7.1.3

3 The CICAM shall send a cc_data_req APDU to the Host, carrying the following
parameters:

 nonce Ns_module.

 CICAM_ID as extracted from the CICAM device certificate.

Section 11.3.3.5

4 The Host shall generate a nonce used in SAC key material computation.

Section 7.1.3

5 The Host shall confirm receipt of the cc_data_request APDU from the CICAM by
sending the cc_data_cnf APDU to CICAM, carrying the following parameters:

 nonce Ns_Host.

 HOST_ID, extracted from the Host device certificate.

Failure to respond with cc_data_cnf constitutes a failure of the copy control system.

Section 11.3.3.5

6

The CICAM shall check that the received HOST_ID is equal to the previously stored
HOST_ID (See Note 2). If they are the same the CICAM may start to compute the SAK
and SEK and (re)set the SAC state.

Section 7.1.3

7

The Host shall check that the received CICAM_ID is equal to the previously stored
CICAM_ID (See Note 2). If they are the same the Host may start computing the SAK
and SEK and shall (re)set the SAC state.

Section 7.1.3

8 The CICAM shall send a cc_sync_req APDU to the Host, indicating a SAK refresh.

When the CICAM has initialized the scrambler, the CICAM shall send a
synchronization request to the Host, indicating that the CICAM is ready to start using
the SAC.

Section 11.3.3.5

9 The Host shall confirm with a cc_sync_cnf APDU to the CICAM indicating that it is
ready to start using the SAC.

Failure to respond with cc_sync_cnf constitutes a failure of the copy control system.
See Note 3.

Section 11.3.3.5

Notes:
1. Refer to Annex H for an overview of the parameters involved in this protocol.
2. Previous HOST_ID / CICAM_ID is stored in the 'Authentication Context'. Refer to Section 6.3
3. Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

7.1.2 SAC (re)keying Conditions

The SAC key refresh is initiated by the CICAM, whereas the Host is passively replying. The SAC key refresh

shall be triggered under any of the following conditions:

 On reboot; when (re)boot is completed successfully and there is a valid AKM stored in memory.

 On (re) insertion of a CICAM; when a CICAM is re-inserted in a Host and there is a valid AKM stored

in memory.

 On (re)authentication; when there is no valid AKM stored in memory the authentication session is

(re)initiated, resulting in successful completion (i.e. valid AKM) of the subsequent (re) authentication

session.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 87

 On message counter overrun.

Figure 7.4 explains the CICAM operation for SAC key refresh.

(1) SAC initialisation

(14)

Max_msg_

Counter

Overrun?

(2) CICAM initializes SAC key

refresh timer to zero seconds,

defines protocol instance.

(5) CICAM calculates SAK and

SEK

yes

No

(8) CICAM

received sync

confirm within

timeout?

(9) Key refresh

timer <= 10 sec?
No

(10) Wait 1 second

yes

yes

(11) CICAM enables SAC

operation.
(6)

SAC refresh

timer <= 9 sec?

No

(retries < limit)

(12) CICAM starts message

counter max_msg_counter=1

yes

No

Successful (re)authentication and/or (re)boot and/or reinsertion

(13) CICAM sends message:

max_msg_counter+1

(3) CICAM sends CICAM

nonce “ns_module”

(4) CICAM receives host nonce

“ns_host”

(7) CICAM sends sync

request

Note: The retry limit is defined as value 3 and applies to subsequent failures of the SAC protocol in step 6.

Figure 7.4: Flow Chart – CICAM SAC Key Refresh Session

Figure 7.5 explains the Host operation for SAC key refresh.

(3) Host calculates SAK and

SEK

(2) Host replies with host

nonce “ns_host”

(1) Host receives CICAM

nonce “ns_module”

(5) Host confirms sync

and starts using (newly)

calculated SAC keys

(4) Host receives sync request

Figure 7.5: Flow Chart – Host SAC Key Refresh Session

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 88

7.1.3 SAC Key Computation

The SAC requires two keys for operation: the SAC Authentication Key (SAK) and the SAC Encryption Key

(SEK). Computation of SAK and SEK proceeds in two steps:

 Key seed calculation.

 SEK and SAK key derivation.

These are defined as follows:

Step 1: Key Seed calculation.

The Key Seed Ks is 256 bits long and shall be used for the computation of the key material Km. The process to

calculate Ks shall be performed on the Host and CICAM.

The Key Seed Ks shall be calculated on the Host as follows:

 Ns_module) | |Ns_host | | AKH | |(DHSK SHA256hostKs Eq. 7.1

On the CICAM the Key Seed Ks shall be calculated as follows:

 Ns_module) | |Ns_host | | AKM ||(DHSK SHA256CICAMKs Eq. 7.2

Where:

 hostCICAM KsKs 

 Input parameters are defined in Table 7.3:

Table 7.3: Input Parameters in Key Computation

Key or variable Size (bits) Comments Refer to

DHSK 128 The LSB bits of the DH secret from the
authentication process. See note 3.

Section 6.2.3.3

AKH / AKM 256 The authentication keys from the authentication
process.

Section 6.2.3.4

Ns_Host 64 Random nonce of 64 bits generated by the Host
and transmitted by the Host to the CICAM.

Annex A

Ns_module 64 Random nonce of 64 bits generated by the
CICAM and transmitted by the CICAM to the
Host.

Annex A

Notes:
1. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations

adhere to the SHS validation list. See SHS Validation List [11].
2. The requirements on the random number generator for Ns_Host and Ns_module are given in Annex A.
3. DHSK is truncated from 1024 to 128 bits.

Step 2: Key Material computation.

The Key Material Km is 256 bits long and shall used for the derivation of the SEK and SAK. The Key Material

Km shall be calculated as follows:

)(, KsSACfSAKSEK  Eq. 7.3

Note: The function f-SAC is not defined in this document and is obtained from the CI Plus Licensee

Specification [33].

7.1.4 SAC error codes and (re) set SAC state

The SAC re-keying conditions are explained in following Figure 7.6.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 89

(1) SAC initialised

Receiver message counter set

(3) message

counter valid?

yes

No (msg. order error)

(2) receive message

(4) increment receiver

message counter

(5)

decrypt ok?

yes

(6) msg

verification ok?

yes

(7) process payload (8) discard message

No (msg. decrypt error)

No (msg. verification error)

Re-init SAC

Figure 7.6: SAC state handling

7.2 Format of the SAC Message

A data message that is delivered as payload to the SAC shall be transformed into a SAC message as follows:

payload

SAC message

Size fixed and indicated in header

authenticationheadermessage counter

Variable payload (e.g. APDU).

Header with fixed / indicated size

Counter with fixed size

overhead (optional) protection
verification

Note: The SAC authenticates first and then encrypts.

Figure 7.7: SAC Message Composition

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 90

The detailed SAC message syntax is defined in Table 7.4.

Table 7.4: SAC Message Syntax

Field No. of Bits Mnemonic
message() {

 message_counter

 /* message header starts here */

 protocol_version

 authentication_cipher_flag

 payload_encryption_flag

 encryption_cipher_flag

 reserved for future use

 length_payload

 /* message header ends here */

 /* message body starts here */

 if (payload_encryption_flag == MSG_FLAG_TRUE) {

 encrypted_payload

 } else if (payload_encryption_flag == MSG_FLAG_FALSE) {

 payload

 authentication

 }

 /* message body ends here */

}

32

4
3
1
3
5

16

length_payload * 8 + 128

length_payload * 8
128

uimsbf

uimsbf
uimsbf
bslbf

uimsbf
bslbf

uimsbf

bslbf

bslbf
bslbf

7.2.1 Constants

The message defines the constants as defined in Table 7.5.

Table 7.5: Constants in SAC Message

Name Value

MSG_FLAG_FALSE 0

MSG_FLAG_TRUE 1

7.2.2 Coding and Semantics of Fields

message_counter: A data message requires a unique counter. The usage of this field is explained in section

7.4.1.

protocol_version: This parameter indicates the protocol version of this message. The device shall ignore

messages that have a protocol_version number it does not support. In this version of the specification the value

of the protocol_version of this message shall be set to 0x0.

authentication_cipher_flag: This parameter is indicates the cipher that is used to generate the authentication

field as defined in Table 7.6.

Table 7.6: Allowed Values for authentication_cipher_flag

Contents Meaning Comment

0x0 AES-128-XCBC-MAC XCBC-MAC mode as described in RFC 3566 [20] (Note2)

0x1-0x7 reserved for future use

Notes
1. A device adhering to this version of the specification shall interpret value 0x0 and ignore

messages that have an authentication_cipher_flag value that it does not support.
2. With the exception that the 128 bit MAC output is not truncated and remains 128 bits.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 91

Auth

&

encrypt

S
A

C
 #

2

msg

APDU

APDU

CI Sac

#2

Host

Sac

sync

Auth

&

encrypt

S
A

C
 #

1

msg

APDU

CI Sac

#1

sync

Decrypt

&

validate

NOTE: The SAC may send and receive messages in both directions

Figure 7.8: Multiple Modules

payload_encryption_flag: This parameter indicates if the payload is encrypted. The value 1 indicates

encryption of the payload and 0 that the message payload is not encrypted. A device adhering to this version of

the specification shall interpret the value 1 and ignore messages with other unsupported

payload_encryption_flag values.

encryption_cipher_flag: This parameter indicates the cipher that is used to encrypt the message payload as

defined in Table 7.7.

Table 7.7: Allowed Values for encryption_cipher_flag

Contents Meaning Comment

0x0 AES-128 in CBC mode AES-128 according to FIPS 197 [4] in CBC mode according to 800-38A
[25]

0x1-0x7 reserved for future use

Note: A device adhering to this version of the specification shall interpret value 0x0 and ignore messages
that have an encryption_cipher_flag value that it does not support.

length_payload: This parameter is the length of the payload message in bytes including optional padding,

excluding the authentication length, for both encrypted and non-encrypted payloads.

encrypted_payload: this field contains the encrypted data consisting of the message payload, padding if

required and authentication. Refer to section 7.3.2 for a description of this field.

payload: this field carries the unencrypted message payload (e.g. input data such as an APDU).

authentication: this field carries the authentication of the message. Refer to section 7.3.1 for a description of

the authentication procedure. This field may be encrypted as signalled by "payload_encryption_flag"; refer to

section 7.3.2 for details.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 92

7.3 Transmitting SAC Messages

A data message that is delivered to the SAC shall be processed as follows:

1) Check the message_counter for exhaustion and update the message_counter. Refer to section 7.4.1 for

details.

2) Compute the authentication of the message. Refer to section 7.3.1 for details.

3) Concatenate the authentication and payload and (optionally) encrypt the message. Refer to section

7.3.2 for details.

4) Construct the final message: (message_counter || header || result from step 3). Refer to section 7.2 for

details.

5) Transmit the message.

NOTE: If any of these steps fail, the message and state (e.g. keyset, counter, etc.) shall be destroyed and

an error shall be produced. Refer to section 7.1.4 for details.

7.3.1 Message Authentication

A data message on the SAC is protected with an authentication field. The authentication field is computed as

follows:

)_| |_| || |)_(}({ iii ppayloadhheaderihheaderlengthSAKMACtionauthentica  Eq. 7.4

Where:

 MAC is the algorithm indicated by the authentication_cipher_flag, refer to section 7.2.2.

 SAK a 128 bit key, as defined in section 7.1.3.

 The authentication is performed over the entire message, with the exception of the authentication field.

The parameters used in the computation of the authentication field are defined in Table 7.8.

Table 7.8: Parameters in MAC Computation

Parameter length Type

length_hi 8 uimsbf

i 32 uimsbf

header_hi length_hi * 8 bslbf

payload_pi y * 8 bslbf

i – This field contains the message_counter value from the message. Refer to section 7.2.2 for a description of

this field.

length_hi – this parameter is the length of the header in bytes.

header_hi – this parameter represents the header of the message, see Table 7.4.

payload_pi – this parameter contains the payload of the message. For computation of the authentication field,

the original unencrypted payload shall be used.

7.3.2 Message Encryption

A flag indicates if the payload is encrypted or not. If a SAC message requires encryption, the data is encrypted

as follows:

)_| |_}(,{_ iii ationauthenticappayloadSIVSEKEpayloadencrypted  Eq. 7.5

Where:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 93

 E is the algorithm indicated by the encryption_cipher_flag, refer to section 7.2.2.

 SEK is a 128 bit key. Refer to section 7.1.3 for details.

 SIV is fixed, 128 bits long and a license constant, refer to the CI Plus Licensee Specification [33]. The

SIV must be used at the beginning of each SAC message.

 Authentication ai shall be computed as described in section 7.3.1.

NOTE: If payload_pi  any multiple of the block cipher size (i.e. 128 bits) the message is padded by

adding a 1 (one) bit and then 0 (zeros) bits until the block size is filled. If the payload is not

encrypted then padding is not applied.

7.4 Receiving SAC Messages

A data message received by the SAC shall be processed as follows:

1) First check that the received message contains the correct message_counter and protocol_version.

Refer to section 7.4.1 for details.

2) If payload_encryption_flag = 1, decrypt the encrypted message payload. Refer to section 7.4.2 for

exact details.

3) Re-compute the authentication field and verify the integrity of the message. Refer to section 7.4.3 for

details.

NOTE: If any of these steps fail, the message and state (e.g. keyset, counter, etc.) shall be destroyed and

an error shall be produced. Refer to section 7.1.4.

7.4.1 Message Counter State

The receiving device (CICAM or Host) shall locally maintain a secure message counter for received messages

to track the message number of the last message received. On receiving a message from the SAC the Host shall

update the state of the receiver_message_counter. The receiver_message_counter is 32 bits (as is the message

counter field of the message).

Any new message number shall have a strictly increased message number i. The first message shall use number

0x1, the second 0x2, and so on. The receiver shall not accept messages which are out of order.

Correct message number:)1__( countermessagereceiveri

Incorrect message number:)1__()__( countermessagereceivericountermessagereceiveri

An incorrect message number produces a "message order error"; this shall be handled as explained in section

7.1.4

Message limitations:

The number of messages is limited to 2
32

-1 messages. Where the message number overflows the devices shall

stop using the current keys and negotiate new keys (refer to section 7.1.2). The message number, i, wraps back

to 0x1 (not zero).

NOTE: The CICAM is the only device that is able to decide and initiate follow up actions upon message

counter exhaustion. The behaviour is specified in section 7.1.4.

7.4.2 Message Decryption

A data message on the SAC may be encrypted. The decryption is as follows:

)_}(,{_| |_ iii payloadencryptedSIVSEKDationauthenticappayload  Eq. 7.6

Where:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 94

 D is the algorithm indicated by the encryption_cipher_flag, refer to section 7.2.2.

 SEK is a 128 bit key. Refer to section 7.1.3 for details.

 SIV is fixed, 128 bits long and a license constant, refer to the CI Plus Licensee Specification [33]. The

SIV shall be used at the beginning of each SAC message.

 An incorrect decryption of a message produces a "message decrypt error"; this shall be handled as

explained in section 7.1.4

NOTE: authentication_ai shall be split from payload_pi where the length of authentication_ai may be

inferred from the value of the authentication_cipher_flag.

The original SAC input data = resulting payload_pi – authentication_ ai.

If payload_pi a multiple of the block cipher size (i.e. 128 bit) the message is padded by adding a

1 (one) and then 0 (zeros) until the block size is filled. If the payload is not encrypted then

padding is not applied.

7.4.3 Message Verification

A data message on the SAC contains an authentication field. The authentication shall be validated as follows:

)_| |_| || |)_(}({_ iiii ppayloadhheaderihheaderlengthSAKMACationauthentica  Eq. 7.7

Where:

 MAC is the algorithm indicated by the authentication_cipher_flag, refer to section 7.2.2.

 SAK a 128 bit key, as defined in section 7.1.3.

 For a description of the remaining parameters refer to section 7.3.1.

NOTE: If the calculated authentication_ai is not equal to authentication_ai derived from the decrypted

message (in case payload_encryption_flag = 1), or if the calculated ai is not equal to the

authentication field contained in the message (in case payload_encryption_flag =0), the received

message m shall be discarded and a message verification error shall be generated and handled as

defined in section 7.1.4.

7.5 SAC Integration into CI Plus

The SAC is designed as a multiple purpose protocol and is integrated into the CC resource as explained in

Figure 7.9.

APDU

tag

APDU

length

SAC

header

SAC

auth

Arbitrary data

(e.g. object structure)

SAC

header

Encrypted SAC

data

Step 1

Step 2

Step 3

padding
SAC

header

SAC

payload

Figure 7.9: SAC message integration

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 95

Table 7.9: Data encapsulation into a SAC Message

No. Description Refer to

1 The system collects the data objects that forms the SAC payload. Section 11.3.1.7

2 The system authenticates the complete SAC message, comprising the SAC header,
SAC payload and padding (if required).

Section 7.3

3 The SAC payload and SAC authentication are encrypted. The encrypted SAC data
is appended with the SAC header and the APDU tag and APDU length.

Section 7.5

Note: Refer to Table 11.10 for messages that are transmitted through the SAC

8 Content Key Calculations

8.1 Content Control Key refresh protocol

8.1.1 Initialization and message overview

The following Figure 8.1 is provided for informative purpose:

[1] CCK (re)keying required

[2] generate key Kp

[4] send CC_sac_data_req(Kp+CICAM_ID+keyregister)

[5] Verify CICAM_ID

[6] confirm CC_sac_data_cnf(Host_ID+status)

[8] derive CIV and/or CCK

[9] send CC_sac_sync_req()

[10] confirm CC_sac_sync_cnf(status)

CICAM Host

[3] derive CIV and/or CCK

[7] verify HOST_ID

NOTE : This diagram does not suggest that any behaviour be specifically (un)synchronized / (un)blocked.

Figure 8.1: CCK material computation sequence diagram

The process is defined as described in Table 8.1.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 96

Table 8.1: CCK Computation (normative)

No. Description Refer to

1 When the CICAM detects that a refresh of the CCK is required, the CICAM shall start
the process of CCK initialisation. The exact conditions for (re)keying are specified in
the referenced subsection.

Section 8.1.2

2 The CICAM generates a nonce to generate Kp as follows:.

)(256 nonceSHAKp 

Section Annex
A.1

3 The CICAM may immediately start to compute the CIV and/or CCK.

Section 8.1.4

4 The CICAM shall send a cc_sac_data_req APDU to the Host, carrying the following
parameters:

 Kp.

 CICAM_ID as extracted from the CICAM device certificate.

 selection for odd or even register.

Section 11.3.3.4

5 The Host shall check that the received CICAM_ID is equal to the previously stored
CICAM_ID (See Note 5). If they are the same the Host may start computing the CIV
and/or CCK.

A CICAM_ID verification failure shall constitute in a response of ”no CC support”.

Section 8.1.4

6 The Host shall confirm with the cc_sac_data_cnf APDU to CICAM, carrying the
following parameters:

 HOST_ID as extracted from the Host device certificate.

Failure to respond with cc_data_cnf constitutes a failure of the copy control system.

Section 11.3.3.4

7

The CICAM shall check that the received HOST_ID is equal to the previously stored
HOST_ID (See Note 5). If they are the same the CICAM may use the computed CCK
and CIV.

A Host answer of CC_no support or a HOST_ID verification failure constitutes a failure
of the copy control system. See Note 6.

Section 8.1.4

8

The Host may compute the CIV and/or CCK.

Section 8.1.4

9 The CICAM shall send a cc_sac_sync_req APDU to the Host, indicating a CCK
refresh.

When the CICAM has completed initializing the scrambler, the CICAM shall send a
synchronization request to the Host. This informs the Host that the CICAM is ready to
start using the newly computed CCK.

Section 11.3.3.4

10 The Host shall use the cc_sac_sync_cnf APDU to confirm to the CICAM to indicate that
it is ready to start using the newly computed CCK.

Failure to respond with cc_sac_sync_cnf constitutes a failure of the copy control
system. See Note 6.

Section 11.3.3.4

Notes:
1. Once computed, the new key material shall be stored in the appropriate register of the (de)scrambler.

Refer to section 5.6 for details.
2. The conditions for CCK refresh are specified in section 8.1.2.
3. Refer to Annex H for an overview of parameters involved.
4. The APDUs that are required in the CCK refresh protocol shall be sent via the SAC; refer to section 7.
5. Previous HOST_ID / CICAM_ID is stored in the 'Authentication Context'. Refer to Section 6.3
6. Refer to section 5.4.3 and Annex F for details on the generic error reporting mechanism.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 97

8.1.2 Content Control Key re-keying conditions

The Content Control Key (CCK) refresh is initiated by the CICAM, whereas the Host is passively replying. The

CCK refresh shall be triggered under any of the following conditions:

 After both the authentication and the SAC initialisation process have successfully completed.

 When triggered at the discretion of the CAS.

 When triggered periodically (maximum key lifetime parameter). See Section 8.1.3.

 When block counter limit is overrun (only for AES mode).

 At every reboot.

 At every reset of the CICAM.

The following Figure 8.2 explains the CICAM operation for CCK refresh.

(1) CC initialisation

(2) CICAM initializes CC key

refresh timer to zero seconds.

(4) CICAM starts calculating

CIV and/or CCK.

yes

Yes

(between 10 and 30 s.)

(16) CICAM disables

network CA descrambling

(14) CICAM

received sync

confirm?

(15)

Key refreshtimer:

10 > t > 30

sec?
No

yes

(17) CICAM enables CA

descrambling and CC

scrambling operation.

(12)

Key refresh timer

> 9 sec?

No

No

(18) CICAM starts

block_counter = 1.

yesno

Successful (re)authentication and/or (re)boot and/or reinsertion

(19) CA

requests key

refresh ?

yes

(20)

key_lifetime

expired ?

(21)

block_counter

expired ?

no

no

No (<10s.)

(5) CICAM receives host

confirm.

(3) CICAM sends key Kp.

(13) CICAM sends sync

request.

(6) Initial

Key_lifetime

period?

(7)

Key refresh timer

<= 9 sec?

yes

(9) CICAM

received sync

confirm within

timeout?

(10) Key refresh

timer <= 10 sec?
No

(11) Wait 1 second

yes

(8) CICAM sends sync

request

yes

no

yes

(22) CICAM disables

network CA descrambling

No

(retries < limit)

No (>30s.)

yes

NOTES: 1. The key refresh timer is the timeout upon computing a new CCK; refer to Figure 5.15 for

details.

2. The key lifetime is described in Section 8.1.3

3. The block counter limit is defined in Table 8.2

4. The initial key_lifetime is defined as the first key lifetime period (i.e. CCK computation) after

SAC (re)initialisation.

5. Start of CC scrambling operation is subject to any URI data associated with the selected

service.

Figure 8.2: CICAM operation for CCK refresh (informative)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 98

Table 8.2: Scrambler Block Counter Limits

Scrambler Selection Block Counter Limit Comment

DES N/A not used

AES 2
32

Note: The block counter limit is the number of cipher blocks that have
been processed since the refresh of the CCK.

Figure 8.3 explains the Host operation for CCK refresh.

(4) Host calculates CIV and/or

CCK

(1) Wait for CICAM key refresh

Successful (re)authentication and/or (re)boot and/or reinsertion

(2) Host receives key Kp

(3) Host confirms

(5) Host receives sync request

(6) Host confirms and

starts using (newly)

calculated CC keys

Figure 8.3: Host operation for CCK refresh (informative)

8.1.3 Content Key Lifetime

The maximum key lifetime parameter is controlled by the CA system, which is out of scope of this

specification. The countdown from this value is maintained by the CICAM which triggers the CCK refresh

process.

The countdown proceeds ONLY whilst the CICAM is scrambling content. This ensures that the Content Key is

not recalculated when it is not being used.

8.1.4 Content Control Key Computation (CCK)

The scrambler requires a content key (and an IV if required) for its operation: the Content Control Key (CCK)

and a Content Initialization Vector (CIV). Computation of CCK (and CIV) proceeds in two steps:

 Key precursor calculation.

 CCK and CIV key derivation.

These are defined as follows:

Step 1: Key precursor calculation.

The Key Precursor Kp is 256 bits long and shall be used for the computation of Km. The process to calculate Kp

shall be performed on the CICAM.

The Key Precursor Kp shall be calculated on the CICAM as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 99

 (nonce)SHA256Kp Eq. 8.1

Where:

 Input parameters are defined in Table 8.3.

Table 8.3: Input Parameters in Key Computation

Key or variable Size (bits) Comments Refer to

nonce 256 Random nonce of 256 bits generated by the CICAM. Annex A

Notes:
1. Input is padded according to SHA-256. Refer to FIPS 180-3 [3]. It is advised that SHA implementations

adhere to the SHS validation list. See SHS Validation List [11].
2. The requirements on the random number generator for the nonce are given in Annex A

Step 2: Key Material computation.

The Key Material Km is 256 bits long and is used for the derivation of the Content Control Key (CCK). The

Key Material Km is calculated as follows:

)(, KpCCfCIVCCK  Eq. 8.2

Note: the function f-CC is not defined in this document and may be obtained from the CI Plus Licensee

Specification [33].

After successful authentication the system will have determined whether the AES or DES cipher will be used to

protect the CA-unscrambled content returning to the Host (refer to section 6). The Content Control Key (CCK)

and Initialisation Vector (CIV) are derived from the Key Material (Km) in different ways for the AES-128

scrambler and for the DES-56 scrambler.

8.1.5 Content Key for DES-56-ECB Scrambler.

The DES-56 Content Key (CCKDES) is 64 bits. The CCK material from the f-CC is padded with parity bits in the

same way as SCTE41 [5], Appendix B into the resultant CCKDES. The CCKDES shall be changed as specified in

section 5.6.1.

When DES is used, the CCK shall be used to descramble a TS packet as follows:

)_}({_ 56 PacketTsCCKDpacketclear DESECBDES  Eq. 8.3

NOTE: Refer to section 5.6.2.2 for the detailed specification of the DES (de)scrambler.

8.1.6 Content Key and IV for AES-128-CBC Scrambler.

The AES-128 Content Key (CCKAES) is 128 bits long. When AES is used, the CCK and CIV are applied to

AES to descramble a TS packet as follows:

)_}(}{{_ 128 PacketTsCIVCCKDpacketclear AESCBCAES  Eq. 8.4

Where:

 The CCKAES shall change as specified in section 5.6.1. Additionally, the CCKAES shall be changed after

processing 2
32

 AES blocks.

 The CIV is fixed for every key lifetime period and shall change when the CCK changes. The current

CIV shall be re-used at the start of every MPEG2 TS packet.

NOTE: Refer to section 5.6.2.3 for the detailed specification of the AES (de)scrambler.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 100

9 PKI and Certificate Details

9.1 Introduction

The authentication between a CI Plus Host and module includes the exchange of certificates. A device

certificate of a Host or module serves three purposes:

 prove that the device is compliant with the CI Plus specification

 provide an RSA public key of the device. This key is used for verification of the device's Diffie-

Hellman public key during the authentication protocol, see Figure 6.2 and Table 6.1

 convey the device scrambler capabilities

Each service provider that broadcasts CI Plus services has a Service operator certificate. This certificate is used

by the CICAM to verify the integrity of revocation lists that it receives from the broadcast.

9.2 Certificate Management Architecture

The CI Plus trust hierarchy is organized as a tree structure with a single Root of Trust (ROT). There is only one

tree for all participants in CI Plus, See Figure 9.1.

Root of Trust

Brand A Brand B Service Operator

Host X Host Y Module Z

Figure 9.1: Certificate Hierarchy Tree

There are four different types of certificates.

 Root certificate

- issued by the ROT

- self-signed

- only one root certificate exists for all of CI Plus

 Brand certificate

- issued by the ROT

- signed with the private key of the root certificate

- one certificate of this type exists for each brand (or manufacturer)

 Device certificate

- issued by the ROT

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 101

- signed with the private key of the brand certificate

- each single device has a unique device certificate

 Service operator certificate

- issued by the ROT

- signed with the private key of the root certificate

- one certificate of this type exists for each service operator

Each certificate contains a public key for which there is a corresponding private key.

Each Host and module device shall integrate the following certificate related information at manufacturing time.

 the CI Plus root certificate

 the brand certificate

 the device certificate

 the private key corresponding to the device certificate (MDQ or HDQ, see Table 5.2)

The service operator certificate is broadcast and unlike other certificates it does not have to be integrated into

the Host or CICAM at manufacture.

9.3 Certificate Format

All CI Plus certificates are based on the Internet Profile of X.509, defined in RFC 3280 [19]. The Multimedia

Home Platform (MHP) Specification 1.0.3, TS 101 812 [9], section 12.11 provides a good overview of

certificate encoding.

For informational purposes, the ASN.1 definition of an X.509 certificate, taken from RFC 3280 [19], section

4.1, is reproduced below:

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3

 subjectUniqueID[2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version MUST be v3

}

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 102

SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

This section explains the fields and extensions that are used in the CI Plus specification.

9.3.1 version

CI Plus implementations shall use X.509 version 3.

9.3.2 serialNumber

Each certificate shall include a unique serial number which shall be assigned by the issuer of the certificate.

9.3.3 signature

All certificates use RSASSA-PSS signatures as defined in PKCS1v2.1 [1], section 8.1.1.

Table 9.1: Certificate Signature Algorithm

Parameter Value

hashAlgorithm SHA-1

maskGenAlgorithm MGF1 using SHA-1

saltLength 20 bytes

trailerField one byte: 0xbc

The corresponding ASN.1 object identifiers are:

id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

pkcs-1 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

rSASSA-PSS-Default-Params RSASSA-PSS-Params ::= {

 sha1Identifier, mgf1SHA1Identifier, 20, 1}

sha1Identifier AlgorithmIdentifier ::= { id-sha1, NULL }

id-sha1 OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2) 26 }

mgf1SHA1Identifier AlgorithmIdentifier ::= { id-mgf1, sha1Identifier }

9.3.4 issuer

CI Plus certificates (like all other X.509 certificates) use an X.501 [22] distinguished name in the issuer field.

Table 9.2 shows the issuer field for the different certificate types.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 103

Table 9.2: Certificate Issuer

Certificate type Issuer

Root certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for CI Plus
certificates>
OU: "test" or "production"
CN: "CI Plus Root CA certificate"

Brand certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for CI Plus
certificates>
OU: "test" or "production"
CN: "CI Plus Root CA certificate"

Device certificate C: <country where the brand is located>
ST: <state where the brand is located>
L: <city where the brand is located>
O: <name of the brand>
OU: "test" or "production"
CN: "CI Plus ROT for" <name of the brand>

Service operator certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for CI Plus
certificates>
OU: "test" or "production"
CN: "CI Plus Root CA certificate"

The X.501 attributes used by CI Plus are Country (C), State (ST), Location (L), Organization Name (O),

Organizational Unit Name (OU) and Common Name (CN). Please note that the same attribute may appear in a

name multiple times.

The ASN.1 encoding of an X.501 distinguished name is defined in RFC 3280 [19], section 4.1.2.4. All attribute

values may be encoded as PrintableString or UTF8String.

9.3.5 validity

The validity of the certificate must exceed the expected lifetime of the device. The CI Plus specification does

not include a method to replace root, brand or device certificates. A service operator certificate is received via

the broadcast and may be easily updated; its lifetime may be considerably shorter than that of the other

certificates.

Definition of the exact lifetimes for the certificates is out of scope of this specification.

The time in the fields notBefore and notAfter shall be encoded as UTC Time and shall include seconds, i.e. the

format is YYMMDDHHMMSSZ. The year field shall be interpreted as 20YY.

9.3.6 subject

The subject is an X.501 [22] distinguished name and uses the same encoding as the issuer field.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 104

Table 9.3: Certificate Subject

Certificate type Subject

Root certificate C: <country where the ROT is located>
ST: <state where the ROT is located>
L: <city where the ROT is located>
O: <name of the ROT>
OU: <department of the ROT that is responsible for CI Plus
certificates>
OU: "test" or "production"
CN: "CI Plus Root CA certificate"

Brand certificate C: <country where the brand is located>
ST: <state where the brand is located>
L: <city where the brand is located>
O: <name of the brand>
OU: "test" or "production"
CN: "CI Plus ROT for" <brand name>

Device certificate C: <country where the brand is located>
ST: <state where the brand is located>
L: <city where the brand is located>
O: <name of the brand>
OU: <product name> (optional)
OU: "test" or "production"
CN: <device ID>

Service operator certificate C: <country where the operator is located>
ST: <state where the operator is located>
L: <city where the operator is located>
O: <name of the operator>
OU: "test" or "production"
CN: <service operator ID>

The device ID is a hexadecimal number that consists of 16 digits. To store this number in an X.501 Common

Name (CN) attribute, it must be converted into a string. Each digit is represented by the corresponding ASCII

code, i.e. 1 is written as 0x31 and 7 as 0x37. For the hexadecimal digits A to F, uppercase letters are used (hex

values 0x41 to 0x46).

For details about the content of the device ID, refer to the CI Plus Licensee Specification [33].

The service operator ID is a hexadecimal number that consists of 16 digits. It is encoded in the same way as the

device ID. The service operator ID is used for linking a service operator certificate to the Revocation Signalling

Data file (RSD), see section 3.1.4 of CI Plus Supplementary Specification [37].

9.3.7 subjectPublicKeyInfo

The algorithm is RSA using the ASN.1 object identifier

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

pkcs-1 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

The parameters field shall have ASN.1 type NULL.

The RSA key's public exponent shall be 65537 == 0x10001, the modulus length shall be 2048 bits. Refer to

RFC 3280 [19], section 4.1.2.7 for encoding of the public key.

9.3.8 issuerUniqueID and subjectUniqueID

The issuerUniqueID and subjectUniqueID parameters are defined in RFC 3280 [19], section 4.1.2.8. CI Plus

certificates shall not use unique identifiers.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 105

9.3.9 extensions

Certificates for CI Plus use some standard extensions as defined in RFC 3280 [19] and two private extensions

that are specific to CI Plus. The following table lists the mandatory extensions for each certificate type:

Table 9.4: Certificate Extensions

Certificate Type Mandatory Extensions

Root certificate key usage
subject key identifier
basic constraints

Brand certificate key usage
subject key identifier
authority key identifier
basic constraints

Device certificate key usage
authority key identifier
basic constraints
scrambler capabilities
CI Plus info (optional)
CICAM brand identifier (CICAM only)

Service operator certificate key usage
authority key identifier
basic constraints

All other extensions may be used as defined in RFC 3280 [19] and they shall not be marked as critical. CI Plus

compliant Hosts and CICAMs may ignore these extensions when parsing and verifying a certificate.

9.3.9.1 Subject Key Identifier

The subject key identifier shall be calculated according to proposal (1) in RFC 3280 [19], section 4.2.1.2.

9.3.9.2 Authority Key Identifier

The Authority Key Identifier extension is defined in RFC 3280 [19], section 4.2.1.1. The keyIdentifier field

shall be calculated according to proposal (1) in RFC 3280 [19], section 4.2.1.2.

9.3.9.3 Key usage

The key usage extension is defined in RFC 3280 [19], section 4.2.1.3 and shall always be present and marked as

critical. The value of KeyUsage depends on the certificate type as shown in Table 9.5.

Table 9.5: Key Usage Values for Certificate Types

Certificate Type Key Usage

Root certificate keyCertSign
crlSign

Brand certificate keyCertSign

Device certificate digitalSignature

Service operator certificate cRLSign
digitalSignature

9.3.9.4 Basic constraints

The basic constraints extension is defined in RFC 3280 [19], section 4.2.1.10. The values shall be set as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 106

Table 9.6: Extension Fields

Certificate Type cA pathLenConstraint

Root certificate True 1

Brand certificate True 0

Device certificate False -

Service operator certificate False -

9.3.9.5 Scrambler capabilities

Scrambler capabilities is a private extension for CI Plus, it shall be present in each device certificate and marked

as critical. The ASN.1 definition is defined as

id-pe-scramblerCapabilities OBJECT IDENTIFIER ::= { id-pe 25 }

id-pe ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) 1 }

ScramblerCapabilities ::= SEQUENCE {

 capability INTEGER (0..MAX),

 version INTEGER (0..MAX) }

The following values are supported for capability

Table 9.7: Capabilities Supported

Value Meaning

0 DES

1 DES and AES

all others reserved for future use

The version field is used to further distinguish different scrambler capabilities. See the CI Plus Licensee

Specification [33] for further details.

9.3.9.6 CI Plus info

The optional CI Plus info private extension conveys additional information about a CI Plus device. This

extension shall be present in a device certificate only and shall not be declared as critical.

This is its ASN.1 definition

id-pe-ciplusInfo OBJECT IDENTIFIER ::= { id-pe 26 }

id-pe ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) 1 }

CiplusInfo ::= BIT STRING

The content of CiplusInfo is undefined by this specification and may be used by future profile extensions.

9.3.9.7 CICAM brand identifier

The CICAM brand identifier private extension conveys the identity of the CICAM manufacturer in the CI Plus

device certificate which should be matched with the broadcast stream for the Host shunning mechanism (See

section 10.1.1). This extension shall not be declared as critical. The extension shall be present in a CICAM

device certificate.

The ASN.1 definition is defined as:

id-pe-cicamBrandId OBJECT INDENTIFIER ::= { id-pe 27 }

id-pe ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) 1 }

CicamBrandId ::= INTEGER (1..65535)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 107

9.3.10 signatureAlgorithm

This field is identical to signature, see section 9.3.3

9.3.11 signatureValue

This field is defined in RFC 3280 [19], section 4.1.1.3

9.4 Certificate Verification

During the authentication process (see section 6), the chains of certificates are exchanged and each device

verifies the opposite's chain. This section explains the verification process.

The CI Plus Root Certificate is stored in each device, during the authentication process, only the brand and the

device certificate are exchanged, the root certificate is never exchanged by any device.

9.4.1 Verification of the brand certificate

The following steps must be performed in order to verify the brand certificate.

1) Check that the Issuer of the brand certificate is identical to the Subject of the root certificate.

2) Check that the validity period of the brand certificate includes the current date and time.

3) Check that each mandatory extension listed in section 9.3.9 exists and the values are valid. Check that

no other extension is marked as critical.

4) Verify that the KeyIdentifier in the brand certificate's authority key identifier extension is identical to

the KeyIdentifier in the root certificate's subject key identifier extension.

5) Verify the certificate's signature by using the RSASSA-PSS verification described in RSA PKCS#1

[1], section 8.1.2.

Table 9.8: Brand Certificate verification

Parameter Value

signer's RSA public key subjectPublicKeyInfo of the Root Certificate

message to be verified TBSCertificate of the brand certificate (see RFC 3280 [19], section 4.1)

signature to be verified signatureValue of the brand certificate

9.4.2 Verification of the device certificate

When the brand certificate is determined to be valid, the device certificate is checked. The process is similar to

the brand certificate verification.

1) Check that the Issuer of the device certificate is identical to the Subject of the brand certificate.

2) Check that the validity period of the device certificate includes the current time.

3) Check that each extension listed in section 9.3.9 exists and their values are valid values listed there.

Check that no other extension is marked as critical.

Check that the CICAM brand identifier extension is present in the CICAM device certificate and that it

contains valid values according to section 9.3.9.7.

Note: Although this extension is not marked critical certificate verification shall fail if this

extension is not present or contains an invalid value.

4) Verify that the KeyIdentifier in the device certificate's authority key identifier extension is identical to

the KeyIdentifier in the brand certificate's subject key identifier extension.

5) Verify the certificate's signature by using the RSASSA-PSS verification described in PKCS#1 v2.1 [1],

section 8.1.2.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 108

Table 9.9: Device Certificate verification

Parameter Value

signer's RSA public key subjectPublicKeyInfo of the brand certificate

message to be verified TBSCertificate of the device certificate (see RFC3280 [19], section 4.1)

signature to be verified signatureValue of the device certificate

6) Ensure that the device certificate has not been revoked, this is only performed by the CICAM on

checking the Host certificate.

7) Verify that the device ID (which is part of the Subject field) contains a valid value. See Annex B for

details.

Details about revocation list checking can be found in the CI Plus Licensee Specification [33].

9.4.3 Verification of the service operator certificate

To verify a service operator certificate, received from the broadcast, the following steps must be performed:

1) Check the Issuer of the service operator certificate is identical to the Subject of the root certificate.

2) Check the validity period of the service operator certificate includes the current date and time.

3) Check that each mandatory extension listed in section 9.3.9 exists and the values are valid. Check that

no other extension is marked as critical.

4) Verify that the KeyIdentifier in the service operator certificate's authority key identifier extension is

identical to the KeyIdentifier in the root certificate's subject key identifier extension.

5) Verify the certificate's signature by using the RSASSA-PSS verification described in RSA PKCS#1

[1], section 8.1.2.

Table 9.10: Service Operators Certificate verification

Parameter Value

signer's RSA public key subjectPublicKeyInfo of the Root certificate

message to be verified TBSCertificate of the service operator certificate (see RFC3280 [19], section 4.1)

signature to be verified signatureValue of the service operator certificate

6) Verify that the numerical representation of the service operator ID in the Subject matches the

service_operator_identity of the Revocation Signalling Data (RSD) file on the current multiplex.

10 Host Service Shunning

Host Service Shunning allows the Service Operator to inform the Host of services that require CI Plus protection

allowing the Host to prevent the display of content when the CICAM is not CI Plus conformant. Host Service

Shunning ensures that DVB CICAMs are not able to display content on services where they are not permitted.

10.1 CI Plus Protected Service Signalling

The CI Plus Protected Service Signalling is carried in the Service Description Table (SDTActual) for the actual

multiplex, as specified in EN 300 468 [10]. A CI Plus protected service is signalled by the inclusion of a CI Plus

private data specifier and private ci_protection_descriptor in the service descriptor loop of SDTActual. The

descriptor defines whether the service is CI Plus enabled and may optionally constrain the Host to operate with a

specific brand of CI Plus CICAM.

The CI Plus Protection Service Signalling is a quasi-static state attribute of the service and shall not change on

an event basis. A service may switch between clear and scrambled on an event basis. Host Service Shunning

checking is operative on all services, both FTA and CA scrambled, when any CICAM is present in a Host

device ensuring that service shunning broadcast signalling is always honoured.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 109

10.1.1 CI Protection Descriptor

The CI protection descriptor (See Table 10.1) provides a means of indicating the CI operating mode required by

a service. It shall be inserted at most once in the service descriptor loop of the SDTActual and shall be preceded by

a CI Plus private data specifier descriptor according to EN 300 468 [10].

Table 10.1: CI protection descriptor

Syntax No. of bits Mnemonic
ci_protection_descriptor(){

 descriptor_tag

 descriptor_length

 free_ci_mode_flag

 match_brand_flag

 reserved_future_use

 if(match_brand_flag == 1) {

 number_of_entries

 for(i=0; i<n; i++) {

 cicam_brand_identifier

 }

 }

 for(i=0; i<n; i++) {

 private_data_byte

 }

}

8
8
1
1
6

8

16

8

uimsbf
uimsbf
bslbf
bslbf
bslbf

uimsbf

uimsbf

uimsbf

10.1.1.1 CI Protection Descriptor

descriptor_tag: The descriptor_tag for the ci_protection_descriptor is 0xCE.

descriptor_length: The descriptor length is an 8-bit field specifying the total number of bytes of the data

portion of the ci_protection_descriptor following the byte defining the value of this field.

free_ci_mode_flag: This is a 1-bit field identifying the CI operating mode. When set to "0", indicates that all of

the component streams of the service do not require CI Plus protection. When set to "1", indicates that all of the

component streams of the service require CI Plus protection if they are not transmitted in the clear on the

broadcast network.

match_brand_flag: This is a 1-bit field signifying that the descriptor includes a list of cicam_brand_identifiers.

When set to "0", indicates that this service has no chosen CICAM brands. When set to "1", indicates that this

service has chosen to set CICAM brands. The match_brand_flag is only interpreted when the free_ci_mode_flag

is set to "1".

reserved_future_use: Reserved bits shall be "1".

number_of_entries: This field specifies the number of cicam_brand_identifiers that are contained in the brand

identifier loop. When match_brand_flag field has been set to 1, the number_of_entries shall be ≠ 0.

cicam_brand_identifier: This is a 16-bit field that identifies the CICAM brands that may be used with the

service.

When no CICAM brand identifiers are present, any CI Plus CICAM may be used with the Host. When one or

more CICAM brand identifiers are specified, the Host shall only operate with a CI Plus CICAM device whose

Device Certificate cicamBrandId matches the cicam_brand_identifier. If none of the cicam_brand_identifiers

present are matched with the CICAM device certificate then the CICAM shall be shunned for this service. The

cicam_brand_identifier value 0x0000 is reserved and shall not be used.

private_data_byte: This is included for future extensions to Host Service Shunning. For this version of the

specification is undefined and if present shall be ignored.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 110

10.1.1.2 Private Data Specifier Descriptor

The Private Data Specifier descriptor (see EN 300 468 [10], Private Data Specifier descriptor) shall precede the

ci_protection_descriptor in the SDTActual descriptor loop. The private data specifier value is defined in the CI

Plus Licensee Specification [33].

10.2 Trusted Reception

The Host shall have only two CICAM transport stream routing modes:

1) by-pass mode; the MPEG-2 TS shall be routed directly to the Host demux.

2) pass-through mode; the MPEG-2 TS shall be routed through the CICAM to the Host demux.

There are two trusted reception modes for receiving SDTActual. The first is where one or more non CI Plus

CICAMs are inserted in the Host; in this case the Host shall receive the MPEG2 TS in by-pass mode to

determine if CI Plus protection is required for this service. This is required because the data path through the

non CI Plus CICAM is not trusted.

The second is where the Host only has a CI Plus CICAMs inserted; in this case the Host may trust the MPEG2

TS being received from the CI Plus CICAM and pass-through mode may be used.

While receiving an MPEG-2 TS in one of the two trusted reception modes, the Host shall attempt to acquire the

SDTActual. If the Host receives the MPEG-2 TS but the SDTActual is not acquired, after 5 seconds the Host may

switch to service shunning in-active. The Host shall be in receipt of a valid MPEG-TS before starting the 5

second timer to determine if SDTActual is absent.

The conceptual hardware operation for Host by-pass and CICAM pass-through modes is depicted in Figure 10.1

which considers the transport stream source as switchable under Host control. The figure is informative and

other hardware solutions may be used that produce the same effect.

Tuner

CICAM

1..n

Demux

Host by-pass

CICAM pass-through

Source

 switch

Figure 10.1: Conceptual bypass operation (Informative)

The CI Plus Protected Service signalling of a service is quasi-static and the CI Plus state may be cached by the

Host. The Host shall periodically re-confirm the CI Plus service state by inspection of SDTActual using a trusted

reception mode.

If the Host caches the CI Plus Protected Service signalling, it shall only cache it for a maximum of 7 days after

which the data shall be deleted and renewed by appropriate acquisition of SDTActual. The 7-day cache implies

that a Host may take up to 7 days to react to a change in the broadcast network CI Plus state.

10.3 CI Plus Protection Service Mode

The CI Plus Protected Service modes are defined as:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 111

Table 10.2: CI Plus Protected Service modes

Signalling CICAM-type Service Shunning
Operating Mode

ci_protection_descriptor absent (See note 1) DVB CI and CI Plus in-active

ci_protection_descriptor present and free_CI_mode is "0" DVB CI and CI Plus in-active

ci_protection_descriptor present and free_CI_mode is "1" DVB CI active

ci_protection_descriptor present, free_CI_mode is "1" and
match_brand_flag = "0" or number_of_entries = "0"

CI Plus in-active

ci_protection_descriptor present, free_CI_mode is "1",

match_brand_flag = "1" and number_of_entries ≠ "0" and

CICAM brand identifier not matched

CI Plus active

ci_protection_descriptor present, free_CI_mode is "1",

match_brand_flag = "1" and number_of_entries ≠ "0" and

CICAM brand identifier matched

CI Plus in-active

Notes:
1. Failure to acquire the SDTActual in a trusted reception mode then the Host may assume that the

ci_protection_descriptor is absent and shall assume an in-active service shunning operating mode.

10.4 Service Shunning

Each time the Host device selects any service the Host device shall use the stream or cached CI Plus state from

SDTActual to determine how the CICAM shall operate with the selected service. An informative overview of the

operation is shown in Figure 10.2, caching may be optionally implemented by the receiver.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 112

Start (1)

Select service (2)

No

No

No

Service Shunning

active (4)

Cached
data present?

(3)
No

Acquire SDT (5)

shunning
data present?

(7)

brand
data present?

(9)

brand id
matches?

(13)

Service shunning

In-active (8)

CICAM

in CI Plus mode?

(10)

Yes
Service shunning

In-active (11)

No

Yes
Service shunning

In-active (14)

Yes

Yes

Service Shunning

active (12)

Yes

5 sec
timeout

waiting for
SDT
(6)

No

Yes

Note1: Check at step (7): is CI_protection descriptor absent or (if present) is field "free_ci_mode_flag" = 1?

Note2: Check at step (9): is field "match_brand_flag" = 1 and is field "brand_identifier_length" > 0 (zero)?

Figure 10.2: Shunning Operation

Whenever the Host is operational (1) and selects any service (2). The Host checks if the cached CI Plus

Protected Service signalling data is present (3). If not the Host prepares for a Host shunning check and shall not

instruct the CICAM to descramble the service (4). The Host switches to a trusted reception mode and acquires

SDTActual and determines the Host shunning state using the CI Protection descriptor if present (5). The Host

attempts to acquire the SDTActual, if the SDTActual is not acquired after 5 seconds then service shunning is In-

active (8). The Host checks whether the service shunning state is active (7). If the CI_protection_descriptor is

absent or (if present) the free_CI_mode_flag is set to "0" then Service Shunning is In-active (8). If the CI

protection descriptor is present and free_CI_mode_flag is set to "1" then the Host shall continue to check if

brand data is present (9). If the match_brand_flag is set to "0" or the list_length is set to 0 (zero) then the Host

determines that the brand data is absent and continues to check if the CICAM operating in a CI Plus mode (10).

If the CICAM is operating in CI Plus mode then Service shunning is In-active for the service (11), the CICAM

is operating in a non CI Plus mode then service shunning is activated for the service (12). However, if in step 9

the match_brand flag is "1" and list length is not equal to "0" the Host checks if the identifier of the CICAM and

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 113

a cicam_brand_identifier signalled by the service match (13), if the identifiers do not match then service

shunning is Active (12). If a cicam_brand identifier does match the CICAM then service shunning is In-active

(14).

10.4.1 Service Shunning In-active

Service Shunning In-active is the condition where the active or current CICAM is allowed to descramble the

service. In this case the service may allow DVB CICAMs or the current CICAM is CI Plus conformant and the

brand_identifier matches the service operating requirements (if applicable). See Figure 10.2 for more on service

shunning in-active.

Whilst in a Service Shunning in-active operating mode the Host is required to appropriately reacquire SDTActual

from the broadcast stream to obtain the CI Plus operating state if any cached CI Plus status is older than 7-days,

this may require the Host to interrupt the currently viewed service.

10.4.2 Service Shunning Active

Service Shunning Active is the condition where the active or current CICAM is not allowed to descramble the

service. In this case the CICAM may not be CI Plus compliant or the CICAM brand does not match the service

signalling. Service shunning may also be temporarily activated while the Host performs trusted SDT acquisition

and acquires the CI Protection descriptor for the selected service. See Figure 10.2 for more on service shunning

active.

Service Shunning Active shall be implemented by the Host initiating by-pass mode. If the TS is still routed to

the CICAM in this mode the Host shall not send a CA_PMT to the CICAM.

When the shunning state changes from "active" to "inactive", the Host shall immediately send a CA_PMT to the

CICAM.

11 Command Interface

This section explains the new resources in CI Plus. Changes to the existing application information resource are

also included in this section.

11.1 Application Information resource

11.1.1 Application Information Version 3

Application Information Resource version 3 (see Table L1 in Annex L for resource ID) adds new commands for

CICAM reset and Host PCMCIA bus data rate limits.

11.1.2 Request CICAM Reset

When a condition occurs that requires the CICAM to request a physical CICAM reset, it shall send a

request_cicam_reset APDU.

11.1.2.1 request_cicam_reset APDU

On receipt of this request, the Host shall physically reset the CICAM within 10 seconds. After sending the

request_cicam_reset command the CICAM shall not send any other APDUs to the Host.

Table 11.1: Request CICAM Reset APDU Syntax

Syntax No. of bits Mnemonic
request_cicam_reset() {

 request_cicam_reset_tag

 length_field() = 0

}

24

uimsbf

request_cicam_reset_tag: The value for this tag may be found in Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 114

length_field: Length of APDU payload in ASN.1 BER format, see EN 50221 [7], chapter 8.3.1.

Note: The CICAM may also request that the physical interface be re-initialized using the IIR bit of the

status register. Support for the IIR bit is optional in CI Plus and is explained in the following

section.

11.1.2.2 Reset request using the IIR bit

An additional bit called IIR (initialize interface request) is added to the status register, see Table 11.2 below.

The CICAM sets this bit to request a physical interface reset. After setting the IIR bit, the CICAM shall not send

any other APDUs to the Host. The CICAM clears the IIR bit when the Host sets the RS bit during the reset.

Table 11.2: Status Register including IIR

Bit 7 6 5 4 3 2 1 0

 DA FR R IIR R R WE RE

Note: DA, FR, WE and RE bits are unchanged, see EN 50221 [7], annex A.2.2.1.

11.1.3 Data rate on the PCMCIA bus

The CI Plus specification supports two different data rates on the PCMCIA bus: 72 Mbit/s and 96 Mbit/s.

CICAMs shall support 96 Mbit/s. Hosts shall support 72 Mbit/s, support for 96 Mbit/s is optional.

11.1.3.1 data_rate_info APDU

The Host sends a data_rate_info APDU to inform the CICAM about the maximum data rate it supports.

Typically, a data_rate_info APDU is sent after the initial application_info_enq and application_info messages.

The CICAM shall not exceed an output data rate of 72 Mbit/s until it has received a data_rate_info message

from the Host. If data_rate_info APDU is not sent by the Host then the maximum data rate supported by the

Host is 72Mbit/s.

Table 11.3: data_rate_info APDU Syntax

Syntax No. of bits Mnemonic
data_rate_info() {

 data_rate_info_tag

 length_field() = 1

 data_rate

}

24

8

uimsbf

uimsbf

data_rate_info: The value for this tag is 0x9F8024.

data_rate: This value specifies the maximum PCMCIA data rate supported by the Host. Table 11.4 lists the

possible values.

Table 11.4: possible values for data_rate

maximum PCMCIA data rate value

72 Mbit/s
96 Mbit/s
reserved

00
01

other values

11.2 Host Language and Country resource

The Host uses the Host language and country resource to inform the CICAM about its current language and

country settings. The CICAM may set its menu language to reflect the Host's setting.

The Host language and country resource is provided by the Host. The resource shall support one session per

CICAM. The resource ID for the Host language and country resource is listed in Table L.1, Annex L.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 115

11.2.1 Host Language and Country resource APDUs

The following APDUs are used by the Host language and country resource. They are explained in detail in

subsequent sections.

Table 11.5: Host Language & Country APDUs

APDU Name Direction

Host_country_enq CICAM  HOST

Host_country CICAM  HOST

Host_language_enq CICAM  HOST
Host_language CICAM  HOST

11.2.1.1 Host_country_enq APDU

The CICAM sends this APDU to the Host to query the current country setting. The Host replies with a

Host_country APDU.

Table 11.6: Host_country_enq APDU syntax

Syntax No. of bits Mnemonic

Host_country_enq() {

 Host_country_enq_tag

 length_field() = 0

}

24

uimsbf

Host_country_enq_tag: see Table L.1, Annex L.

11.2.1.2 Host_country APDU

This APDU is sent by the Host to inform the CICAM about the Host's current country setting. It is sent in

response to a Host_country_enq from the CICAM.

The Host also sends this APDU asynchronously on a change in its country setting.

On opening a Host language and country resource, the Host sends one Host_country APDU to the CICAM

conveying the current Host setting.

Table 11.7: Host_country APDU syntax

Syntax No. of bits Mnemonic

Host_country() {

 Host_country_tag

 length_field() = 3

 iso_3166_country_code

}

24

24

uimsbf

bslbf

Host_country_tag: see Table L.1, Annex L.

iso_3166_country_code: This field contains the current Host country setting. The country code is a 24-bit field

that identifies the Host country using 3 uppercase characters as specified by ISO 3166-1 alpha 3, [17]. Each

character is coded as 8-bits according to ISO 8859-1 [15].

NOTE: The Host may pass a country code that the CICAM does not support or recognise, it is up to the

CICAM how to handle this condition. The CICAM may use the MMI to select a suitable

alternative.

11.2.1.3 Host_language_enq APDU

The CICAM sends this APDU to the Host to query the current language setting. The Host replies with a

Host_language APDU.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 116

Table 11.8: Host_language_enq APDU syntax

Syntax No. of bits Mnemonic

Host_language_enq() {

 Host_language_enq_tag

 length_field() = 0

}

24

uimsbf

Host_language_enq_tag: see Table L.1, Annex L.

11.2.1.4 Host_language APDU

This APDU is sent by the Host to inform the CICAM about the Host's current language setting. It is sent in

response to a Host_language_enq from the CICAM.

The Host also sends this APDU asynchronously on a change in its language setting.

On opening the Host language and country resource, the Host sends one Host_language APDU to the CICAM

conveying the current Host language setting.

Table 11.9: Host_language APDU syntax

Syntax No. of bits Mnemonic

Host_language() {

 Host_language_tag

 length_field() = 3

 iso_639.2_language_code

}

24

24

uimsbf

bslbf

Host_language_tag: see Table L.1, Annex L.

iso_639.2_language_code: This field contains the current Host language preference setting. This is a 24-bit

field that identifies the language using 3 lowercase characters as specified by ISO 639 Part 2 [18]. Both ISO 639-

2/B and ISO 639-2/T may be used. Each character is coded into 8-bits according to ISO 8859-1 [15].

NOTE: The Host may pass a language code that the CICAM either does not support or recognise, it is up

to the CICAM how to handle this condition. The CICAM may use the MMI to select a suitable

alternative.

11.3 Content Control resource

The Content Control (CC) resource implements the security protocols of CI Plus such as authentication, key

calculation and URI transmission.

The CC resource is provided by the Host. The CICAM may request a session to the CC resource only if the Host

announced the CC resource during the resource manager protocol (see EN 50221 [7], section 8.4.1.1). The Host

shall support only one session to the CC resource per CI Plus slot.

The resource ID for the CC resource is listed in Table L.1, Annex L.

11.3.1 Content Control resource APDUs

This section describes the general structure of each APDU that is part of the CC resource. Section 5 explains

how the messages are used to implement the security protocols of CI Plus.

Table 11.10 gives an overview of the APDUs used by the CC resource.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 117

Table 11.10: Content Control APDU Tag Values

APDU_Tag Direction APDU used for
cc_open_req CICAM  HOST Host capability evaluation
cc_open_cnf CICAM  HOST Host capability evaluation
cc_data_req CICAM  HOST Authentication

Auth key verification
SAC key calculation

cc_data_cnf CICAM  HOST Authentication
Auth key verification
SAC key calculation

cc_sync_req CICAM  HOST SAC key calculation
cc_sync_cnf CICAM  HOST SAC key calculation
cc_sac_data_req CICAM  HOST CC key calculation

URI transmission and acknowledgement
URI version negotiation
SRM transmission and acknowledgement
Content license exchange

cc_sac_data_cnf CICAM  HOST CC key calculation
URI transmission and acknowledgement
URI version negotiation
SRM transmission and acknowledgement
Content license exchange

cc_sac_sync_req CICAM  HOST CC key calculation
cc_sac_sync_cnf CICAM  HOST CC key calculation
cc_PIN_capabilities_req CICAM  HOST Host requests PIN capabilities of CICAM
cc_PIN_capabilities_reply CICAM  HOST CICAM PIN capabilities reply
cc_PIN_cmd CICAM  HOST Passing PIN code to CICAM
cc_PIN_reply CICAM  HOST Returning PIN code status
cc_PIN_event CICAM  HOST Notifying the Host that PIN is required
cc_PIN_playback CICAM  HOST Providing a playback PIN to the CICAM
cc_PIN_MMI_req CICAM  HOST Request for PIN dialogue

The general structure of an APDU is described in EN 50221 [7], section 8.3.1. An APDU starts with a 24 bit tag

followed by a length field coded as ASN.1 BER.

The tag values of the Content Control resource APDUs are given in Table L.1, Annex L.

11.3.1.1 cc_open_req APDU

This APDU is sent by the CICAM to request the bitmask of the CC system IDs supported by the Host.

Table 11.11: cc_open_req message APDU syntax

Syntax No. of bits Mnemonic
cc_open_req() {

 cc_open_req_tag

 length_field()=0

}

24

Uimsbf

cc_open_req_tag: see Table L.1, Annex L.

11.3.1.2 cc_open_cnf APDU

The Host sends this APDU to the CICAM to inform it about the CC system ID it supports.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 118

Table 11.12: cc_open_cnf message APDU syntax

Syntax No. of bits Mnemonic
cc_open_cnf() {

 cc_open_cnf_tag

 length_field()

 cc_system_id_bitmask

}

24

8

uimsbf

bslbf

cc_open_cnf_tag: see Table L.1, Annex L.

cc_system_id_bitmask: Each of the 8 bits indicates support for one CC system ID. The CICAM may choose

the highest common version supported at both ends. The least significant bit is for system ID 1, there is no

system ID 0.

This specification describes CC system ID 1, irrespective of the content of the cc_resource version. Host and

CICAMs shall always perform a bitwise check on this field rather than a simple comparison.

11.3.1.3 cc_data_req APDU

A cc_data_req message is used by the CICAM to transfer protocol related data to the Host and to request a

response from the Host. The data to be sent and requested for each protocol is explained in section11.3.3.

cc_data_req which is used for data that does not have to be authenticated or encrypted. For data that shall be

authenticated or encrypted a cc_sac_data_req is used.

Table 11.13: cc_data_req message APDU syntax

Syntax No. of bits Mnemonic
cc_data_req() {

 cc_data_req_tag

 length_field()

 cc_system_id_bitmask

 send_datatype_nbr

 for (i=0; i<send_datatype_nbr; i++) {

 datatype_id

 datatype_length

 data_type

 }

 request_datatype_nbr

 for (i=0; i<request_datatype_nbr; i++) {

 datatype_id

 }

}

24

8

8

8

16

8*datatype_length

8

8

uimsbf

bslbf

uimsbf

uimsbf

uimsbf

bslbf

uimsbf

uimsbf

cc_data_req_tag: see Table L.1, Annex L.

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype_nbr: the number of data items included in this message.

datatype_id: see Table H.1, Annex H, for possible values.

datatype_length: this value is the length of data_type to send in bytes.

data_type: this field is used for contents of the datatype_id.

request_datatype_nbr: the number of data items that the Host shall include in its response.

datatype_id: the list of data items requested in the Host's response, see Table H.1, Annex H.

11.3.1.4 cc_data_cnf APDU

A cc_data_cnf message is sent by the Host to transfer protocol related data to the CICAM. The exact data is

specified with the protocols in section 5.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 119

cc_data_cnf is used for data that does not have to be authenticated or encrypted. If this is required, a

cc_sac_data_cnf shall be used.

Table 11.14: cc_data_cnf APDU syntax

Syntax No. of bits Mnemonic
cc_data_cnf() {

 cc_data_cnf_tag

 length_field()

 cc_system_id_bitmask

 send_datatype_nbr

 for (i=0; i<send_datatype_nbr; i++) {

 datatype_id

 datatype_length

 data_type

 }

}

24

8

8

8

16

8*datatype_length

uimsbf

bslbf

uimsbf

uimsbf

uimsbf

bslbf

cc_data_cnf_tag: see Table L.1, Annex L.

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype_nbr: the number of data items included in this message.

datatype_id: see Table H.1 (annex H) for possible values.

datatype_length: the length of the piece of data in bytes.

data_type: this field is used for contents of the datatype_id.

11.3.1.5 cc_sync_req APDU

This APDU object is issued by the CICAM at the end of a key calculation to signal that it is ready to use the

newly calculated key.

Table 11.15: cc_sync_req APDU syntax

Syntax No. of bits Mnemonic
cc_sync_req() {

 cc_sync_req_tag

 length_field()=0

}

24

uimsbf

cc_sync_req_tag: see Table L.1, Annex L.

11.3.1.6 cc_sync_cnf APDU

This APDU is the Host's response to a cc_sync_req, it signals that the Host has finished its key calculation. For

details, see section 11.3.2 below.

Table 11.16: cc_sync_cnf APDU syntax

Syntax No. of bits Mnemonic
cc_sync_cnf() {

 cc_sync_cnf_tag

 length_field()=1

 status_field

}

24

8

uimsbf

uimsbf

cc_sync_cnf_tag: see Table L.1, Annex L.

status_field: This byte returns the status of the Host. Table 11.17 lists the possible values.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 120

Table 11.17: Possible values for status_field

status_field Value

OK
No CC Support
Host Busy
Authentication failed
CICAM Busy
Recording Mode error
Reserved

0x00
0x01
0x02
0x03
0x04
0x05

0x06-0xFF

11.3.1.7 cc_sac_data_req APDU

This APDU is used by the Host and CICAM to send protocol specific data and to request a response. In contrast

to a cc_data_req, the data contained in this message is authenticated and encrypted. The SAC encapsulates the

input data as specified in Table 11.19 as payload in the SAC message.

Table 11.18: cc_sac_data_req APDU syntax

Syntax No. of bits Mnemonic
cc_sac_data_req() {

 cc_sac_data_req_tag

 length_field()

 sac_message()

}

24

uimsbf

cc_sac_data_req_tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

The payload_encryption_flag shall be 1.

The payload of this SAC message is defined in Table 11.19. For more details, see section11.3.3.

Table 11.19: cc_sac_data_req payload

Syntax No. of bits Mnemonic
cc_system_id_bitmask

send_datatype_nbr

for (i=0; i<send_datatype_nbr; i++) {

 datatype_id

 datatype_length

 data_type

}

request_datatype_nbr

for (i=0; i<request_datatype_nbr; i++) {

 datatype_id

}

8

8

8

16

8*datatype_length

8

8

bslbf

uimsbf

uimsbf

uimsbf

bslbf

uimsbf

uimsbf

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype_nbr: the number of data items included in this message.

datatype_id: see Table H.1, Annex H, for possible values.

datatype_length: the length of the data in bytes.

data_type: the message data.

request_datatype_nbr: the number of data items that the Host shall include in its response to this message.

datatype_id: the list of data items requested in the Host's response, see Table H.1, Annex H.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 121

11.3.1.8 cc_sac_data_cnf APDU

This message is used by the Host and CICAM to send protocol specific data in response to cc_sac_data_req()

when the data has to be authenticated and encrypted. Section 7 has a detailed description of the protocol data

carried in each message. The SAC encapsulates the input data as specified in Table 11.21 as payload in the SAC

message.

Table 11.20: cc_sac_data_cnf APDU syntax

Syntax No. of bits Mnemonic
cc_sac_data_cnf() {

 cc_sac_data_cnf_tag

 length_field()

 sac_message()

}

24

uimsbf

cc_sac_data_cnf_tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

The payload_encryption_flag shall be 1.

The payload of the SAC messages is specified in Table 11.21. For more details, see section11.3.3.

Table 11.21: cc_sac_data_cnf payload

Syntax No. of bits Mnemonic
cc_system_id_bitmask

send_datatype_nbr

for (i=0; i<send_datatype_nbr; i++) {

 datatype_id

 datatype_length

 data_type

}

8

8

8

16

8*datatype_length

bslbf

uimsbf

uimsbf

uimsbf

bslbf

cc_system_id_bitmask: see section 11.3.1.2.

send_datatype_nbr: the number of data items included in this message.

data_type_id: see Table H.1, Annex H, for possible values.

datatype_length: the length of this piece of data in bytes.

data_type: the actual data.

11.3.1.9 cc_sac_sync_req APDU

This APDU is used during CC key calculation. The CICAM sends this to indicate that it has finished calculating

the new CC key.

Table 11.22: cc_sac_sync_req APDU syntax

Syntax No. of bits Mnemonic
cc_sac_sync_req() {

 cc_sac_sync_req_tag

 length_field()

 sac_message()

}

24

uimsbf

cc_sac_sync_req_tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 122

The payload_encryption_flag shall be 1.

The payload of this SAC message is empty.

11.3.1.10 cc_sac_sync_cnf APDU

This APDU is used during CC key calculation. The Host uses this to respond to a cc_sac_sync_req from the

CICAM.

Table 11.23: cc_sac_sync_cnf APDU syntax

Syntax No. of bits Mnemonic
cc_sac_sync_cnf() {

 cc_sac_sync_cnf_tag

 length_field()

 sac_message()

}

24

8

uimsbf

uimsbf

cc_sac_sync_cnf_tag: see Table L.1, Annex L.

sac_message: The format of this message is defined in section 7, Figure 7.7 and Table 7.4.

The payload_encryption_flag shall be 1.

The payload of this SAC message is a status field. Possible values for status_field are listed in Table 11.27.

Table 11.24: cc_sac_sync_cnf Status

status_field Value

OK
No CC Support
Host Busy
Not Required
Reserved

0x00
0x01
0x02
0x03

0x04-0xFF

11.3.2 Content Control Resource PIN APDUs

This section specifies the Content Control resource PIN APDUs which offers the capability of PIN entry,

confirmation of PIN for unattended recording and PIN entry for play back at a later date.

11.3.2.1 cc_PIN_capabilities APDUs

The cc_PIN capabilities APDU enables the Host to determine how parental control PIN codes for FTA and

CICAM (CAS controlled) content are to be managed.

Table 11.25: cc_PIN_capabilities_req APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_capabilities_req() {

 cc_PIN_capabilities_req_tag

 length_field() = 0

}

24

uimsbf

cc_PIN_capabilities_req_tag: see Table L.1 in Annex L.

The cc_PIN_capabilities_reply is returned in response to the cc_PIN_capabilities_req and shall also be sent to

the Host unsolicited whenever the PIN capabilities change including when the effective age rating at which the

CICAM starts managing the PIN code is changed in the CICAM.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 123

Table 11.26: cc_PIN_capabilities_reply APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_capabilities_reply() {

 cc_PIN_capabilities_reply_tag

 length_field()

 capability_field

 pin_change_time_utc

 rating

}

24

8

40

8

uimsbf

uimsbf

bslbf

uimsbf

cc_PIN_capabilities_reply_tag: see Table L.1 in Annex L.

capability_field: this byte returns the capability code of the CICAM management, see Table 11.27.

Table 11.27: capability_field Values

capability_field Value

CICAM has no capability to handle PIN 0x00

CICAM only handles CAS controlled content PIN 0x01

CICAM handles both CAS controlled content PIN and non CAS controlled content PIN 0x02

CICAM only handles CAS controlled content PIN (with CICAM cached PINs) 0x03

CICAM handles both CAS controlled content PIN and non CAS controlled content PIN (with CICAM
cached PINs)

0x04

Reserved 0x05-0xFF

The interpretation of the capability_field values are described in more detail in section 5.11.1.

pin_change_time_utc: returns the time when the CICAM PIN was last changed. This is a 40-bit field which

specifies the date and time in MJD and UTC when the PIN was last changed (See start_time field of the EIT in

EN 300 468 [10]). This field is encoded as 40-bits giving the 16 LSBs MJD followed by 24-bits coded as 6

digits in 4-bit BCD. This field shall be specified as zero if the PIN is not handled or when it has never been

changed. The Host may use the ‘change time’ to warn the end-user that any unattended recording programmed

may fail when it was programmed before and scheduled after the time indicated by the pin_change_time_utc

field.

rating: This 8-bit field is coded as DVB rating (3+years). Rating is defined in EN 300 468 [10] parental rating

descriptor. This is the current rating as set in the CICAM. This field allows the Host to exert parental control

when the Host rating is set at a lower level than the CICAM rating. The Host may use the cc_PIN_MMI_req()

APDU for this purpose depending on the CICAM PIN capabilities. The CICAM shall not request a PIN entry

for an age rating less than this value.

11.3.2.2 cc_PIN_cmd APDU

The cc_PIN_cmd() APDU is used by the Host to send the CICAM PIN to the module. The CICAM PIN is

validated by the CICAM and a cc_PIN_reply() APDU is sent back to the Host. The Host uses the reply to check

if its cached CICAM PIN is correct.

Table 11.28: cc_PIN_cmd APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_cmd() {

 cc_PIN_cmd_tag

 length_field()

 for (i=0; i<n; i++) {

 PINcode_data_bytes

 }

}

24

8

uimsbf

uimsbf

cc_PIN_cmd_tag: see Table L.1 in Annex L.

PINcode_data_bytes: payload for the PIN code, one byte is used for each pin code digit in ASCII format.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 124

11.3.2.3 cc_PIN_reply APDU

The cc_PIN_reply() APDU is used to inform the Host that either the CICAM PIN entered by the user is correct

or incorrect.

Table 11.29: cc_PIN_reply APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_reply() {

 cc_PIN_reply_tag

 length_field()

 PINcode_status_field

}

24

8

uimsbf

uimsbf

cc_PIN_reply_tag: see Table L.1 in Annex L.

PINcode_status_field: this byte returns the status of the PIN code CICAM management, see Table 11.30.

Table 11.30: PINcode_status_field Values

PINcode_status_field Value

Error - Bad PIN code 0x00

Error - CICAM Busy 0x01

PIN code correct 0x02

PIN code unconfirmed 0x03

Video Blanking Not Required 0x04

Error - Content still CA scrambled 0x05

Reserved 0x06-0xFF

Where the status values are defined as follows:

Error - Bad PIN code: the PIN entered by the end-user is incorrect. When this status is received as part of a

cc_PIN_event() the PIN code used for recording is incorrect and the CICAM may not descramble the content.

When this status is received as part of a cc_PIN_reply() the PIN code used for viewing is incorrect and the Host

shall continue blanking the AV.

Error - CICAM Busy: the CICAM is busy.

PIN code correct: the PIN entered by the end-user is correct. When this status is received as part of a

cc_PIN_event() the PIN code used for recording is correct and the CICAM continues descrambling the content.

When this status is received as part of a cc_PIN_reply() the PIN code entered by the user is correct and the Host

should stop blanking the AV.

PIN code unconfirmed: when multiple CA Systems are present and it is not known which would be used for

the event to be recorded. This error response occurs when the Host sends a cc_PIN_cmd() to the CICAM when

booking a recording if the CA system associated with the event is not known. The Host may optionally inform

the user that the PIN code used to book the recording has not been verified by the CICAM. This status may also

be used by a CICAM which does not support cached PIN to notify a PIN event when it is unable to confirm the

PIN sent in the record start protocol.

Video blanking not required: confirms that a PIN is not required by the CICAM to view the content, e.g. the

Host is not required to blank the AV for CAS Controlled content. The cc_PIN_event() should be stored with the

associated content for enforcement of parental control during playback. When the CICAM sends this status it

shall not display a PIN related MMI.

Error - Content still CA scrambled: this status value is only received via the cc_PIN_event() APDU. This

error response occurs when the CICAM is not able to descramble the content, meaning that the content is not

available for playback. The Host may use this status to inform the user of the recoding failure and is not requred

to store this PIN event with the content.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 125

11.3.2.4 cc_PIN_event APDU

The cc_PIN_event() APDU is sent by the CICAM for CA protected content only and performs two operations:

 To notify the Host of a parental rating change.

 To confirm the validity of the PIN sent in the record start protocol.

The CICAM shall send the cc_PIN_event() APDU to the Host whenever the parental rating changes, this

includes the transition where a PIN is required and a PIN is no longer required. i.e. parental rating has been

removed. The CICAM shall send a rating of 0x00 to inform the Host that the PIN is no longer required. If the

CICAM has reported a PIN capability of ‘0’, during the cc_PIN_capabilities exchange, see section 11.3.2.1,

then the CICAM shall not send cc_PIN_event() APDUs to the Host.

The contents of the cc_PIN_event() shall be “recorded” with the content to identify changes in parental rating.

To ensure that the Host is able to accurately place parental control boundaries on playback then the CICAM

determines the time of the boundary and passes the time to the Host. The time is defined as UTC and positions

the PIN event at an absolute point in time within the live broadcast. The UTC time of reception of the APDU by

the Host is different from the UTC time contained within the APDU. On playback then the Host is required to

process the parental control at the content position specified by the time contained within the PIN event.

Table 11.31: cc_PIN_event APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_event() {

 cc_PIN_event_tag

 length_field()

 program_number

 PINcode_status_field

 rating

 pin_event_time_utc

 pin_event_time_centiseconds

 private_data

}

24

16

8

8

40

8

8x15

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

cc_PIN_event_tag: see Table L.1 in Annex L.

program_number: the program number of the associated Record Start protocol for this recording.

PINcode_status_field: This 8-bit field returns the status of the previously submitted PIN code as defined in

Table 11.30.

rating: This 8-bit field is coded as DVB rating (3+years). Rating is defined in EN 300 468 [10] parental rating

descriptor. It represents the rating of the broadcasted content item that triggered the cc_PIN_event() APDU.

pin_event_time_utc: This field returns the time when the parental rating changed requiring the entry of a PIN.

This is a 40-bit field which specifies the date and time in MJD and UTC when the parental rating changed (See

start_time field of the EIT in EN 300 468 [10]). This 40-bit field is coded as 16-bits giving the 16 LSBs of MJD

followed by 24 bits coded as 6 digits in 4-bit BCD.

pin_event_time_centiseconds: This field contains the fractional part (seconds/100) of the time of the change in

parental rating requiring the entry of a PIN.

private_data: These private data bytes provide the CICAM with the option to include additional CAS specific

information stored with the parental control rating in the recording. The private_data is returned to the CICAM

on playback using the cc_PIN_playback() APDU.

11.3.2.5 cc_PIN_playback APDU

This APDU is sent to the CICAM during the playback of a recording when the Host encounters a recorded PIN

event, i.e. the parental rating of the content has changed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 126

Table 11.32: cc_PIN_playback APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_playback() {

 cc_PIN_playback_tag

 length_field()

 rating

 private_data

}

24

8

8x15

uimsbf

uimsbf

uimsbf

cc_PIN_ playback_tag: see Table L.1 in Annex L.

rating: This 8-bit field is coded as DVB rating (3+years). Rating is defined in EN 300 468 [10] parental rating

descriptor.

private_data: These bytes contain the private data that was delivered to the Host in the cc_PIN_event() APDU.

11.3.2.6 cc_PIN_MMI_req APDU

This APDU is sent to the CICAM to request a MMI for PIN entry. The PINcode_data_bytes loop allows the

Host to provide the Module with either the FTA PIN (managed by the Host) or the CICAM PIN (managed by

the CICAM). The result of the PIN entry is returned to the Host by the cc_PIN_reply() APDU. See section

5.11.3.

Table 11.33: cc_PIN_MMI_req APDU Syntax

Syntax No. of bits Mnemonic
cc_PIN_MMI_req() {

 cc_PIN_MMI_req_tag

 length_field()

 for (i=0; i<n; i++) {

 PINcode_data_bytes

 }

}

24

8

uimsbf

uimsbf

cc_PIN_MMI_req_tag: see Table L.1 in Annex L.

PINcode_data_bytes: Payload for the PIN code, one byte is used for each pin code digit in ASCII format.

11.3.3 Content Control Protocols

This section explains the payload of the APDUs for each security protocol of CI Plus.

11.3.3.1 Host Capability Evaluation

After the session to the CC resource has been established, the CICAM requests the bitmask of the CC system

IDs that the Host supports. It should be noted that the Host advertises supported versions of the Content Control

resource using the resource manager and the CICAM shall use the highest available Content Control resource

signalled by the Host when establishing a CC session.

Table 11.34: Host Capability Evaluation

Step Action APDU Content

1 CICAM requests the Host's CC
system ID bitmask

cc_open_req

2 Host sends its CC system ID
bitmask

cc_open_cnf cc_system_id_bitmask:

 bit 0 set indicates support for CI Plus

11.3.3.2 Authentication

Authentication is described in section 6.2 and an overview is shown in Figure 6.2, it uses cc_data_req and

cc_data_cnf messages.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 127

Table 11.35: Authentication

Step Action APDU Content

1 CICAM sends a nonce to
the Host

cc_data_req send_datatype_nbr = 1

i datatype_id datatype_len

0 19 (nonce) 256 bits

request_datatype_nbr = 4

i datatype_id

0 13 (DHPH)

1 17 (Signature_A)

2 15 (Host_DevCert)

3 7 (Host_BrandCert)

2 Host sends a nonce, its
DH public key, signature,
Host Device Certificate
Data and Host Brand
Certificate

cc_data_cnf send_datatype_nbr = 4

i datatype_id

0 13 (DHPH) 2048 bits

1 17 (Signature_A) 2048 bits

2 15 (Host_DevCert) variable length

3 7 (Host_BrandCert) variable length

3 CICAM sends DH public
key, signature, CICAM
Device Certificate Data
and CICAM Brand
Certificate

cc_data_req send_datatype_nbr = 4

i datatype_id datatype_len

0 14 (DHPM) 2048 bits

1 18 (Signature_B) 2048 bits

2 16 (CICAM_DevCert) variable length

3 8 (CICAM_BrandCert) variable length

request_datatype_nbr = 1

30 status_field

4 Host sends a
confirmation

cc_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 30 (status_field)
(see Note 2)

8 bits

Notes
1. Refer to Annex H for an overview of the parameters involved.
2. The Host may set this to OK or Authentication failed, see Table 11.17.

11.3.3.3 Authentication Key verification

Authentication Key Verification is performed at start-up and after completing the authentication protocol (see

sections 6.2 and 11.3.3.2). The CICAM checks if both sides have the same stored authentication key (AKH and

AKM).

Table 11.36: Authentication Key Verification

Step Action APDU Content

1 CICAM requests the
authentication key from
the Host

cc_data_req request_datatype_nbr = 1

i datatype_id

0 22 (AKH)

2 Host sends its
authentication key

cc_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 22 (AKH) 256 bits

Note: Refer to Annex H for an overview of the parameters involved.

11.3.3.4 CC key calculation

This protocol is used for calculating new CC key material, see section 8 for details.

All messages of this protocol are protected by the SAC.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 128

Table 11.37: CC key calculation

Step Action APDU Content

1 CICAM sends CICAM_ID
and a nonce

cc_sac_data_req

send_datatype_nbr = 3

i datatype_id datatype_len

0 6 (CICAM_ID) 64 bits

1 12 (Kp) 256 bits

2 28 (key register) 8 bits

request_datatype_nbr = 2

i datatype_id

0 5 (HOST_ID)

1 30 (Status_field)

2 Host responds with
HOST_ID and a nonce

cc_sac_data_cnf

send_datatype_nbr = 2

i datatype_id datatype_len

0 5 (HOST_ID) 64 bits

1 30 (Status_field)
(see Note 2)

8 bits

3 CICAM tells the Host that
is has finished calculating
the new CC key.

cc_sac_sync_req

4 Host tells the CICAM that
is has finished calculating
the new CC key.

cc_sac_sync_cnf

Status_field (see Table 11.17)

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: Host may set this to OK or Host Busy or No_CC_support, see Table 11.17.
3: All sac messages are encrypted and authenticated.

11.3.3.5 SAC key calculation

This protocol is performed when new key material must be calculated for the SAC, see Figure 7.3.

Table 11.38: SAC key calculation

Step Action APDU Content

1 CICAM sends CICAM_ID
and a nonce

cc_data_req send_datatype_nbr = 2

i datatype_id datatype_len

0 6 (CICAM_ID) 64 bits

1 21 (Ns_module) 64 bits

request_datatype_nbr = 2

i datatype_id

0 5 (HOST_ID)

1 20 (Ns_Host)

2 Host responds with
HOST_ID and a nonce

cc_data_cnf send_datatype_nbr = 2

i datatype_id datatype_len

0 5 (HOST_ID) 64 bits

1 20 (Ns_Host) 64 bits

3 CICAM tells the Host that
it has finished calculating
the new SAC key
material.

cc_sync_req

4 Host tells the CICAM that
it has finished calculating
the new SAC key
material.

cc_sync_cnf status_field (see Table 11.20)

Note: Refer to Annex H for an overview of the parameters involved.

11.3.3.6 URI transmission and acknowledgement

This protocol transmits a set of Usage Rules Information (URI) and receives the Host's acknowledgement, see

section 5.7.5.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 129

Table 11.39: URI transmission and acknowledgement

Step Action APDU Content

1 CICAM sends the
URI to the Host

cc_sac_data_req

send_datatype_nbr = 2

i datatype_id datatype_len

0 25 (uri_message) 64 bits

1 26 (program_number) 16 bits

request_datatype_nbr = 1

i datatype_id

0 27 (uri_confirm)

2 Host sends a
acknowledgement to
the CICAM

cc_sac_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 27 (uri_confirm) 256 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.

11.3.3.7 URI version negotiation

After the SAC keys have been calculated, the CICAM requests a list of URI versions that the Host supports. The

Host sends back a version bitmask. Each bit corresponds to one version which is set when the version is

supported; the least significant bit indicates support for version 1. The next most significant bit indicates support

for version 2. For more details, see section 5.7.4.

Table 11.40: URI version negotiation

Step Action APDU Content

1 CICAM requests the
bitmask of supported
URI versions from the
Host

cc_sac_data_req request_datatype_nbr = 1

i datatype_id

0 29 (uri_versions)

2 Host sends the
bitmask of supported
URI versions

cc_sac_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 29 (uri_versions) 256 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.

11.3.4 Content License Exchange

When an item of content to be recorded has a URI with an EMI value of 0b11, the CICAM optionally provide

one or more licenses during the recording. The Host shall associate this license with the item of content for the

lifetime of the recording. If a license exists for an item of content, the license shall be checked by the original

CICAM when the content is played back to see if the entitlements rights still exist to view the content. A license

supplied by the CICAM contains CAS specific data which is stored by the Host with the content. When the

content item is played back then the Host shall transfer the license back to the original CICAM without any

change.

The licenses are always exchanged via the SAC using the protocols below.

11.3.4.1 CICAM to Host License Exchange Protocol

If a license is required to be associated with an item of content then at the start of recording the CICAM sends

the Host the license using the SAC. The process uses the CICAM to Host License Exchange protocol and is

shown below including the response.

The message exchange shall be performed in accordance with a URI Protocol behaviour of section 5.7.5. The

CICAM shall set a 1 second timeout and the Host shall confirm the URI and license within the timeout, failure

to respond constitutes a failure of the copy protection system and the CICAM shall disable CA descrambling of

copy protected content (i.e. EMI != 0,0) for the associated MPEG program until the protocol completes

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 130

successfully. When the protocol completes then the CICAM shall wait for one second before the exchange is re-

initiated.

The Host shall exert the URI copy control settings of the message and control its outputs based on the valid URI

immediately.

Table 11.41: CICAM to Host License Exchange Protocol

Step Action APDU Content

1 CICAM supplies the
Host with content
license

cc_sac_data_req send_datatype_nbr = 3 or 4

i datatype_id datatype_len

0 26 (program_number) (see note 3) 16 bits

1 34 (license_status) (see note 4) 8 bits

2 25 (uri_message) 64 bits

3 33 (cicam_license) variable

request_datatype_nbr = 1

i datatype_id

0 35 (license_rcvd_status)

2 Host confirms receipt cc_sac_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 35 (license_rcvd_status)(see note 5) 8 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: The program_number matches the Record Start message’s program_number.
4: Table 11.45 contains the allowed values and meaning of this field.
5. Table 11.42 contains the allowed values and meaning of this field.

Table 11.42: license_rcvd_status Values

license_rcvd_status Value

OK 0x00

Host Busy 0x01

Invalid Data 0x02

Host Error 0x03

Reserved 0x04-0xFF

11.3.4.2 Playback License Exchange Protocol

When an item of content which has a license associated with it, at played back, the Host shall supply the

CICAM with the original license. The CICAM processes the license to establish whether the Host still has rights

to play the content. A new license and URI are returned to the Host to replace the original URI and license

values in the recording in case the information contained has changed, e.g. play count. The Host shall exert the

URI copy control settings of the message and control its outputs based on the valid URI immediately.

The size of the cicam_license and Host_license shall be identical. i.e. the playback license received from the

CICAM shall be identical in size to the original Host_license that was sent to the CICAM on playback.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 131

Table 11.43: Playback License exchange protocol

Step Action APDU Content

1 HOST supplies the
CICAM license

cc_sac_data_req

send_datatype_nbr = 2

i datatype_id datatype_len

0 26 (program_number) 16 bits

1 36 (Host_license) variable

request_datatype_nbr = 4

i datatype_id

0 26 (program_number)

1 34 (license_status)

2 25 (uri_message)

3 33 (cicam_license)

2 CICAM response
with new license and
new URI

cc_sac_data_cnf send_datatype_nbr = 4

i datatype_id datatype_len

0 26 (program_number) 16 bits

1 34 (license_status) (see note 3) 8 bits

2 25 (uri_message) 64 bits

3 33 (cicam_license) variable

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.45 contains the allowed values and meaning of this field.

11.3.4.3 License Check Exchange Protocol

When the Host needs to interrogate the CICAM about the current status of a content license associated with a

recording it follows the protocol below.

The response from the CICAM contains information regarding the status of the license sent in the request. The

response is for information only, e.g. to provide more detail on content availability when displaying a recording

library.

Table 11.44: License check exchange protocol

Step Action APDU Content

1 HOST supplies the
CICAM license

cc_sac_data_req

send_datatype_nbr = 1

i datatype_id datatype_len

0 36 (Host_license) variable

request_datatype_nbr = 2

i datatype_id

0 34 (license_status)

1 37 (play_count)

2 CICAM response
with license status
and play count

cc_sac_data_cnf send_datatype_nbr = 2

i datatype_id datatype_len

0 34 (license_status) (see note 3) 8 bits

1 37 (play_count) 8 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.45 contains the allowed values and meaning of this field.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 132

Table 11.45: license_status Values

license status Value

OK 0x00

Descrambling not possible, no entitlement (record only) 0x01

Descrambling not possible, undefined error (record only) 0x02

Entitlement rights expired (playback & status check) 0x03

Play count exceeded (playback & status check) 0x04

Retention limit exceeded (playback & status check) 0x05

Invalid license (playback & status check) 0x06

Reserved 0x07-0xFF

11.3.4.4 Record Start Protocol

The Host signals the start of a CA protected service recording to the CICAM via the protocol below using the

SAC. This exchange also informs the CICAM of the current operating mode of the Host.

Where the CICAM has PIN capabilities or EMI = 1,1 then no CA protected content shall be recorded until the

Record Start protocol, described below, has completed successfully with a record_start_status value of ‘OK’.

Where the CICAM does not support PIN capabilities and in addition, EMI != 1,1 or the Host is buffering the

content the record start status may be ignored by the Host. In this case the Host may record the content but may

experience parental control interruptions.

Where the Host is in a “Unattended_Recording” or “Watch_and_Buffer” operating mode then the PINcode_data

parameter is used to provision the CICAM with the CICAM PIN. The CICAM PIN shall only be used to enable

uninterrupted recording when a future parental control event may occur. The CICAM PIN shall not be used to

enforce parental control on playback and live viewing; in such a case the user shall be asked to enter the

CICAM PIN by means of the High-Level or Application MMI.

Table 11.46: Record Start Protocol

Step Action APDU Content

1 Host informs CICAM
of start of recording.

cc_sac_data_req

send_datatype_nbr = 2 or 3

i datatype_id datatype_len

0 38 (operating_mode) 8 bits

1 26 (program_number) 16 bits

2 39 (PINcode data) variable (optional)

request_datatype_nbr = 1

i datatype_id

0 40 (record_start_status)

2 CICAM sends a
acknowledgement to
the Host

cc_sac_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 40 (record_start_status)
(see note 4)

8 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.47 defines the allowed values of operating mode.
4: Table 11.17 defines the allowed values of this field .

Table 11.47: operating_mode Values

operating_mode Value

Watch_and_Buffer 0x00

Timeshift 0x01

Unattended _Recording 0x02

Reserved 0x03-0xFF

The operating modes are described as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 133

Watch_and_Buffer – the user is watching live content that is also being recorded. At reception of the Record

Start message the CICAM shall cache the CICAM PIN in order to allow for uninterrupted recording when the

parental control rating changes. The CICAM shall continue to display a MMI requesting the user to enter the

CICAM PIN when parental control is required to be enforced. The CICAM shall continue to descramble if the

cached CICAM PIN is correct and the Host shall Blank the video and audio upon the reception of the

cc_PIN_event() where the PINcode_status_field equals “0x00” until the next cc_PIN_reply() APDU where the

PINcode_status_field equals “0x02”.

Timeshift – the user is watching previously recorded content while the Host continues recording the live

content. The CICAM shall not provide a MMI for CICAM PIN entry and shall use the cached CICAM PIN to

continue to descramble the content for the purpose of uninterrupted recording. The Host shall use the

cc_PIN_playback() APDU while watching buffered recorded content to inform the CICAM of the parental

control rating of the content being played back. The Host shall blank the video and audio until reception of

cc_PIN_reply() APDU where PINcode_status_field equals “0x02” or “0x04”.

Unattended_Recording – the user has programmed the Host to record content in an unattended mode. Prior to

programming the recording the Host may validate the cached CICAM PIN using cc_PIN_cmd() APDU. At the

start of the recording the Host includes the CICAM PIN in the Record Start message to the CICAM. During the

recording the CICAM informs the Host of the parental control rating using the cc_PIN_event() APDU for use at

play back by the Host.

11.3.4.5 Change Operating Mode Protocol

The message protocol below is used when the Host changes the operating mode and is comparable to the Record

Start message. The Change Operating Mode message is used in use-cases where no new License is required by

the Host, e.g. when the operation mode changes from “Watch_and_Buffer” to “Timeshift”.

Table 11.48: Change Operating Mode Protocol

Step Action APDU Content

1 Host informs CICAM
of change of
operating mode.

cc_sac_data_req

send_datatype_nbr = 2

i datatype_id datatype_len

0 38 (operating_mode) 8 bits

1 26 (program_number) 16 bits

request_datatype_nbr = 1

i datatype_id

0 41 (mode_change_status)

2 CICAM sends a
acknowledgement to
the Host

cc_sac_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 41 (mode_change_status) 8 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.47 defines the allowed values of operating mode.
4: Table 11.17 defines the allowed values of this field.

11.3.4.6 Record Stop Protocol

The Host uses this protocol to inform the CICAM that the recording has stopped and that all PIN related

information cached by the CICAM shall be deleted.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 134

Table 11.49: Record Stop Protocol

Step Action APDU Content

1 Host informs CICAM
recording has
stopped.

cc_sac_data_req

send_datatype_nbr = 1

i datatype_id datatype_len

0 26 (program_number) 16 bits

request_datatype_nbr = 1

i datatype_id

0 42 (record_stop_status)

2 CICAM sends a
acknowledgement to
the Host

cc_sac_data_cnf send_datatype_nbr = 1

i datatype_id datatype_len

0 42 (record_stop_status)
(see note 3)

8 bits

Notes:
1: Refer to Annex H for an overview of the parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Table 11.17 defines the allowed values of this field.

11.3.5 SRM file transmission and acknowledgement

This datafile transfer protocol transmits data files such as SRM data files and receives the Host status and

acknowledgement. This protocol utilises the CI Plus SAC APDUs to send the data files from the CICAM to the

Host. The data file is identified by a datatype_id (refer to Table H.1 in Annex H for the datatype_id indicating

an SRM file). Details are explained in table 11.50.

The Host shall determine the SRM type from the datatype_id. Where the Host does not support a given SRM

then the Host shall respond with "Not required" acknowledgment which indicates to the CICAM that the Host

does not support an output type matching the SRM data and requires no further data of this type. On receiving a

“Not required” response the CICAM shall not send the Host any further SRM messages of this SRM type for the

duration of the authenticated session.

Table 11.50: SRM data file transmission and acknowledgement

Step Action APDU Content

1 CICAM sends the
SRM to the Host

cc_sac_data_req

send_datatype_nbr = 1

i datatype_id

0 31 (HDCP.srm)
43-49 (XXXX.srm) Note 4

request_datatype_nbr = 2

i datatype_id

0 30 (status_field)

1 32 (datatransfer_confirm)

2 Host sends a
acknowledgement to
the CICAM

cc_sac_data_cnf send_datatype_nbr = 2

i datatype_id datatype_len

0 30 (status_field)
(See Note 3)

8 bits

1 32 (datatransfer_confirm) 256 bits

Notes:
1: Refer to Annex H for an overview of parameters involved.
2: All SAC messages are encrypted and authenticated.
3: Host may set this to OK, Host Busy or Not Required, see Table 11.24.
4. For CI Plus specification v1.4 and above then datatype_id 43-49 inclusive are SRM messages. A Host

complying with v1.4 shall correctly handle all such datatype_ids that are designated as SRM messages.
Refer to Table H.1 in Annex H for the SRM datatype_ids.

11.4 Specific Application Support

CI Plus offers a Specific Application Support (SAS) resource similar to the one defined in the OpenCable™

Specifications, CableCARD™ Interface 2.0 Specification [27]. This resource offers a transparent pipe that

allows an application on the Host to access functionality on the CICAM.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 135

For the SAS resource to be useful, a protocol has to be defined on top of this transparent pipe. Each of these

protocols is assigned a private_Host_application_ID to uniquely identify it.

The SAS resource is applicable to the MHP CA APIs permitting a data exchange between the MHP Application

environment and the CAS resident on the CICAM as depicted in Figure 11.2.

Figure 11.1 Example Application Environment for SAS

The SAS resource message protocol for the MHP CA API is defined in Annex M.

The SAS resource APDU and message syntax of the OpenCable™ Specifications, CableCARD™ Interface 2.0

Specification [27], section 9.17, shall be defined and used by this profile.

The CICAM shall open a SAS session at start-up. When the Host requires a connection to an application part on

the CAM, it sends a SAS_connect_rqst() APDU according to section 9.17.1 of [27] to an unused SAS session.

This APDU includes the requested private_Host_application_ID. If the CICAM supports the requested

application id, it associates this SAS session with the application id and sends a SAS_connect_cnf() APDU in

response. The CICAM shall then open another SAS session for subsequent connects by the Host so that at least

one open SAS session is available that is not associated with an application id.

The Host shall keep track of the associations between each SAS session and an application id. When the Host

wants to connect to an application id, it shall use an open SAS session that is not yet associated to an application

id.

A CICAM may support multiple clients connected to the same application id at the same time.

11.4.1 Application Life-cycle

Each Host application that requires access to the SAS resource shall create a new SAS connection and the

application life-cycle of the SAS resource is defined as follows:

1) Application starts up on the Host.

2) Host application initiates a connection to the SAS session with a SAS_connect_rqst() APDU when a

connection is required.

3) CICAM processes the request and responds with a SAS_connect_cnf() APDU.

 If the connection was accepted then the CICAM shall create a new SAS session ready for any

subsequent new connection.

 If the connection was not accepted then the session remains open ready for a subsequent

connection request.

4) Host application and CICAM communication via the connected SAS session.

5) The Host application terminates and the SAS session is closed by the Host.

11.4.2 Data Transfer

For data transfer CI Plus only uses the asynchronous mode as defined in the OpenCable Interface Specification

2.0 [27], Synchronous mode is not supported.

CA System CA Application

API

Broadcast

xlet
MHP API

CICAM
Horizontal

TV/STB

Native

CI

SAS Link

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 136

12 CI Plus Application Level MMI

12.1 Scope

TS 101 699 [8] section 6.5 specifies the concept of an application domain MMI. The Application Domain MMI

enables an unspecified presentation engine to be used (if present) potentially enabling a sophisticated CICAM

application presentation and interaction to be realised when compared with the conventional High Level

Application MMI.

Process using

MMI

Application

MMI Resource

CI Plus

Application

Presentation

Engine

Files

File

Requests

Display

User

Action

HOST Module

Figure 12.1: Operation of the application MMI resource and CI Plus Presentation Engine

This section specifies the CI Plus Application profile to be implemented in a CI Plus Host and identifies the

minimum functionality that the Host shall support.

The inclusion of a mandatory standard CI Plus presentation engine enables the module to present text and

graphics on the Host display without necessitating any further extensions to the MMI resources which might

otherwise constrain the module application. The scope of a conformant CI Plus Host is depicted in Figure 12.2.

The CI Plus presentation engine enables the module to present information with the look and feel specified by

the service operator rather than being constrained to the High Level MMI for which there is limited presentation

control and interaction.

Figure 12.2: Scope of CI Plus

The CI Plus Application MMI is based on the UK-DTT MHEG-5 [23] engine specification and is subset to

provide sufficient functionality to enable a module application to present text and graphics with minimal control

over the broadcast stream. All content to the CI Plus presentation engine shall be supplied to the Host directly

from the CICAM through the Application MMI resource; the CICAM itself may optionally source file data

internally from the CICAM and/or directly from the broadcast stream.

The CI Plus Application MMI may operate in a Host that supports other application environments e.g. MHEG-

5, MHP, etc. The Host implementation of the CI Plus Application MMI may elect to support the interface using

any existing MHEG-5 application environment or with a separate implementation instance. The CI Plus

High Level

MMI

DVB CI

CI Plus Browser

Application MMI

CI Plus

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 137

Application MMI shall take precedence over any existing application environment and may optionally be

presented on the Host native graphics plane, application plane or another display plane that may exist between

the Host display and application, this is shown as a number of conceptual planes in Figure 12.3.

Figure 12.3: Conceptual Display Planes (Informative)

Figure 12.3 is informative only and includes both logical and physical planes, the Host implementation shall

determine the most suitable physical mapping for a given Host architecture. The Application MMI shall support

full video transparency enabling text and graphics to be overlaid over the video (and possibly any native

application). The Application MMI has a native SD resolution of 720x576 pixels and shall be scaled to full

screen to match the current video aspect ratio in both SD and HD environments.

It is mandatory for the Application MMI to provide limited control over the MPEG decoders which enable the

broadcast video and audio of the current service to be presented, additionally a full frame I-frame may be used

to provide rich graphics backgrounds. The MMI Application may deny the application MMI control of the

MPEG decoder if a resource conflict results.

The Application MMI profile includes an optional extension for dynamically loadable TrueType and OpenType

outline fonts which permit international character sets to be used by the application. Dynamically loadable fonts

may not be available in all Hosts and the application may check the Host support from within the application.

CI Plus specification v1.3 extends the Application MMI which includes feature support for VOD type

applications.

12.2 Application MMI Profile

The CI Plus Application shall conform with the MHEG-5 profile version 1.06 [D-Book 5.0, Sections 12-18][23]

with some reduced functionality for a CI Plus compliant Host.

12.2.1 Application Domain

This specification is an application domain in the terms set out in Annex D of ISO 13522-5 [16] and D-Book

5.0 [23], Section 13. The CI Plus application domain is referred to "CIEngineProfile1".

12.2.2 Set of Classes

The set of classes is defined in D-Book 5.0 [23], 13.3 with the exceptions stated in Table 12.1:

Background

Video Planes

Optional Application Plane(s)
CI Plus Application MMI Plane

Native Graphics Plane(s)

Viewer

Conceptual Viewing Planes

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 138

Table 12.1: Class exceptions to D-Book 5.0

Class Notes

Font Required (see note)

Dynamic Line Art Not Required

HyperText Not Required

Note: See D-Book [23] and Section 12.5.1 Downloadable Fonts.

Receivers may optionally support "Not Required" classes but they shall not be used by a CI Plus Application

unless referenced in the context of a different application domain or the application has confirmed the class

exists.

12.2.3 Set of Features

The set of features is defined in D-Book 5.0 [23], section 13.4 with the following exceptions in Table 12.2:

Table 12.2: CIEngineProfile1 GetEngineSupport behaviour exceptions to D-Book 5.0

Feature Notes

Caching Not Required

Video Scaling Not Required

Scene Aspect Ratio Not Required

UniversalEngineProfile Shall adhere to D-Book and also support the CI Plus profile value

A full MHEG profile typically includes the stream object providing control of the audio and video components.

To maintain the current video and audio an application typically creates a stream object containing active audio

and video set to the default components. The application may then change the component tags to select the

audio and video components. For the CI Plus profile the application is only allowed to use the default audio and

video components. The CI Plus application is allowed to stop and start the stream in order to display an I-frame

if it has permission using the resident program RequestMPEGDecoder.

The default components are taken to be whatever components are currently active on the receiver. The loading

of a CI Plus application with default components set shall not change them. The current components may have

been set by another application environment, such as MHP, and shall not be interfered with by the CI Plus

application.

12.2.3.1 CI Plus Engine Profile

UniversalEngineProfile shall respond with a true response to a string argument of "CIPLUS001" which

identifies the MHEG engine as being CI Plus Profile 1 compliant.

12.2.3.2 Not required features

Features identified as not required in this profile may be optionally implemented by Hosts conforming to this

profile. This permits the CI Plus profile to co-exist with other MHEG-5 broadcast profiles.

CI Plus Applications shall not use any features identified as not required unless the application first checks that

they are supported by the engine using the UniversalEngineProfile() or any other standard method to determine

the capabilities of the environment.

The engine may only provide optional features from another profile(s) which have been certified i.e. features of

the New Zealand MHEG profile may be active if the Host is certified for New Zealand.

12.2.3.3 Stream Objects

The application shall start with the default components active by specifying a stream object containing active

audio and video objects set to the default component. Should the CI Plus application wish to stop the stream

then it shall first gain permission using the resident program RequestMPEGDecoder, see section 12.3.6.

Permission from RequestMPEGDecoder is required as other application environments may be running that are

currently using the MPEG decoder.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 139

Any application that does not start with an active stream object with default components shall behave in an

undefined way.

Any attempt to stop the video object or the whole stream without permission shall behave in an undefined way.

Once permission has been granted, control of the MPEG decoder shall persist according to the normal resident

application rules or until the CI Plus application releases it using RequestMPEGDecoder. Before releasing the

MPEG decoder the application shall return the MPEG decoder to its normal state by removing any I-frame from

the screen and restarting the stream objects with default audio and video component tags.

This mechanism ensures that the application operates in a predictable manner even if another application

environment is active.

The CI Plus profile does not require stream objects to generate stream events.

12.2.3.4 RTGraphics / Subtitles

On launching the CI Plus Application MMI the subtitle state shall be determined from the CICAM Request Start

message defined in section 12.6.2. Where subtitling is stopped to enable the launch of the CI Plus Application

MMI then subtitling shall be re-enabled automatically when the CI Plus Application terminates.

12.2.4 GetEngineSupport

The GetEngineSupport "feature" strings of D-Book 5.0 [23] section 13.4.1 with the exception in table 12.3:

Table 12.3: GetEngineSupport "feature" strings

String Constraint

Standard Short

MultipleAudioStreams(N) MAS(N) May return "true" for N≤1

MultipleVideoStreams(N) MVS(N) May return "true" for N≤1

VideoScaling(CHook,X,Y)[a] VSc(CHook,X,Y)[a] May return "false" for all combinations of CHook, X & Y

VideoDecodeOffset(CHook,Level) VDO(CHook,Level) May return "false" for all combinations of CHook, X & Y

DownloadableFont(CHook) DLF(CHook) Shall return "true" for the values of CHook that are
supported by the Font class. Shall return "false" for all
other values of N

12.3 Content Data Encoding

The content data encoding is defined in D-Book 5.0 [23], section 13.5 with exceptions defined in this and

subsequent sections.

12.3.1 Content Table

In CIEngineProfile1 the table 13.7 will be as per D-Book 5.0 [23] with the following exception:

Table 12.4: Content Table

Attribute Permissible Values

Font See 12.5.1 "Downloadable Fonts"

12.3.2 Stream "memory" formats

In CIEngineProfile1 there is no requirement for stream memory formats, D-Book 5.0 [23] section 13.5.3.

12.3.3 User Input

The CI Plus Application shall have input focus and display priority if the CI Plus Application MMI co-exists

with any other application engine (i.e. running simultaneously).

The UK Profile authoring requirement to always start in user input register 3 in the first scene shall not apply to

the CI Plus application.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 140

12.3.4 Engine Events

The minimum set of engine events that the engine shall support is defined in D-Book 5.0 [23] section 13.8, with

the exception that the following EngineEvents are not required by CIEngineProfile1.

Table 12.5: CIEngineProfile1 EventData exceptions to D-Book 5.0

EventData Value Notes

VideoPrefChanged 6 Not Required

NetworkBootInfo 9 Not Required

12.3.5 Protocol Mapping and External Connection

The protocol mapping and external connections of D-Book 5.0 [23] section 13.9 with the exception that Stream

Actions and Stream Events are not required by CIEngineProfile1.

12.3.6 Resident Programs

The Resident Programs of D-Book 5.0 [23] section 13.10 with the exception of the following Resident Programs

that are not required by CIEngineProfile1.

Table 12.6: CIEngineProfile1 Resident Program exceptions to D-Book 5.0

Resident Program Name Notes

SI_TuneIndex Tin Not Required

SI_TuneIndexInfo TII Not Required

GetBootInfo GBI Not Required

VideoToGraphics VTG Not Required

SetWidescreenAlignment SWA Not Required

SetSubtitleMode SSM Not Required

RequestMPEGDecoder RMD Note: Call only, See section 12.3.6.1.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 141

12.3.6.1 RequestMPEGDecoder

Requests exclusive access to a MPEG decoder and video plane to display I-frames. The MPEG decoder shall be

available when no other application environment is active.

Synopsis RMD(result)

Arguments

in/out/
in-out

type name comment

in GenericBool request If 'true' then the MHEG application is requesting
exclusive use of the MPEG decoder and video plane.
If 'false' it is releasing use of said decoder.

output GenericBool result If request is 'true' then:

 If the result is 'true' then I-frames may be
used and shall remain available until the
application exits, a new application starts
(See D-Book 5.0 [23] section 13.10.12) or
RequestMPEGDecoder is invoked again

with request='false'.

 If the result is false then the MPEG decoder
is not available and I-frames may not be
used.

If request is 'false' then:

 result shall be 'false', the MPEG decoder is
not available and I-frames may not be used.

Description If the CI Plus application requires to stop the broadcast stream and display an I-frame then

it must first get permission to use the MPEG decoder. When the application has finished

with the MPEG decoder it may release it by calling RequestMPEGDecoder with

request='false' however the application must have removed any I-frames from the display

and restarted the stream with default components otherwise the results will be

unpredictable.

12.4 Engine Graphics Model

The graphics plane is used to represent all visible's except MPEG I-frames. The CI Application menu shall have

a drawing area of 720x576 pixels. The graphics plane shall match the current video resolution and aspect ratio.

Where high definition video is present then the graphics plane shall be scaled to match the current video

resolution and aspect ratio.

The CI Plus Graphics plane shall be above the video(s) and any subtitling plane. Any intermediate planes

separating the CI Plus graphics plane and video (and subtitle) plane may optionally be disabled or made

transparent. i.e. in an application environment the application graphics plane may be visible if the CI Plus

Application display includes transparency.

The minimum colour palette and colour space representation is defined by D-Book 5.0 [23], section 14. It is

recommended that truecolour with a minimum of 16 bits is implemented.

12.4.1 LineArt and Dynamic LineArt

LineArt and Dynamic LineArt shall not be required by CIEngineProfile1, as defined in D-Book 5.0 [23], section

14.5.

12.4.2 PNG Bitmaps

PNG bitmaps shall conform to D-Book 5.0 [23], section 14.7.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 142

12.4.3 MPEG Stills

MPEG stills or I-frames shall conform to D-Book 5.0 [23], section 14.8.

12.4.4 User Input

The User Input is defined in D-Book 5.0 [23], section 13.6. A CI Plus initiated application may start in any

register group setting including Register Group 5.

12.4.5 High definition graphics model.

High definition receivers (i.e. ones that are capable of decoding and presenting HD resolution video) shall

observe the Engine Graphics Model defined in clause 12.4 and 12.4.1 to 12.4.4 with the exceptions specified by

the HDGraphicsPlaneExtension and HDVideoExtension as defined in ETSI MHEG [38] clause 12.11 and

related clauses.

12.4.5.1 Discovery

CI Plus applications shall be able to determine the graphics capability of the receiver to which they are

delivered. Hosts supporting the HD graphics model shall support the “HDExtension” (“HDE”)

GetEngineSupport feature string as defined in ETSI MHEG [38] clause 11.4.1.

12.5 Engine Text

CIEngineProfile1 has full conformance with D-Book 5.0 [23], section 15. except as documented in the

following sections. These replace sections 15.3.1 and 15.3.1.1 in D-Book 5.0.

The character repertoire of CIEngineProfile1 shall minimally be the character repertoire of UKEngineProfile1

when the resident font is used. The MHEG application may use other characters that are available in an

alternative character set after first confirming the presence of the character set in rec://font/xxx, where

xxx is the required character set.

 CIEngineProfile1 has a font attribute class of "rec://font/CI1".

Downloaded fonts may have a wider character repertoire and all characters in a downloaded font shall be

supported.

12.5.1 Downloadable Fonts

Receivers may optionally support downloadable fonts using the MHEG-5 Font class. Support is indicated by a

positive response to DownloadableFont for the supported content hook. Only receiver fonts may be referenced

by name, downloaded fonts shall be referenced as an MHEG-5 Font object. The receiver shall support all

characters in a downloaded font and will not be limited to a country specific engine profile. The set of supported

characters in any receiver embedded font file may be limited to a country specific set of characters.

A receiver supporting Downloadable fonts shall minimally reserve 256K bytes of memory for dynamically

loaded fonts. Asian fonts, such as Chinese, require the receiver to reserve significantly more font resource

memory. CI Plus enabled receivers deployed in these areas shall determine the CI Plus memory requirement

based on the broadcast requirements of the local region.

Where downloadable fonts are supported by a Host then the Host is only required to support the download of a

single font. A Host may optionally support more than one downloadable font.

12.5.1.1 OpenType Fonts

The CHook value of 10 is defined as being an OpenType® font meeting version 1.4 of the OpenType

specification with TrueType™ outlines and as published on the following web sites:

<http://www.microsoft.com/typography/otspec/default.htm>

<http://partners.adobe.com/asn/tech/type/opentype/index.jsp>

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 143

TrueType Collections are not supported in this profile. A font file is considered to contain a single font. This

single font will be referenced as the default font style 'plain'. Where downloadable fonts are supported receivers

are required to support the following tables:

 tables related to TrueType outlines

 the kern table (format ‘0’ horizontal kerning only).

Support for tables that are not required is optional.

For OpenType fonts, the following table defines the values to be used for the font metrics parameters referenced

in D-Book 5.0 [23], section 15.5 "Text Rendering".

Table 12.7: OpenType font parameters

Parameter name Obtained from

metricsResolution,
outlineResolution

unitsPerEm field, defined in the Font Header (‘head’) table

advanceWidth,
charSetWidth

advanceWidth values, defined in the Horizontal Metrics
('htmx') table. see note

xMin, yMin, yMax defined in the Font Header ('head') table

Kern value, defined in the Kerning ('kern') table

Note: for monospaced fonts, only a single advance width may be defined.

12.5.1.2 Presentation

When a text object references a downloaded font the object shall be presented as defined in D-Book 5.0 [23]

section 14.10, "Appearance of Visible objects during content retrieval" until successful download of the font or

font download fails. Should the font download fail the receiver shall use the receivers default built-in font

instead. When the receivers built-in font is used the text object shall be rendered using the rules for that font

including the receivers defined Character repertoire.

12.5.1.3 Defensive Response

Font downloads may fail and applications may request invalid or unsupported features and characteristics. In

order to handle these events in a predictable and robust manner receivers shall implement the following

measures:

 The receiver shall use its inbuilt font in place of the download font when:

o The requested font is unavailable

o The content hook is unrecognised

o The font attributes are invalid

When the receiver font is used then the text box shall be rendered as though the receiver font had been specified.

 The only supported font style is 'plain'. If any other font style is specified it shall be treated as 'plain'.

 If the requested font size is not supported by the font then the next smaller size shall be used. If the

required font is smaller than the smallest available, then the smallest available size shall be used.

12.6 CI Application Life Cycle

This section covers the application life cycle. D-Book 5.0 [23] section 16 shall not be interpreted unless

specifically stated in this section.

12.6.1 Application Life Cycle

The Application Life Cycle is the method by which the CI application is signalled to launch or terminate.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 144

12.6.1.1 Launching and Terminating the CI Plus Application

The CI Plus Application for a CIEngineProfile1 only Host shall be explicitly introduced by the CICAM by a

RequestStart. The Host may respond with a API busy response if it is unable to honour the request and the

CICAM may retry the request later.

CICAM applications may terminate for a number of reasons and the exit condition shall be reported to the

CICAM as follows:

 They execute a "Quit" action.

 They are killed by the Host following a channel change.

 They are killed because the CI module generates a RequestStart or AppAbortRequest message.

 The CI Plus Application cannot be presented when subtitles or RTGraphics are enabled.

The CI file system is mounted by activity of the CI module. The current output state of the video, audio and

optionally any other application, shall remain unchanged. Optionally the subtitles may be disabled and the

application launched and presented. The application graphics shall be scaled to match the current video screen

resolution.

12.6.2 Interaction with DVB Common Interface Module

The interaction with the DVB Common Interface Module shall adhere to D-Book 5.0 [23], section 16.11. The

Application Domain Identifier "CIMHEGP1" (0x43494d4845475031) shall be used in the RequestStart

message to identify that the required application domain is CIEngineProfile1.

The Application Domain Identifier may be optionally qualified with arguments that define the requirements of

the CI Plus Application environment. The options are specified at the end of the Application Domain Identifier

separated by a semi-colon (;) i.e. <applicationDomainIndentifier>[;<option1>;<option2>;…;<option#>]

where the options are defined as follows:

Table 12.8: Application Domain Identifier Launch Options

Name Option
Value

Notes

SSM
RTGraphics
State

SSM=0 Subtitles (RTGraphics) shall be disabled before the CI Plus Application is started,
subtitles shall be returned to their existing running state when the CI Plus Application
terminates.

SSM=1 Subtitles (RTGraphics) shall be displayed when enabled by any user preference, if the
CI Plus Application and subtitles are not able to co-exist then the CI Plus Application
shall not start.

SSM=2 Subtitles (RTGraphics) shall optionally be displayed when enabled by any user
preference, if the CI Plus Application and subtitles are not able to co-exist then
subtitles shall be disabled and the CI Plus Application shall launch. Where the subtitle
state temporarily over-rides the user preference and are disabled then the existing
subtitle state shall be restored when the application terminates. This option is the
default state that shall be assumed when the SSM option is omitted from the
application domain specifier.

12.6.2.1 MHEG Broadcast Profile

Where the broadcast profile of a given country supports a broadcast MHEG environment then the CICAM may

be tailored to a specific broadcast profile and start with the Application Domain Identifier of that profile rather

than the CI profile. See D-Book 5.0 [23], section 16.11.3.2. The broadcast profile application life cycle may be

honoured which may allow:

 A CI application is introduced by the CI module.

 A CI application is optionally introduced by a broadcast application.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 145

i.e. The CICAM may use the broadcast profile MHEG rather than the CI Plus Application environment for an

operator specific CI Plus Application. The CICAM may continue to use the CI Plus Application MMI for

CICAM specific menus and messages.

12.6.2.2 MHP Broadcast Profile

Where the broadcast profile supports MHP then the CI Plus Application MMI shall take priority over the MHP

application environment and shall have input focus. The MHP graphics plane may be either be temporarily

removed or the CI Plus Application MMI shall appear in front of it. As the CI Plus Application MMI is

considered to be an extension of the native OSD then it is acceptable to present the CI Plus output on the native

Host graphics plane as an alternative to the native graphics interface (OSD).

12.6.2.3 File Request and Acknowledge

The maximum size of a file request or acknowledge FileNameLength is not specified, but shall be suitable for

the CI Plus browser memory resource.

12.6.2.4 Persistent Storage

The CI Plus engine shall minimally provide 1024 bytes of data as D-Book [23] section 16.7. Persistent Storage

may be implemented in volatile memory.

12.6.3 Host Resource Model

As D-Book 5.0 [23] sections 16.8 and 16.9 with the following limitations.

12.6.3.1 Memory Resource

Receivers shall minimally provide 512Kbytes of RAM for the CI Plus Application. Where the engine

supports High Definition graphics then the receiver shall minimally provide 1MByte of RAM for the CI Plus

Application. Where the engine supports downloadable fonts then the receiver shall provide an additional

256kbytes of RAM for font handling as defined in 12.5.1.

12.6.3.2 Link Recursion Behaviour

The CI Plus engine shall allow at least 128 concurrent Actions and at least 1024 ElementaryActions pending

processing.

12.6.3.3 Timer Count and Granularity

The CI Plus engines shall allow at least 4 concurrent MHEG-5 timers to be active with an accuracy of +/-10ms.

When more than 4 timers are active then the accuracy may degrade in a platform specific manner.

Receivers shall support timer durations up to at least 1 hour.

12.6.3.4 Application Stacking

Application stacking is as section 16.9 of D-Book 5.0 except the application stack shall be capable of holding

references to at least 5 applications.

12.7 Name Mapping

12.7.1 Names within the Host

The names in a CIEngineProfile1 Host comprise:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 146

Table 12.9: CI Profile Names within the Host

Name Notes

rec://font/CI1 Identifies the built in font other font names may exist but are not mandated by CIEngineProfile1.

This font is defined for Western Europe and shall be identical to UK-DTT "UK1".

ram://<name> Name space for persistent storage.

12.7.2 Name Space Mapping

When an application starts then it is assumed that a MMI session with the a DVB CI Module has been

established and the CI file system may be used to retrieve file objects containing CIEngineProfile1 MHEG-5

objects or data content such as text and bitmaps.

The MHEG object files are either Scene, Application or content data of an Ingredient object, where each Scene,

Application object or content data is stored in a separate file.

12.7.3 MHEG-5 Object References

The MHEG-5 object reference rules of D-Book 5.0 [23] section 18.3.1 apply with the exception of DSM-CC

objects.

12.7.4 Mapping Rules for GroupIdentifier and ContentReference

The mapping rules for GroupIdentifier and ContentReference of D-Book 5.0 [23] section 18.3.2 apply with the

following caveats:

12.7.4.1 Case sensitivity

The CI file system provides case sensitive file names.

12.7.4.2 Structure of file references

"DSM:" and "~" (the shorthand of "DSM:") are not required in CIEngineProfile1. The CI root file system is

referenced as "CI:".

12.7.4.3 Caching

The default cache behaviour of "CI:" content is 'caching not allowed' (CCP0) and by default all file references

are requested via the CI interface. There is no requirement for a CIEngineProfile1 to support

ContentCachPriority (CCP) with the CI file system.

A Host may optionally perform caching of the CI file system and may interpret the ContentCachePriority and

GroupCachingPriority which shall be used in accordance with D-Book [23]. Any Hosts implementing a caching

mechanism shall support the same cache behaviour as specified in the MHEG object carousel profile, except the

words “broadcast stream” and “broadcast carousel” are replaced by “CI file system”. Caching may be performed

using either the Application MMI resource v1 or v2 for greater efficiency (see 14.5).

The Content or Group Cache Priority shall be interpreted and applied to the CI file system according to Table

12.10.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 147

Table 12.10: CICAM Caching Behaviour

Cache
Priority

Semantics Cache Retrieval
Method

Even values
(excluding
zero)

Even non-zero values of cache priority (2, 4, 6, etc.) indicate that the
object may be fetched from the local cache without reference to the
CICAM. The value hints that the data is static and the higher the value
the more useful the data is to cache.
Any content that is persistently cached through MHEG sessions shall
be considered dirty on starting any new MHEG session and shall be
reacquired using RequestType = FileHash or RequestType = File.

Use locally cached
content if available and
not stale (or dirty)

Odd values Odd values of cache priority (1,3,5, etc., including 127, the default)
indicate that the Host must verify that the content is current before
using data from the cache. The higher the value the more useful the
data is to cache.
Note: To verify that the content is current then a File request must be
sent to the CICAM i.e. the cache is only useful for Hosts that support
FileHash type requests.

RequestType=FileHash
or
RequestType=File

Zero This is the default when no CICAM cache is implemented.
Caching is not allowed for this content, cached copies of the data, if
present, shall be invalidated and shall be explicitly retrieved from the
CICAM with RequestType=File.
RequestType=FileHash shall not be used for CPP0.

RequestType=File

12.8 VOD extensions

The Application MMI extends the engine features to support the requirements of CI Plus Specification v1.3 and

includes additional resident programs to support VOD applications. VOD is provided using Host Control v2 and

a VOD application requires an enhanced key capture mechanism and a control for graphics display hiding. The

VOD extensions are a requirement for all Hosts implementing this (CI Plus) specification v1.3 or greater.

12.8.1 Resident Programs

The Resident Programs shall additionally include those listed in Table 12.11.

Table 12.11: CI Plus VOD Resident Program extensions

Resident Program Name Notes

TestInputMask TIM VOD key handling – DTG White paper

SuppressMHEGGraphics SMG VOD display control – CI Plus v1.3 Extension

An application may test for the presence of the VOD extensions by testing for the existence of the SMG resident

program.

12.8.1.1 Test Input Mask

The input key handling shall be extended with the Input Mask Extensions that provide the Application MMI

with access to the video control keys, this is detailed in document “DTG MHEG Spec Group White Paper:

MHEG InputMaskExtensions”.

The InputEventMask shall be provided in the Scene class.

The Elementary Action SetInputMask (NewInputMask) shall be supported.

12.8.1.2 Suppress MHEG Graphics

The SuppressMHEGGraphics resident program provides a control to toggle between the display of subtitles and

application graphics on Hosts that only support a single graphics plane. The resident program allows the

subtitles to be presented while an application continues to execute, in addition, allows subtitles to be suspended

and the application graphics to be restored to the application environment. Invocation of this resident

programme, on a Host that supports the simultaneous display of subtitles and MHEG graphics, does not

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 148

guarantee that the graphics plane is removed from the display and it is the responsibility of the application to

remove all visible objects.

Synopsis SMG(GraphicsState)

Arguments

In/out Type Name comment

in GenericBool GraphicsState If true then the Application MMI has relinquished the
graphics plane and subtitles may be displayed when
enabled. The graphics plane may be suppressed.

If false then the Application MMI requires the graphics
plane and subtitles shall be stopped and control of the
graphics plane shall return to the Application MMI by the
end of the resident program call.

Description On Hosts that support the simultaneous display of the Application MMI and subtitles this

resident programme shall have no effect. The Application MMI is not required to hide

graphical objects and graphical objects may remain visible.

On Hosts that do not support the simultaneous display of the Application MMI and

subtitles then where the Application MMI was launched with SSM=2 and the Application

MMI is displayed then the graphics plane shall be disconnected from the Application MMI

and shall be used to present subtitles, when subtitles are enabled and present in the stream.

The application may lose the graphics plane when SuppressMHEGGraphics(true) is

invoked even if subtitles are not enabled. When SuppressMHEGGraphics(false) is invoked

then subtitles shall be stopped and the graphics plane shall be returned to the application.

The resident program may be used by an application as follows:

1. Application MMI is launched with SSM=2 on a receiver that does not support the simultaneous display

of application and subtitles. The user has enabled subtitles and subtitles are present in the stream.

2. The application starts and subtitles are suppressed.

3. The user navigates through the application and selects an option where no graphics are required (i.e.

the screen is transparently filled). The application hides all visible graphics components and calls

SuppressMHEGGraphics(true).

4. The graphics plane is disconnected from the application environment and subtitles are presented. There

is likely to be a short delay in subtitle presentation as the subtitle decoder is started.

5. The application continues to receive key presses and is able to communicate and load files from the

CICAM.

6. The user performs an action that requires the application to become visible. The application calls

SuppressMHEGGraphics(false). When the resident program returns subtitles are hidden and the

graphics plane is restored to the application. The application may make graphical components visible

and they shall appear.

Legacy products will not support the SuppressMHEGGraphics() resident program and subtitles will remain

disabled while the application runs.

12.9 MHEG-5 Authoring Rules & Guidelines

The authoring rules defined in D-Book 5.0 [23] section 19 apply but shall adhere to the CI Plus limits i.e.

applications are restricted to 512 K bytes. Noted that HD applications may be larger but the application shall

have determined that the engine supports HD before attempting to increase the application size up to 1Mbyte.

CI Plus Applications shall be authored with consideration that they may be deployed in SD or HD environments

where the application graphics plane shall be subject to scaling.

The CICAM shall consider the subtitles (RTGraphics) state when launching a CI Plus Application. For some

Host implementations it may not be possible for the CI Plus Application and subtitles to co-exist at the same

time, in this case subtitles shall take priority where the CICAM attempts to install a background CI Plus

Application, enabling the user to maintain subtitles.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 149

It is the applications responsibility to ensure that the downloadable font support is available on the Host when

used. OpenType fonts that use optional tables should be avoided by application authors as the results will vary

from receiver to receiver. The application shall only use a single downloadable font.

The font may fail to download. Should this occur then text that uses characters not in the receiver default

character set will be rendered incorrectly. The application should defend against this, for example by monitoring

the ContentAvailable event from the font object before activating the text object.

Text shall always be rendered left to right, top to bottom. In regions where the text flow is right to left then the

CI Plus Application engine will not word wrap correctly. MHEG applications may be authored with right

justification and the text authoring should insert manual line feeds at appropriate points to ensure correct text

flow and presentation.

CI Plus applications may exist in environments where they may compete with other application environments

for use of the MPEG decoder so while the use of I-Frames is desirable for CI Plus applications they may not

always be available. It is not intended for CI Plus applications to interfere with the broadcast stream. Care shall

be taken by the application author to ensure predicable results, in order to ensure this CI Plus applications shall

follow these rules:

 The application shall always start with an active stream with an original-content of "rec://svc/cur". This

stream object shall have a multiplex of one audio object and one video object. Both the audio and

video objects shall have a component tag of -1. The video object shall have an orignalBoxSize 720

wide and 576 high. The video object shall have an XYPosition of 0,0.

 The application shall not specify a scene aspect ratio.

 The application shall not change the position, scale or decode offset of the live video, however the

application may change the position, scale and decode offset of I-Frames.

 Before stopping the stream object representing the broadcast stream the CI Plus application shall obtain

permission from the resident program RequestMPEGDecoder (section 12.3.5.1). Once permission has

been granted it remains granted for the duration of the resident program as defined in D-Book 5.0

section 13.01.12 or until the CI Plus application releases permission.

 Applications should not request use of the MPEG decoder more than necessary. If

RequestMPEGDecoder has returned false then it is likely to return false if it is called again.

 Once the broadcast stream object has been stopped an I-Frame may be presented.

 The CI Plus application may relinquish permission to use the MPEG decoder, before doing so, the CI

Plus application shall ensure the MPEG decoder is in the same state as it was before permission to use

MPEG decoder was granted. Any I-Frame shall be removed from the display and a stream object for

the broadcast stream started.

Any CI Plus application that does not follow these rules risks unpredictable behaviour.

While the initial scene of the application may start in any valid input register mode it is strongly recommended

that it starts in input register 3. Starting in input register 5, for example, has the generally undesirable effect of

restricting the users ability to change channel.

Application authors should take section 14.7 of D-Book 5.0 into consideration when producing PNGs.

Removing unused chunks from a PNG and reducing the colour depth can have a significant impact on the file

size and thus application load time.

13 CI Plus Man-Machine Interface Resource

13.1 Low Level MMI

The low level MMI is optional and not required by the CI Plus implementation.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 150

13.2 High Level MMI

This specification does not change the EN 50221 [7] section 8.6, High level MMI, but extends the specification

with an additional requirement:

 The Host shall be able to display 40 characters and 5 lines in addition of title, subtitle and bottom line.

Figure 13.1: High Level MMI Presentation

13.3 MMI Resources Association

The following table shows the MMI capabilities of the Host and CICAM on the DVB CI and CI Plus profiles.

Table 13.1: MMI Resource HOST / CICAM DVB-CI Version

 Host

DVB-CI CI Plus

CICAM DVB-CI - High level MMI: Mandatory
- Low level MMI: optional

- High level MMI: Mandatory
- Appl. MMI "CI Plus browser": Optional

CI Plus - High level MMI: Mandatory - High level MMI: Mandatory
- Appl. MMI "CI Plus browser": Mandatory

The High Level MMI and Application MMI are mutually exclusive and the CICAM shall not attempt to open a

session to both resources at the same time. Where the CICAM attempts to open both resources simultaneously

then the Host behaviour is undefined.

13.4 CICAM Menu

The following recommendation is made in respect to the CICAM menu on the Host.

 The maximum number of levels to access the CICAM menu is less than 3.

Bottom Line

Title

Line 2

Line 3

Line 1

Line 4

Line 5

Sub-Title

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 151

14 Other CI Extensions

14.1 Low Speed Communication Resource Version 3

Version 3 of the Low Speed Communication changes the messages and the protocol in order to increase data

throughput.

 The maximum size of send and receive buffers is increased to 2048 bytes.

 Host and CICAM use a fixed buffer pool of 16 buffers in each direction.

 Multiple buffer acknowledgement.

 Multiple buffer availability notification which is not acknowledged.

The minimum bit rate supported shall be 1 Mbps.

14.1.1 comms_cmd Modification

The changes in the comms_cmd() APDU are related to the Set_Params command. The buffer_size is now

encoded as a 16-bit value. The buffer_size and reception_timeout both have default values.

The CICAM shall send a Set_Params command only when the network side is not connected or when a

network connection is established and no payload data has been transmitted yet.

Table 14.1: Comms Cmd Object coding

Syntax No. of bits Mnemonic

comms_cmd() {

 descriptor_tag

 length_field()

 comms_command_id

 if (comms_command_id == Connect_on_Channel) {

 connection_descriptor()

 retry_count

 timeout

 }

 if (comms_command_id == Set_Params)

 buffer_size

 reception_timeout

 }

 if (comms_command_id == Get_Next_Buffer){

 comms_phase_id

 }

}

24

8

8

8

16

8

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

buffer_size: The maximum size, expressed in bytes, of the buffers exchanged in both directions. The maximum

value of buffer_size is 2048. The default value for the buffer size, when no Set_Params command has been sent,

shall be 254 bytes.

reception_timeout: A reception timeout value, expressed in units of 10ms. If the Host has received one or more

bytes in the current buffer and the timeout has elapsed with no further bytes received, then the buffer is sent to

the CICAM. If the buffer fills to the limit set by the buffer_size parameter with no timeout then the buffer is sent

immediately. The default value for reception_timeout is 10, i.e.100ms. A reception_timeout of 0 is illegal and

shall not be used.

retry_count: The number of times that the connection should retry before failing the connection. If the field

value is zero (0) then any failed connection shall not be retried. At most the Host attempts to establish the

connection retry_count+1 times.

timeout: This is the timeout in seconds in which a connection attempt is aborted if no positive indication of the

state of the connection is received within the timeout time. A timeout value of zero (0) means wait indefinitely.

Where a non-zero retry_count is specified and a connection fails then the Host shall wait for timeout seconds to

elapse before attempting to re-connect.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 152

Example:

Consider the example where the comms_cmd (Connect_on_Channel) parameters are defined

retry_count = 2 and timeout = 5.

The Host behaviour when a connection cannot be established with these values is defined as follows:

Try to connect

wait 5s

Failed; try to connect again, (first retry)

wait 5s

Failed; try to connect again, (second retry)

wait 5s (if the connection fails immediately and does not timeout then do not wait before sending a response

to the CICAM)

Failed; send FAIL to CICAM

14.1.2 comms_reply Modification

With version 3 of the LSC resource, the Host shall not acknowledge availability of a buffer before sending it to

the CICAM. As a consequence, the Host shall never send comms_reply() with the comms_reply_id set to 05

(the former comms_reply_id of Get_Next_Buffer_Ack).

The comms_reply_id values are defined in Table 14.2.

Table 14.2: comms_reply_id

comms_reply_id id_value

Connect_Ack 0x01

Disconnect_Ack 0x02

Set_Params_Ack 0x03

Status_Reply 0x04

Reserved 0x05

Send_Ack 0x06

Reserved Other values

The syntax of the comms_reply() message is unchanged from Table 54 of EN 50221 [7]. Zero (0x00) is the

standard OK return value, 0xff is the non-specific error. See Annex E.14.

The comms_reply() return value for Set_Params_Ack is 0 when the Host accepts the buffer size requested by

the CICAM or 0xfe (buffer too big) when the Host cannot handle send and receive buffers of the size requested

by the CICAM. In this case, the buffer size and timeout remain unchanged and the CICAM may resend a

Set_Params command with a smaller buffer size.

Set_Params_Ack shall return 0xff when the CICAM requested a reception_timeout of 0. The previous

reception_timeout shall not be changed in this case. Set_Params_Ack shall return 0xff in response to a

Set_Params command that was sent after a network connection was established and data has been transferred.

14.1.3 CICAM Flow Control

With version 3 of the Low Speed Communication resource, the CICAM uses a fixed number of 16 buffers.

The availability of a set of consecutive buffers is indicated to the Host by issuing Get_Next_Buffer with the

comm_phase_id set to the identifier of the last buffer of the buffer set. The set of buffers is defined as the last

Get_Next_Buffer comm_phase_id plus one (modulo 16), or zero when no Get_Next_Buffer has been issued

from session opening or connect on channel, to the current Get_Next_Buffer comm_phase_id, inclusive.

When received data is available from the channel, the Host shall use the comms_rcv APDU with the

comm_phase_id set to the last comms_rcv APDU comm_phase_id plus one (modulo 16), or zero when no

comms_rcv APDU has been issued from session opening or connect on channel. The buffer corresponding to

the comm_phase_id is considered as no longer available until the CICAM issues a Get_Next_Buffer APDU

describing a set of buffers which includes the said buffer.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 153

The Host shall stop issuing comms_rcv APDU when all the buffers available have been used. The Host shall

wait until the CICAM indicates availability of a new set of buffers before issuing a comms_rcv APDU, if

required.

CICAM Host

[1] comms_cmd(Get_Next_Buffer, comms_phase_id = 15)

[2] read data

[3] comms_rcv(comms_phase_id = 0, data)

[4] process data from Buffer 0

[5] comms_cmd(Get_Next_Buffer, comms_phase_id = 0)

[6] read data

[7] comms_rcv(comms_phase_id = 1, data)

[8] comms_rcv(comms_phase_id = 2, data)

[9] comms_rcv(comms_phase_id = 3, data)

[10] comms_rcv(comms_phase_id = 4, data)

[11] process data from Buffer 1

[12] comms_cmd(Get_Next_Buffer, comms_phase_id = 1)

[13] process data from Buffer 2

[14] comms_cmd(Get_Next_Buffer, comms_phase_id = 2)

[15] read data

[16] comms_rcv(comms_phase_id = 5, data)

[17] process data from Buffer 3

[18] comms_cmd(Get_Next_Buffer, comms_phase_id = 3)

[19] process data from Buffer 4 & 5

[20] comms_cmd(Get_Next_Buffer, comms_phase_id = 5)

Figure 14.1: CICAM Flow Control (Informative)

The Table 14.3 indicates availability of each of the 16 buffers, after several steps of the above flow control

figure.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 154

Table 14.3: Buffer availability in example flow figure

Buffer Id
STEPS

[1] [3] [5] [10] [12] [14] [16] [18] [20]

0 O X O O O O O O O

1 O O O X O O O O O

2 O O O X X O O O O

3 O O O X X X X O O

4 O O O X X X X X O

5 O O O O O O X X O

6 O O O O O O O O O

7 O O O O O O O O O

8 O O O O O O O O O

9 O O O O O O O O O

10 O O O O O O O O O

11 O O O O O O O O O

12 O O O O O O O O O

13 O O O O O O O O O

14 O O O O O O O O O

15 O O O O O O O O O

“O” means buffer available for the Host.

“X” means buffer not available for the Host.

The next available buffer to be used by the Host for data reception is marked with a bold “O”.

The transfer steps shown in Figure 14.1 are described below:

1) After a connection is successfully established on the channel, the CICAM issues Get_Next_Buffer with

comms_phase_id set to 15, to indicate to the Host that Buffers 0 to 15 may be filled .

2) The Host receives data on the channel.

3) The Host sends the received buffer using the Comms Rcv object with comms_phase_id set to 0.

4) The CICAM processes buffer 0.

5) The CICAM issues Get_Next_Buffer with comms_phase_id set to 0, to indicate to the Host that Buffer

0 may be filled.

6) The Host receives data on the channel.

7) The Host sends part of the received data using the Comms Rcv object with comms_phase_id set to 1.

8) The Host sends part of the received data using the Comms Rcv object with comms_phase_id set to 2.

9) The Host sends part of the received data using the Comms Rcv object with comms_phase_id set to 3.

10) The Host sends part of the received data using the Comms Rcv object with comms_phase_id set to 4.

11) The CICAM processes buffer 1.

12) The CICAM issues Get_Next_Buffer with comms_phase_id set to 1, to indicate to the Host that Buffer

1 may be filled.

13) The CICAM processes buffer 2.

14) The CICAM issues Get_Next_Buffer with comms_phase_id set to 2, to indicate to the Host that Buffer

2 may be filled.

15) The Host receives data on the channel.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 155

16) The Host sends the received buffer using the Comms Rcv object with comms_phase_id set to 5.

17) The CICAM processes buffer 3.

18) The CICAM issues Get_Next_Buffer with comms_phase_id set to 3, to indicate to the Host that Buffer

3 may be filled.

19) The CICAM processes buffers 4 and 5.

20) The CICAM issues Get_Next_Buffer with comms_phase_id set to 5, to indicate to the Host that

Buffers 4 and 5 may be filled.

14.1.4 Host Flow Control

With version 3 of the Low Speed Communication resource, the Host shall accept up to 16 buffers before flow

control is activated by the CICAM.

When the CICAM has to send data to the channel, the CICAM uses a comms_send APDU with

comms_phase_id set to the last comms_send APDU comm_phase_id plus one (modulo 16), or zero when no

comms_send APDU has been issued from session opening or connect on channel.

CICAM Host

[1] comms_send(comms_phase_id = 0, data)

[1] comms_send(comms_phase_id = 1, data)

[1] comms_send(comms_phase_id = 2, data)

[1] comms_send(comms_phase_id = 3, data)

[1] comms_send(comms_phase_id = 4, data)

[1] comms_send(comms_phase_id = 5, data)

[1] comms_send(comms_phase_id = 6, data)

[1] comms_send(comms_phase_id = 7, data)

[1] comms_send(comms_phase_id = 8, data)

[1] comms_send(comms_phase_id = 9, data)

[1] comms_send(comms_phase_id = 10, data)

[1] comms_send(comms_phase_id = 11, data)

[1] comms_send(comms_phase_id = 12, data)

[1] comms_send(comms_phase_id = 13, data)

[1] comms_send(comms_phase_id = 14, data)

[1] comms_send(comms_phase_id = 15, data)

[2] transmit data for

Phase Id 0 & 1

[3] comms_reply(Send_Ack, return_value = 1)

[6] comms_send(comms_phase_id = 0, data)

[7] transmit data 13 to 0

[8] comms_reply(Send_Ack, return_value = 0)

[4] transmit data for

Phase Id 2 to 12

[5] comms_reply(Send_Ack, return_value = 12)

Figure 14.2: Host Flow Control with 16 buffers (Informative)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 156

The acknowledgement of transmission through the channel of a set of consecutive buffers is indicated by the

Host by issuing a comms_reply APDU with comms_reply_id=Send_Ack and the return_value set to the

identifier of the last buffer of the buffer set. The set of buffers acknowledged for transmission is defined as the

last comms_reply APDU with comms_reply_id=Send_Ack return_value plus one (modulo 16), or zero when no

comms_reply APDU with comms_reply_id= Send_Ack has been issued from session opening or connect on

channel, to the current comms_reply return_value, inclusive.

The CICAM shall stop issuing the comms_send APDU when all the buffers that have been sent to Host for

transmission to the channel are not acknowledged. The CICAM shall wait until the Host acknowledges

transmission of a new set of buffers before issuing further comms_send APDU, if required.

The transfer steps shown in Figure 14.2 are described below:

1) After a connection is successfully established on the channel, the CICAM sends 16 buffers to the Host

with comms_phase_id from 0 to 15.

2) The Host transmits the buffer 0 and 1 (with comms_phase_id = 0 and comms_phase_id = 1).

3) The Host sends to the CICAM a comms_reply with comms_reply_id= Send_Ack and return_value = 1

to acknowledge the transmission of the set of buffers from comms_phase_id = 0 to comms_phase_id =

1.

4) The Host transmits the buffers 2 to 12.

5) The Host sends to the CICAM a comms_reply with comms_reply_id = Send_Ack and return_value =

12 to acknowledge the transmission of the set of buffers from comms_phase_id = 2 to

comms_phase_id = 12.

6) The CICAM fills the buffer 0 and send it to the Host with comms_phase_id = 0.

7) The Host transmits the buffers 13 to 0.

8) The Host sends to the CICAM a comms_reply with comms_reply_id = Send_Ack and return_value = 0

to acknowledge the transmission of the set of buffers from comms_phase_id = 13 to comms_phase_id

= 0.

14.1.5 Requirement for Buffers

 Buffers of up to 2048 bytes in length shall be supported in both directions. The CICAM may select

a buffer size lower than 2048 if required by sending a Set_Params command.

 The Host shall accept up to 16 buffers sent by the CICAM before flow control takes place.

 The maximum number of message bytes in comms_send() is 2048 bytes.

 The maximum number of message bytes in comms_rcv() is 2048 bytes.

14.1.6 Disconnection Behaviour

When a disconnection is initiated by the network endpoint, the Host shall transmit all pending receive buffers to

the CICAM and shall then send an unsolicited comms_reply() see last paragraph of EN 50221 [7] section

8.7.1.5. The Low Speed Communication session remains open and the CICAM may request another connection.

14.1.7 Data transfer

In order to transfer payload data between the CICAM and a network endpoint via the Host, an exchange of

APDUs between the Host and the CICAM is required as follows.

The CICAM breaks down its payload into chunks of buffer_size bytes. Buffers that are completely filled are

sent with a comms_send_more() APDU, the last (partial or full) buffer shall be sent with comms_send_last(). A

CICAM shall not send a partially filled buffer in a comms_send_more() APDU.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 157

The Host sends payload data received from the network to the CICAM using the comms_rcv_more() or

comms_rcv_last() APDUs. The Host breaks down its payload into chunks of buffer_size bytes. Buffers that are

completely filled are sent with a comms_rcv_more() APDU immediately. A partially filled buffer on a timeout

or a close of the network endpoint shall be sent with a comms_rcv_last() APDU.

The Host delivers a byte stream from the network to the CICAM that is packetized into comms_rcv_more() and

comms_rcv_last() APDUs. The CICAM shall interpret the payload as a byte stream and shall not rely on the

payload size of APDUs or on the comms_rcv_more() / comms_rcv_last() tag for interpreting the payload. If an

application requires the splitting of the received payload byte stream into messages and the detection of message

boundaries, this mechanism shall be provided by the protocol that runs on top of the LSC resource.

 14.2 Low Speed Communication IP Extension

The low-speed communications resource class as defined in EN 50221 [7] is enhanced to provide bi-directional

communications over an IP connection. This may be used to support Conditional Access functions and may be

used in conjunction with interactive services. Version 2 and above of the low-speed communications resource

supports an IP connection.

The Host IP stack shall comply with the following standards:

RFC768 (UDP)

RFC793 (TCP)

RFC791 (IPv4)

Support for IPv6 and IPv4 multicast is optional on the Host.

IPv4 multicast implementations shall comply with RFC1112 (IGMPv1). IPv6 support on the Host shall be

compliant to RFC2460 (IPv6) and RFC4443 (ICMPv6).

For all multicast connections, the protocol_type in the IP descriptor shall be UDP.

If the IP descriptor in the CICAM's comms_cmd APDU contains an invalid value or the requested connection

type is not available on the Host, the Host shall reject the connection attempt. This is performed by responding

with a comms_reply APDU with comms_reply_id set to Send_Ack and return_value set to 0 (see EN 50221,

section 8.7.1.5)

The Host supports only one connection per session, but the Host may support several sessions in parallel.

The communication messages are the same as described in EN 50221 [7] section 8.7.

The contents of the payload shall be in Network Byte Order.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 158

Figure 14.3: Transport packet format

On a TCP connection, the host may dispatch the payloads of a comms_send_more() or comms_send_last()

APDUs to the network immediately since TCP provides buffering and reliable transport. No data shall be lost

when using TCP.

On a UDP connection, the host shall buffer all incoming comms_send_more() payloads until it receives a

comms_send_last() or the size of all buffered payloads exceeds the size of all available send buffers. It shall

then write the data to the network in one step.

The host may read TCP data from the network in chunks of any length that is suitable for relaying the data in

comms_rcv_more() and comms_rcv_last() APDUs.

When reading UDP data from the network, the host should ensure that it reads complete datagram’s and no data

is discarded during the read. Each datagram read in this way should be split into comms_rcv_more() and

comms_rcv_last() APDUs.

14.2.1 Comms Cmd Modification

A new connection type is added to the connection descriptor object to provide the parameters for an IP

connection over the low speed communication resource.

Table 14.4: Connection Descriptor object coding

Syntax No. of bits Mnemonic
connection_descriptor() {

 connection_descriptor_tag /* see EN 50221 [7] */

 length_field()

 connection_descriptor_type

 if (connection_descriptor_type == SI_Telephone_Descriptor) {

 telephone_descriptor() /* see EN 300 468 [10] */
 }

 if (connection_descriptor_type == Cable_Return_Channel_Descriptor) {

 channel_id

 }

 if (connection_descriptor_type == IP_Descriptor) {

 IP_descriptor()

 }

 if (connection_descriptor_type == Hostname_descriptor) {

 Hostname_descriptor()

 }

}

24

8

8

uimsbf

uimsbf

uimsbf

Payload Header APDU

Payload Header

TCP or UDP

IP Payload Header IP

CICAM

HOST

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 159

The "connection_descriptor" table is modified to include the descriptor type for the IP connection.

Table 14.5: Connection Descriptor Type

connection_descriptor_type Type value

SI_Telephone_Descriptor 01

Cable_Return_Channel_Descriptor 02

IP_Descriptor 03

Hostname_descriptor (v3 and above) 04

All other values reserved

14.2.1.1 Comms Cmd IP_descriptor

The IP descriptor syntax is specified in Table 14.7

Table 14.6: IP Descriptor

Syntax No. of bits Mnemonic
IP_descriptor() {

 descriptor_tag

 descriptor_length

 IP_protocol_version

 IP_address

 destination_port

 protocol_type

}

8
8
8

128
16
8

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

descriptor_tag: the descriptor_tag for the IP_descriptor is 0xCF.

descriptor_length: the descriptor length is an 8-bit field specifying the total number of bytes of the data portion

of the IP_descriptor following the byte defining the value of this field.

IP_protocol_version: this field defines the IP protocol version.

Table 14.7: Protocol Versions

IP_Protocol_version Type value

reserved 0x00

IPv4 0x01

IPv6 0x02

All other values reserved 0x03-0xFF

IP_address: this field defines the IP address destination. In IPv4 the 12 first bytes are equal to "0".

destination_Port: this field defines the destination port to be use by the Host. The reception port is managed by

the Host.

protocol_type: this field is used to define the protocol to use; UDP or TCP.

Table 14.8: Protocol Types

protocol_type Type value

reserved 0x00

TCP 0x01

UDP 0x02

All other values reserved 0x03-0xFF

14.2.1.2 Comms Cmd Hostname_descriptor

Version 3 and above of the low-speed communications resource support the Hostname_descriptor.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 160

Table 14.9: Hostname Descriptor

Syntax No. of bits Mnemonic
hostname_descriptor() {

 descriptor_tag

 descriptor_length

 protocol_type

 destination_port

 for (i=0; i<n; i++) {

 hostname_byte

 }

}

8
8
8

16

8

uimsbf
uimsbf
uimsbf
uimsbf

uimsbf

descriptor_tag: the descriptor_tag for the hostname_descriptor is 0xCD.

descriptor_length: the descriptor length is an 8-bit field specifying the total number of bytes of the data portion

of the hostname_descriptor following the byte defining the value of this field.

protocol_type: this field is used to define the protocol to use; UDP or TCP.

destination_Port: this field defines the destination port to be use by the Host. The reception port is managed by

the Host.

hostname_byte: data bytes making up the Host name, i.e. FQDN. Refer to RFC1123 [40], section 2.1.

14.2.1.3 Maximum Number of Concurrent Connections

A CICAM may ask a Host to open additional Low Speed Communication sessions for concurrent

communication over two or more IP connections. Depending on the Host capabilities, the Host may accept or

refuse such additional connections. The refusal may manifest itself to the CICAM as an error on opening a new

session on the LSC resource or as comms_reply (Connect_Ack) with a non-specific error (as per appendix

E.14.1).

The new session error typically occurs when the Host has insufficient memory available for buffering a new

connection. The comms_reply error occurs when the Host is not able to setup a connection for the requested

application–level protocol.

The CICAM must be robust and handle both error situations. The CICAM should manage the Host’s maximum

number of concurrent connections by closing connections that are not in use or by requesting a smaller buffer

size by sending a comms_cmd (Set_Params).

14.2.1.4 Set_Params behaviour

The comms_cmd() APDU are related to the Set_Params command as described in section 14.1.1. This section

clarifies the Set Params behaviour required. The Set_Params command shall be sent after a comms_cmd

(connect_on_channel) before any transfer is initiated as per R206-001:1998 [24], as shown below:

CICAM Commands Host

A session with the low speed

communication resource is

requested

(... open_session ...)



If there is free resource then a

session is granted.

Request for a connection on a

channel.

comms_cmd

(Connect_on_Channel)



Attempt to connect on the channel.

 comms_reply (Connect_Ack)



Connection completes with status.

Configure the reception parameters

and buffer size.

comms_cmd (Set_Params)



 comms_reply (Set_Params_Ack)



The communication parameters are

set up.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 161

CICAM Commands Host

After a connection is successfully

established on the channel, the

CICAM issues Get_Next_Buffer

with comms_phase_id set to 15, to

indicate to the Host that Buffers 0

to 15 may be filled .

comms_cmd (Get_Next_Buffer,

comms_phase_id = 15)



The Host receives data on the

channel.

 comms_rcv (comms_phase_id = 0,

data)



The Host sends the received buffer

using the Comms Rcv object with

comms_phase_id set to 0.

14.2.2 Low-Speed Communications Resource Types Modification

New values of Low-speed communications resources types are added to support the IP connection.

9 8 7 6 5 4 3 2 1 0

device type device no.

Figure 14.4: Communications Resource Type Structure

The device type field is defined in Table 14.10.

Table 14.10: Communications Device Types

Description Value

Modems 0x00-0x3F

Serial Ports 0x40-0x4F

Cable return channel 0x50

reserved 0x51-0x5F

IP connection 0x60

reserved 0x61-0xFF

NOTE: Table supersedes 8.8.1.1 in EN 50221 [7]

The device no. shall be zero for device type IP connection.

14.3 CAM Upgrade Resource and Software Download

14.3.1 Introduction

CICAM software is becoming increasingly complex, in order to guarantee the functionality and security of a

CICAM in the field a software upgrade may be necessary. The firmware upgrade may be available on the

network using information contained in one or more transport streams.

DVB CICAMs are currently able to perform a software upgrade but the existing specification does not provide

any standardised interface between the Host and CICAM to coordinate a software download. This specification

introduces a standardised method of handling a CICAM software upgrade enabling the CICAM to negotiate

with the Host and CA System to effect an upgrade.

The resource interface is mandated by this specification and ensures that the software upgrade is not left to

proprietary methods of signalling. This section defines the signalling and synchronisation between the CICAM

and Host, the actual carriage and signalling of the CICAM software upgrade is not defined by this specification

and may use standardised broadcast software upgrade schemes such as DVB-SSU or a proprietary delivery

mechanism defined by the Operator or CA provider.

The CAM upgrade may initiate a tune operation by the Host under CICAM control as part of the upgrade

process using either the Host control tune() APDU or Host control tune_broadcast_req() APDU. The tune() and

tune_broacast_req() APDUs are mandated by this specification.

14.3.2 Principles

The CICAM upgrade process considers different requirements from:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 162

 CA provider.

 Service operator.

 Host (TV or recording device).

A typical conditional access CICAM provides two different modes of software upgrade operation called

"delayed" and "immediate" satisfying different requirements of the CA System:

Immediate mode is used when a software upgrade is required immediately. The CICAM ceases to process CA

protected services until an upgrade has successfully completed.

Delayed mode is used when a software upgrade may be deferred. The CICAM continues to process CA

protected services and allows the upgrade to be rescheduled to occur at a more appropriate time. A delayed

software upgrade may be determined in the CICAM by a version number difference or some other CA System

criteria. This may be determined by the Host, minimising service interruption, or controlled by the user.

The CICAM shall not make any request for a software upgrade unless a CA service has been selected by a

ca_pmt. The CICAM may be on a transponder that carries or signals software upgrade availability, unless a CA

service is currently selected the CICAM shall not initiate any upgrade interaction. The CICAM may silently

proceed to download the upgrade provided that there is no interruption to the transport stream and with the

knowledge that the transponder may be changed at any time.

14.3.3 CAM Upgrade Process

The basic software upgrade process is shown in Figure 14.5 as a sequence of steps:

(1) start process

Upgrade trigger in broadcast

(4) Open session for CICAM

upgrade resource

(2) CICAM receives specific

signalling from broadcast

(3) CICAM receives CA-PMT

with appropriate CA system ID

(5) CICAM sends

firmware upgrade

message to host

(6) CICAM receives firmware

upgrade reply from host

(7) Is this

immediate

download ?

(8) perform immediate

download process

(9) perform delayed

download process

Step 1:

Wait for upgrade trigger

Step 2:

Wait for CA service

selection

Step 3:

Initiate CICAM upgrade

resource and wait for

host response

Step 4:

Launch appropriate

upgrade process

Figure 14.5: CAM Upgrade Process

The process is defined as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 163

1) Wait for a trigger signalling the availability of a new software upgrade for the CICAM. The CA

System and service operator determines how the Head-end system signals firmware upgrade

availability to the CICAM which shall be recognised in the broadcast.

2) Wait for the Host to perform a service selection to the CA Service, determined by the CA System Id in

the current ca_pmt.

3) The CAM_upgrade resource is opened and the CICAM informs the Host of the software upgrade

availability including the upgrade mode. The CICAM waits for the Host reply to determine how the

upgrade shall proceed.

4) The Host response and download mode determines how the CICAM shall process the software

download which may be initiated.

14.3.3.1 Delayed Process

When a delayed upgrade is requested by the head-end, the delayed process is launched as soon as the CICAM

receives a response from the Host.

According to the Host response, the CICAM has the following states:

If the Host's response is "No" then CICAM closes the CAM_upgrade session and the CAM_upgrade process is

stopped.

If the Host's response is "Yes" then CICAM optionally opens a session on DVB Host Control to send a Tune

request message and to perform the software download on the CICAM

If the Host's response is "Ask" then the CICAM displays an MMI dialogue to inform the End User about this

CAM upgrade availability. The CICAM launches or stops the software download process depending on the

user's feedback (accept or decline).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 164

(1) Init delayed upgrade

(2) Host

answered?

(9) close cam_upgrade

session

(3) Display feedback MMI

(6) Tune to appropriate

frequency

(7) CICAM firmware upgrade

in progress n%

(8) Update complete

Yes

Ask user

No

Accept

(4) Wait for user

feedback
Cancel

(5) CICAM firmware upgrade

in progress 0%

Figure 14.6: Delayed process

14.3.3.2 Immediate Process

When an immediate upgrade is requested by the head-end the CICAM stops CA descrambling until the upgrade

has been successfully acquired and installed, an outline of the process is shown in Figure 14.7.

The CICAM notifies the Host of the upgrade using the CAM_upgrade resource and awaits the response which is

processed as follows.

When the Host reply is "Yes" the CICAM initiates a software upgrade process immediately. This may require

that the CICAM opens a session to the Host Control Tune resource to perform a tuning operation to acquire the

upgrade.

When the Host reply is "Ask" the CICAM displays a MMI dialogue to inform the user about the upgrade

availability and request permission to perform the upgrade. The CICAM shall either continue with the upgrade

or stop the process depending on the user response (accept or decline). When the user has declined the upgrade,

the user will not be able to view any CA services as the CICAM requires the upgrade to descramble the service.

When the user has accepted the upgrade then the Host shall allow the software upgrade to complete. User

intervention shall be disabled until the upgrade has completed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 165

(3) host

answered?

(1) init immediate upgrade

(2) stop descrambling

(4) Display feedback MMI

(5) Wait for user

feedback

(7) Tune to appropriate

frequency

(8) CICAM firmware upgrade

in progress n%

(9) Update complete

Ask user

Yes

Cancel

Accept
(6) CICAM firmware upgrade

in progress 0%

Figure 14.7: Immediate Process

14.3.4 CAM Upgrade Protocol

14.3.4.1 Delayed mode

For a delayed upgrade, the CICAM waits for the Host to select a CA Service with a ca_pmt which includes a

CA descriptor with a matching upgrade CA system ID. When such a service is selected the CICAM opens the

CAM upgrade resource, if it is not already open, and sends a cam_firmware_upgrade APDU to initiate a delayed

upgrade process.

The Host shall respond to the request with a cam_firmware_upgrade_reply including a status in the "answer"

parameter, the operating mode of the Host is likely to determine the response i.e. user control or unattended. The

CICAM shall use the Host answer to determine how to proceed with the upgrade process.

If the upgrade has been accepted the CICAM shall first send a cam_firmware_upgrade_progress message

indicating that a software upgrade process has started. The CICAM may then use the DVB Host Control APDUs

to send one or more tune() or tune_broadcast() requests to locate and select the download service, the progress

of the download shall then be communicated every 20 seconds with cam_firmware_upgrade_progress messages.

When the upgrade process has completed then the CICAM sends a cam_firmware_upgrade_complete APDU.

If the upgrade is not accepted it may be re-attempted next time the Host selects a CA Service with a ca_pmt

which includes a CA descriptor with a matching upgrade CA system ID. The CICAM shall not re-attempt an

upgrade before this time. The CICAM may choose to delay an upgrade attempt until some later time when the

Host again selects a CA Service with a ca_pmt which includes a CA descriptor with a matching upgrade CA

system ID.

The cam_firmware_upgrade_complete APDU indicates to the HOST whether a CICAM reset is required to

finish the upgrade process. On receipt of the cam_firmware_upgrade_complete APDU, the Host shall perform

any requested reset and may regain control of the tuner.

The Host shall prevent user interaction from affecting the download as soon as the first cam_firmware_upgrade_

progress APDU has been received until a cam_firmware_upgrade_complete. If the Host does not receive a

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 166

cam_firmware_upgrade_progress APDU for a period of 60 seconds then it may assume that the CICAM has

failed and attempt recovery of the Host.

The delayed upgrade sequence is shown in Figure 14.8.

TS

CI Plus

CAM

CI Plus

HOST

- Step 1-

Software Download

Trigger from External

event

Open-session request

Open-session Confirm

cam_firmware_upgrade

cam_firmware_upgrade_reply

cam_firmware_upgrade_complete

 cam_firmware_upgrade_progress

10, 20, …100 %

-Step 3-

Launch the

CAM_Upgrade

process

- Step 6-

Wait for the end of

process before

restarting

-Step 5-

If User’s feedback is OK.

Tune to download service

using the Host control

resource protocol.

New firmware

version available

on the air

MMI Message to ask User

MMI_Reply Msg with User

feedback

-Step 4-

If Host’s Answer is Ask..

Send MMI Msg to End user to

get feedback

- Step 2-

Wait for CA service

availability

CAPMT including the CAID

descriptor

 cam_firmware_upgrade_progress 0%

Host Control resource

Figure 14.8: Delayed Upgrade protocol

14.3.4.2 Immediate mode

For an immediate upgrade, the CICAM shall block the descrambling of all CA System Id services until the new

firmware upgrade has been installed. When a user selects a CA scrambled service, the CICAM opens the CAM

upgrade resource, if it is not already open, and sends a cam_firmware_upgrade APDU to initiate an immediate

upgrade process.

On receipt, the Host responds with a cam_firmware_upgrade_reply indicating the Host availability with the

"answer" parameter. Depending on the response from the Host the CICAM shall either stop the upgrade

negotiation or proceed to initiate the upgrade process.

If the upgrade has been accepted the CICAM shall first send a cam_firmware_upgrade_progress message

indicating that a software upgrade process has started. The CICAM may then use the DVB Host Control APDUs

to send one or more tune() requests to locate and select the download service, the progress of the download shall

then be communicated every 20 seconds with cam_firmware_upgrade_progress messages. When the upgrade

process has completed then the CICAM sends a cam_firmware_upgrade_complete APDU.

If the upgrade is not accepted it may be re-attempted next time the Host selects a CA Service with a ca_pmt

which includes a CA descriptor with a matching upgrade CA system ID. The CICAM shall not re-attempt an

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 167

upgrade before this time. The CICAM may choose to delay an upgrade attempt until some later time when the

Host again selects a CA Service with a ca_pmt which includes a CA descriptor with a matching upgrade CA

system ID.

The cam_firmware_upgrade_complete APDU indicates to the HOST whether a CICAM reset is required to

finish the upgrade process. On receipt of the cam_firmware_upgrade_complete APDU, the Host shall perform

any requested reset and may regain control of the tuner.

INBAND

CI Plus

CAM

CI Plus

HOST

- Step 1-

Software Download

Trigger from an

external event

Open-session request

- Step 2-

Wait for CA service

availability

Open-session Confirm

 cam_firmware_upgrade

cam_firmware_upgrade_Reply

cam_firmware_upgrade_complete

 cam_firmware_upgrade_progress

1, 10, 23,…100%

-Step 3-

Launch the

CAM_Upgrade

process

- Step 6-

Wait for the end of

process before

restarting

Host Control resource

-Step 5-

If user feedback is OK.

Initiate the download and

select a service using the Host

control resource protocol

New firmware

version available

on the air

MMI Message to ask User

MMI_Reply Msg with User

feedback

-Step 4-

If Host’s Answer is Ask.

Send MMI Msg to get user

confirmation.

CAPMT including

CAID descriptor

 cam_firmware_upgrade_progress 0%

Figure 14.9: Immediate Upgrade protocol

The Host shall prevent user interaction from affecting the download as soon as the first cam_firmware_upgrade_

progress APDU has been received until a cam_firmware_upgrade_complete. If the Host does not receive a

cam_firmware_upgrade_progress APDU for a period of 60 seconds then it may assume that the CICAM has

failed and attempt recovery of the CICAM.

14.3.4.3 Upgrade Interruption

The CICAM upgrade process may be interrupted for a number of reasons:

 CICAM Reset.

 Power off.

CICAM Reset
A CICAM upgrade process, irrespective of the mode, shall be fully reinitiated when the CA system ID service is

selected.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 168

Power Off / Recovery
The Host and CICAM may be subject to a power off event at any time during the upgrade operation, The

CICAM shall be able to recover and initiate a upgrade on selection of a CA system ID service. The CICAM

shall not recover the upgrade that causes any interruption to the transport stream or user (via MMI Messages)

while not on a CA system ID service.

14.3.4.4 Reset Implementation

When CICAM has completed a firmware upgrade, it shall send the cam_firmware_upgrade_complete APDU

with the appropriate reset type.

14.3.4.5 Host Operation

1) The Host shall support the CAM_upgrade resource and DVB Host Control Resource management.

2) The Host operating mode shall determine the return status to the CICAM through the cam_firmware_

upgrade_reply message.

3) The Host response to the cam_firmware_upgrade_reply message shall respect Table 14.12.

Table 14.11: Host upgrade response states

 Delayed Process Immediate Process

User Mode ASK ASK

Unattended Mode NO YES

Service Mode YES YES

4) In a normal operating mode (user mode), the answer shall be ASK (0x02). This implies that the user is

going to watch a CA service and the CICAM provides an indication to the user of the upgrade

availability.

5) In an unattended mode (i.e. recording), in a delayed upgrade the response is likely to be NO (0x00)

allowing the recording to continue without interruption, any upgrade would be postponed to a later

more convenient time. For an immediate upgrade then the response shall be YES (0x01) where the

upgrade would be initiated as soon as possible and may result in part of any programme being missed.

6) In a service mode (i.e. Host software upgrade, network evolution etc.) the response may be YES (0x01)

for all types of upgrade process and the CICAM may start the upgrade process immediately.

7) The CICAM shall manage progress notifications to the user making use of the MMI.

8) The Host shall manage the CICAM reset on completion of the upgrade and the Host shall resume

normal operation with the CICAM in all respects, including timeout and reset operation.

14.3.4.6 Upgrade Cancellation

If the CICAM cancels a firmware upgrade, then it shall send a cam_firmware_upgrade_complete APDU with

the reset type set to 0x02 "no reset required".

14.3.5 CAM_Upgrade Resource

The CAM_Upgrade resource enables the CICAM to coordinate the CICAM software upgrade process with the

Host. The messages allow the CICAM to initiate a download with some agreement from the Host device,

communicate the progress of the upgrade and finally indicate completion. The Host is provided with knowledge

of the upgrade urgency enabling the Host to determine when user intervention is required depending on its

current operating mode.

14.3.5.1 CAM_Upgrade Resource APDUs

The CICAM opens the CAM_Upgrade resource when a firmware upgrade is required. The CAM_Upgrade

resource supports the following objects:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 169

Table 14.12: CAM_Upgrade APDUs

CAM Upgrade APDU Direction
cam_firmware_upgrade CICAM  HOST
cam_firmware_upgrade_reply CICAM  HOST
cam_firmware_upgrade_progress CICAM  HOST
cam_firmware_upgrade_complete CICAM  HOST

14.3.5.2 cam_firmware_upgrade APDU

The CICAM shall transmit the cam_firmware_upgrade APDU to the Host to inform it about the upgrade process

mode required by the CA system or system operator. The object includes information of the download urgency

and estimated completion time.

Table 14.13: Firmware Upgrade Object Syntax

Syntax No. of bits Mnemonic
cam_firmware_upgrade() {

 cam_firmware_upgrade_tag

 length_field()

 upgrade_type

 download_time

}

24

8
16

uimsbf

uimsbf
uimsbf

cam_firmware_upgrade_tag: see Table L.1 in Annex L.

upgrade_type: this parameter identifies the type of CAM firmware upgrade requested:

0x00: Delayed Upgrade mode.

0x01: Immediate Upgrade mode.

download_time: The time in seconds, estimated to complete the firmware upgrade process. If the value is

0x0000 then the duration is unknown.

14.3.5.3 cam_firmware_upgrade_reply APDU

The Host response to the cam_firmware_upgrade APDU. The CICAM shall not start the download operation

until it receives this reply.

Table 14.14: Firmware Upgrade Reply APDU Syntax

Syntax No. of bits Mnemonic
cam_firmware_upgrade_reply() {

 cam_firmware_upgrade_reply_tag

 length_field()

 answer

}

24

8

uimsbf

uimsbf

cam_firmware_upgrade_reply_tag: see Table L.1 in Annex L.

answer: The Host's answer has the following possible values:

 0x00 means NO.

 0x01 means YES.

 0x02 means ASK the user. The CICAM shall open a MMI dialogue to get feedback from the user.

 0x03-0xFF Reserved for future use.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 170

14.3.5.4 cam_firmware_upgrade_progress APDU

After the CICAM has initiated its upgrade, it transmits the cam_firmware_upgrade_progress() APDU to the

Host to inform it about the software download progress. This message shall be sent periodically, every 20

seconds, from the CICAM to Host. The Host uses this object to ensure that the CICAM remains operational

during a software upgrade process. The CICAM shall ensure that the percentage value increases at least once

every 60s until the upgrade complete is issued otherwise the CICAM may be subject to a reset by the Host.

Table 14.15: Firmware Upgrade Progress APDU Syntax

Syntax No. of bits Mnemonic
cam_firmware_upgrade_progress() {

 cam_firmware_upgrade_progress_tag

 length_field()

 download_progress_status

}

24

8

uimsbf

uimsbf

cam_firmware_upgrade_progress_tag: see Table L.1 in Annex L.

download_progres_status: The percentage value of the CAM upgrade progress, in the range 0 to 100 (i.e. a

percentage complete).

14.3.5.5 cam_firmware_upgrade_complete APDU

When the CICAM has completed its upgrade, it transmits the cam_firmware_upgrade_complete() APDU to the

Host. The object informs the Host that the upgrade has completed and whether the CICAM requires a reset. Any

Host Control resources used during the upgrade process shall be closed by the CICAM before issuing this

object.

Table 14.16: Firmware Upgrade Complete APDU Syntax

Syntax No. of bits Mnemonic
cam_firmware_upgrade_complete() {

 cam_firmware_upgrade_complete_tag

 length_field()

 reset_request_status

}

24

8

uimsbf

uimsbf

cam_firmware_upgrade_complete_tag: see Table L.1 in Annex L.

reset_request_status: This contains the status of the reset for the CICAM.

Table 14.17: reset_request_status types

Value Interpretation

0x00 PCMCIA reset requested – The Host sets the RESET signal active then inactive.

0x01 CI Plus CAM reset requested – Host sets the RS flag and begins interface
initialisation

0x02 No reset required – Normal Operation continues

0x03 – 0xFF reserved

Note: If the CICAM wishes to cancel the firmware upgrade, it may send the
cam_firmware_upgrade_complete APDU with no reset requested. Normal operation shall
continue if the Host receives this APDU.

14.4 Application MMI Resource

The Application MMI Resource, TS 101 699 [8], is extended to permit an exchange of file and data in both

directions, this permits status information to be returned from the application domain to the module. These

extensions shall only be used by the CI Plus Application Domain to transfer file or private data pipe

information. The Application MMI resource version remains at 1 and the CI Plus extensions define the file

naming conventions that shall be used in the CI Plus Application Domain "CIEngineProfile1".

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 171

14.4.1 File Naming Convention

The Host shall always include “CI://” at the start of any file name used during Application MMI resource file

operations to ensure interoperability with existing CICAMs. Any path included in a file name shall be fully

resolved, it shall not contain relative path components e.g. “..”. To ensure interoperability with existing Hosts,

the CICAM shall resolve any of the following MHEG file references:

 /myDir/myFile

 //myDir/myFile

 /myFile

 //myFile

 CI:/myDir/myFile

 CI://myDir/myFile

 CI:/myFile

 CI://myFile

14.4.2 FileRequest

The FileRequest message is extended (see Table 14.18) to allow the transmission to the module of either a file

request as defined in TS 101 699 [8] or to establish a private data pipe between the Host and the module.

Applications may perform asynchronous file requests of type File and multiple FileRequests may be issued by

the Host without waiting for a FileAcknowledge (i.e. the file requests are not serialised). The CICAM shall

queue the requests and return a FileAcknowledge for each FileRequest. The CICAM shall minimally be capable

of managing 8 outstanding FileRequests at any one time.

For messages of type File the FileResponse shall return the data as soon as it becomes available which may

result in FileResponse messages being received in a different order than originally requested. Messages of type

Data shall preserve order and shall be handled sequentially by the CICAM and return a FileAcknowlegde in the

same order as the FileRequest.

Table 14.18: FileRequest Message

Syntax No. of bits Mnemonic
FileReq() {

 FileReqTag

 length_field()

 RequestType

 if (RequestType == 0) {

 for (i=0; i<(n-1); i++) {

 FileNameByte

 }

 }

 if (RequestType == 1) {

 for (i=0; i<(n-1); i++) {

 DataByte

 }

 }

}

24

8

8

8

uimsbf

bslbf

bslbf

bslbf

RequestType: An 8-bit field that defines the type of request being made by the Host. The RequestType values

are defined in Table 14.19.

Table 14.19: FileRequest RequestType values

RequestType Value

File 0x00

Data 0x01

Reserved for future use 0x02-0xff

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 172

FileNameByte: A byte of the filename requested.

DataByte: A byte of the data to be sent to the Module.

14.4.3 FileAcknowledge

The FileAcknowledge is extended (see Table 14.20) to permit the module to return either the requested file

bytes or data pipe to the Host for CI Plus Application MMI messages.

Table 14.20: FileAcknowledge Message

Syntax No. of bits Mnemonic
FileAck() {

 FileAckTag

 length_field()

 Reserved

 FileOK

 RequestType

 if (RequestType == File) {

 FileNameLength

 for (i=0; i<FileNameLength; i++) {

 FileNameByte

 }

 FileDataLength

 for (i=0; i<FileDataLength; i++) {

 FileDataByte

 }

 }

 if (RequestType == Data) {

 for (i=0; i<(n-1); i++) {

 DataByte

 }

 }

}

24

7
1
8

8

8

32

8

8

uimsbf

bslbf
bslbf
bslbf

uimsbf

bslbf

uimsbf

bslbf

bslbf

FileOK: A 1-bit field is set to "1" if the file is available or this is an acknowledgement response to a

FileRequest message with a RequestType of data, otherwise it shall be "0".

RequestType: An 8-bit field that defines the type of request being made by the Host. The RequestType values

are defined in Table 14.21.

Table 14.21: FileAcknowledge RequestType Values

RequestType Value

File 0x00

Data 0x01

Reserved for future use 0x02-0xff

FileNameLength: The number of bytes in the filename.

FileNameByte: The name of the file requested by the Host. This allows the Host to asynchronously request

multiple file transfers before the acknowledgement is received as the acknowledgment identifies the file of the

original request. The file name returned shall be the same as that supplied in the original FileRequest.

FileDataLength: The length of the contents of the file in bytes.

FileDataByte: A byte of the file data that has been retrieved. Note that APDUs are NOT limited to 65535 bytes.

See Annex E.9.

DataByte: A byte of the data that has been sent to the Host.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 173

14.4.4 AppAbortRequest

The Host or the module may pre-empt the CI Plus application domain which may be torn down immediately

without waiting for a AppAbortAcknowledge. The Host shall send an AppAbortRequest APDU to the

CICAM when the application closes, this includes, but is not limited to, when the application engine is denied

permission to start by the Host, application fails to start, application exits through an error or when the

application naturally exits. The AppAbortRequest abort codes for the CI Plus Application domain are defined in

Table 14.22.

A CICAM is recommended to explicitly terminate any existing running application with a AppAbortRequest

before starting a new application with RequestStart as the order of a AppAbortRequest (existing application

closing) and RequestStartAck (new application starting) cannot be guaranteed by the Host.

Table 14.22: Application Abort Codes

AbortReqCode Meaning

0x00 Reserved for future use.

0x01 User Cancel – The user has initiated termination of the application domain.

0x02 System Cancel – The system has pre-empted the application domain to perform another task.

0x03-0xff Reserved for future use.

14.5 Application MMI Resource v2

The Application MMI Resource, TS 101 699 [8] protocol is extended to permit the caching of content in the

Host device to speed up CI application execution. These extensions shall only be used by the CI Plus

Application Domain to transfer file or private data pipe information with version 2 of the Application MMI

resource.

The caching mechanism is provided by a new RequestType called FileHash which allows the Host to compute a

MD5 hash of the file content and enables the Host to request a file from the CICAM with both the filename and

a Host computed content hash. On receiving the FileHash request the CICAM uses the file hash to determine if

the file content has changed, if the CICAM computed file hash is the same as the hash in the request message

then the file content is not returned to the Host and an indication is provided in the response message that the

file content remains unchanged. If the file hash is different then the CICAM returns the new file contents.

This file hash mechanism allows the communication bandwidth between the Host and the CICAM to be reduced

when existing content has already been acquired thereby speeding up the application execution.

The Application MMI Resource v2 also includes a mechanism for the RequestType to be extended in the future

without necessitating a version increment of the resource.

A CICAM is required to support v1 and v2 of the Application MMI Resource. A Host is required to support the

Application MMI resource v1 and may optionally support v2 in addition to v1. Unless otherwise stated, the

behaviour of Application MMI resource v1 is identical to Application MMI resource v2 for RequestType File

and Data.

14.5.1 FileRequest v2

The FileRequest message is extended (see Table 14.23) to included support for hashed file transfers The syntax

is identical to version 1 for RequestType File and Data.

Applications may perform asynchronous file requests of type File and FileHash. Multiple FileRequests may be

issued by the Host without waiting for a FileAcknowledge (i.e. the file requests are not serialised). The CICAM

shall queue the requests and return a FileAcknowledge for each FileRequest. The CICAM shall minimally be

capable of managing 8 outstanding FileRequests at any one time.

For messages of type File and FileHash the FileResponse shall return the data as soon as it becomes available

which may result in FileResponse messages being received in a different order than originally requested.

Messages of type Data shall preserve order and shall be handled sequentially by the CICAM and return a

FileAcknowlegde in the same order as the FileRequest.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 174

Table 14.23: FileRequest Message

Syntax No. of bits Mnemonic
FileReq() {
 FileReqTag 24 uimsbf
 length_field()
 RequestType 8 bslbf
 if (RequestType == File) {
 for (i=0; i<(n-1); i++) {
 FileNameByte 8 bslbf
 }
 }
 if (RequestType == Data) {
 for (i=0; i<(n-1); i++) {
 DataByte 8 bslbf
 }
 }
 if (RequestType == FileHash) {
 FileHash 128 bslbf
 for (i=0; i<(n-17); i++) {
 FileNameByte 8 bslbf
 }
 }
}

RequestType: This 8-bit field defines the type of request being made by the Host. The RequestType values are

defined in Table 14.24. The Host shall not send any request type other than File (0x00), Data (0x01) or FileHash

(0x02) unless compatibility with the CICAM has been confirmed, refer to section 14.4.4, Request Type

Discovery v2.

Table 14.24: RequestType values

RequestType Description Value

File A file is being requested without any version control. 0x00

Data A data item is being requested, 0x01

FileHash A file is being request with a hashed version field. 0x02

ReqTypes A list of supported RequestType is being requested 0x03

Reserved for future use Reserved for future use 0x04-0x7f

User defined User defined 0x80-0xff

FileNameByte: A byte of the filename requested or a data pipe byte to send to the module. The interpretation of

the byte is determined by the RequestType.

DataByte: A byte of the data to be sent to the module.

FileHash: This 128-bit field is set to the MD5 hash of the contents of the file on the Host with the filename sent

as part of this message. The MD5 algorithm is as defined in RFC 1321.

14.5.2 FileAcknowledge v2

The FileAcknowledge is extended (see Table 14.25) to permit the module to return either the requested file

bytes or data pipe to the Host for CI Plus Application MMI messages. An extended status of the original request

is included in v2 of the response.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 175

Table 14.25: FileAcknowledge Message

Syntax No. of bits Mnemonic
FileAck() {
 FileAckTag 24 uimsbf
 length_field()
 Reserved_zero 6 bslbf
 RequestOK 1 bslbf
 FileOK 1 bslbf
 RequestType 8 uimsbf
 if (RequestType == File) ||
 (RequestType == FileHash) {
 FileNameLength 8 uimsbf
 for (i=0; i<FileNameLength; i++) {
 FileNameByte 8 bslbf
 }
 FileDataLength 32 uimsbf
 for (i=0; i<FileDataLength; i++) {
 FileDataByte 8 bslbf
 }
 }
 if (RequestType == Data) {
 for (i=0; i<(n-1); i++) {
 DataByte 8 bslbf
 }
 }
 if (RequestType == ReqTypes) {
 for (i=0; i<(n-1); i++) {
 ReqTypeByte 8 uimsbf
 }
 }
}

Reserved_zero: This 6-bit field is reserved for future use and shall be set to zero.

RequestOK: This 1-bit field is interpreted in the context of a RequestType only according to Table 14.26. The

field shall be set to "0" when the field value is unused.

Table 14.26: RequestOK status Values

Request
Type

Request

RequestOK=0 RequestOK=1

0x00 File Unused, field value ignored.

0x01 Data Unused, field value ignored.

0x02 FileHash The request failed the file was not found
or the request was invalid.

The request succeeded, the FileOK field

indicates whether the file has changed
or not.

0x03 ReqTypes Unused, field value ignored.

0x04-0xff Reserved Unused, field value ignored.

FileOK: This 1-bit field is interpreted in the context of a RequestType only according to Table 14.27. The field

shall be set to "0" when the RequestType is unknown.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 176

Table 14.27: FileOK status Values

Request
Type

Request

FileOK=0 FileOK=1

0x00 File The file was not found or is not available. The requested file is available and the
contents are included in this
acknowledgement message.

0x01 Data The data was not found or is not
available.

This is a successful acknowledgement
response and data contents may be
included in this acknowledgement
message.

0x02 FileHash When RequestOK=1 the file contents

have not changed and match the file
hash.
When RequestOK=0 the request failed.

The file contents have changed and do
not match the requested file hash. The
new file contents are included in this
acknowledgement message.

0x03 ReqTypes An error occurred during the request. This is a successful acknowledgement
response and the message contains a
list of supported RequestTypes of the
CICAM.

0x04-0xff Reserved Command unknown or failed. Reserved shall not be set

RequestType: This 8-bit field defines the type of request being made by the Host. The RequestType values are

defined in Table 14.24.

FileNameLength: The number of bytes in the filename.

FileNameByte: The name of the file requested by the Host. The return of the requested file name allows the

Host to asynchronously request multiple file transfers before the acknowledgement is received as the

acknowledgment identifies the file of the original request. The file name returned shall be the same as that

supplied in the original FileRequest.

FileDataLength: The length of the contents of the file in bytes. This field shall be set to zero on a RequestType

of FileHash when the file exists on the CICAM and the host FileHash is identical to the file hash of the CICAM

i.e. where the return status information is RequestOK=1 and FileOK=0.

FileDataByte: A byte of the file data that has been retrieved. Note that APDUs are NOT limited to 65535 bytes.

See Annex E.12.

DataByte: A byte of the data that has been sent to the Host.

ReqTypeByte: This 8-bit field contains the supported RequestType of the CICAM. Each RequestType

supported by the CICAM shall be included in the response and shall be presented in ascending numerical order.

14.5.3 RequestType Discovery v2

Version 2 of the Application MMI resource allows the Host to query the RequestTypes that are supported by the

CICAM to allow additional RequestTypes to be added to the Application MMI resource without necessitating a

version increment of the resource. A Host shall only use RequestTypes File, Data, FileHash and ReqTypes.

RequestTypes other than File, Data, FileHash and ReqTypes may only be used by the Host after first querying

the CICAM to confirm the presence of the required RequestType. The RequestType may not be used by the

Host if it is not reported by the CICAM. A CICAM shall be robust in the presence of a unknown RequestType

and shall always return a FileOK status of “0".

To query the CICAM supported RequestTypes then the Host sends a FileRequest() message with a RequestType

ReqTypes (0x03). The CICAM shall respond with a FileAcknowledge() message with a RequestType ReqTypes

(0x03), FileOK field set to "1" and the ReqTypeByte field shall include each RequestType that is supported by

the CICAM sorted in ascending order. i.e. if the CICAM supports File, Data, FileHash and ReqTypes then the

ReqTypeByte field shall be 4 bytes long and contain the bytes 0x00, 0x01, 0x02 and 0x03.

EXAMPLE: 4 bytes (hex)
00010203

CICAM supports the 4 basic resource v2 types of File (0x00), Data (0x01),

FileHash (0x02) and ReqTypes (0x03) only.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 177

 5 bytes (hex)
0001020304

CICAM supports 5 protocols. The basic resource v2 types of File (0x00),

Data (0x01) , FileHash (0x02) and ReqTypes (0x03) in addition to a yet

undefined type 0x04.

14.6 DVB Host Control resource

14.6.1 DVB Host Control Version 2

The DVB Host Control resource class as defined in EN 50221 [7] is enhanced so that it is no longer limited to

tuning to a DVB triplet known by the Host (Host Control version 1). See Annex E.16 for clarification of Host

Control version 1 Tune behaviour. Version 2 of this resource adds new commands for the CICAM to address

another type of tuning operation:

 Host Control 2: Request the Host to tune to a service which is not part of the Host channel line-up (the

service has not been detected by the Host during service discovery), the service selected is based on:

o The physical description of the Transport Stream that carries the service.

o The service identification (e.g. service_id).

14.6.2 DVB Host Control Version 2 APDUs

The DVB Host Control Version 2 resource supports the following objects:

Table 14.28: DVB Host Control Version 2 APDUs

DVB Host Control Version 2 APDU Direction

tune CICAM  HOST

replace CICAM  HOST

clear_replace CICAM  HOST

ask_release CICAM  HOST

tune_broadcast_req CICAM  HOST

tune_reply CICAM  HOST

ask_release_reply CICAM  HOST

14.6.2.1 tune_broadcast_req APDU

The CICAM sends this APDU to request the Host to tune to a service, based on the physical description of the

transport stream that carries the service and the service identification. The Host replies with tune_reply() APDU.

Table 14.29: tune_broadcast_req APDU Syntax

Syntax No. of bits Mnemonic
tune_broadcast_req() {

 tune_broadcast_req_tag

 length_field()

 reserved

 pmt_flag

 service_id

 reserved

 descriptor loop_length

 for (i=0; i<N; i++) {

 descriptor()

 }

 if (pmt_flag==1) {

 program_map_section()

 }

}

24

7

1

16

4

12

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 178

pmt_flag: The pmt_flag is a 1-bit field indicating whether the tune_broadcast_req contains a PMT. A value of

"0" indicates that the request does not contain a PMT and that the Host shall fetch the PMT of the service

service_id from the Transport Stream. A value of "1" indicates that the request contains a PMT which shall be

used by the Host to perform elementary stream selection.

service_id: This is a 16-bit field which serves as a label to identify the required service from any other service

within the tuned Transport Stream. This is the same as program_number in the PMT. If the service_id is zero

then the pmt_flag shall also be zero and the Host shall tune to the frequency but shall not select a service, a

ca_pmt will not be sent.

descriptor_loop_length: This 12-bit field gives the total length in bytes of the following descriptors loop.

descriptor(): The descriptors are coded as defined in EN 300 468 DVB Specification for Service Information

(SI) in DVB Systems [10]. Table 14.34 indicates which descriptors may be available in the loop.

program_map_section():A Program Map Table as specified in ISO/IEC 13818-1.

The program_number in the PMT shall be identical to the service_id specified in the tune_broadcast_req()

APDU. On a mismatch of these values then the tune shall fail and the tune_reply() shall return status 0x04, “bad

or missing parameters”. The Host shall only use this program_map_section() if the CICAM sending the APDU

has already been authenticated, otherwise the tuning request shall be ignored and the tune_reply() shall return

status 0x04, “bad or missing parameters”.

14.6.2.2 tune_reply APDU

This APDU is the Host response to a tune_broadcast_req() or tune() as defined in section 8.5.1.1 of EN 50221

[7]. It provides the CICAM with the status of the tune request.

Table 14.30: tune_reply APDU Syntax

Syntax No. of bits Mnemonic
tune_reply () {

 tune_reply_tag

 length_field()

 status_field

}

24

8

uimsbf

uimsbf

status_field: This 8-bit field specifies the tuning status according to Table 14.31.

Table 14.31: tune_reply status values

status_field Value

Status OK – Successful tuning (see note 1) 0x00

Error - Unsupported delivery system descriptor 0x01

Error - Tuner not locking 0x02

Error - Tuner Busy 0x03

Error - Bad or missing parameters. (see note 2) 0x04

Error - Service not found 0x05

Error – undefined 0x06

Reserved 0x07-0xFF

Notes:
1: Following a successful tuning operation the Host shall return a ca_pmt() extracted

from the applicable PMT.
2: If a mandatory descriptor is missing in the tune request, then this error shall be

returned. Mandatory descriptors are listed in Table 14.34.

14.6.2.3 ask_release APDU

Host Control version 2 uses the ask_release() APDU. The syntax of this APDU is exactly as defined in section

8.5.1.4 of EN 50221 [7] and its behaviour is altered to enable the CICAM to retain control of the tuner if

required. On receiving a ask_release APDU the CICAM may query the user to confirm the action using the high

level or application MMI. The CICAM replies to the Host with the tuner release status with the

ask_release_reply APDU.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 179

14.6.2.4 ask_release_reply APDU

This APDU is the CICAM reply to a ask_release(). This APDU indicates whether the CICAM confirms or not

that the tuner shall be released and the session closed.

Table 14.32: Tune Release Reply APDU Syntax

Syntax No. of bits Mnemonic
ask_release_reply() {

 ask_release_query_tag

 length_field()

 release_reply

}

24

8

uimsbf

uimsbf

release_reply: This 8-bit field gives the tuning status according to Table 14.33.

Table 14.33: Tune Release Reply values

release_reply Value

Release OK – Host regains control of the tuner 0x00

Release Refused – CICAM retains control of the tuner 0x01

Reserved 0x02-0xFF

14.6.3 PMT Management

For Video-on-demand (VOD) deployments, typically in cable networks, then the VOD components are

delivered on the broadcast channel as elementary stream components only and the broadcast channel may not

deliver PSI and SI components. In this scenario then the PMT shall be delivered by the CICAM in the APDU

and is constructed from information retrieved by the CICAM from the broadcast head-end equipment, typically

via the Low Speed Communications resource.

Application authors of any VOD application shall note that in the absence of any SI in the stream then the

tuning operation incurs a 5 second delay while a Host shunning check is performed to acquire the SDT actual

which will fail and time out. The Host check for the SDT cannot be disabled as this compromises the security

afforded by the Host on a network.

When the CICAM requests the tuning on a broadcast channel it may provide the PMT of the service within the

APDU. The APDU PMT shall be used by the Host and the Host shall not attempt to acquire a PAT or PMT

from the broadcast network.

14.6.4 Descriptors

The tune_broadcast_req() APDU contains a loop of descriptors which are used by the Host to provide

information about the tuned service.

When the CICAM requests the Host to tune with tune_broadcast_req() the CICAM shall provide the Host with a

single tuning location delivered by one or more delivery system descriptors. If the descriptor loop contains more

than one tuning location the Host shall consider the first one and ignore the rest.

The CICAM may optionally provide the Host with additional information about the requested tuned service.

The information provided may be used by the Host in order to provide the user with service and event

description. e.g. to populate the channel banner and info dialogues. The exact mechanism by which the Host

delivers this information into its DVB stack is not specified, and is receiver specific, the Host could for example

construct an internal EITpf with this information for the currently selected service.

Table 14.34 specifies the list of DVB descriptors that may appear in the descriptor loop of a tuner request.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 180

Table 14.34: descriptors allowed in tune_broadcast_req APDU

Descriptor DVB Tag Value Comment

terrestrial_delivery_system_descriptor 0x5A Mandatory descriptors; a single destination
frequency shall be specified by delivery
system descriptor suitable for the current
network.

T2_delivery_system_descriptor 0x7F, 0x04 See Note

satellite_delivery_ system_descriptor 0x43

S2_satellite_delivery_system_descriptor 0x79

cable_delivery_ system_descriptor 0x44

C2_delivery_system_descriptor 0x7F, 0x0D See Note

service_descriptor 0x48 Additional optional information for the
receiver to describe the service. short_event_descriptor 0x4D

component descriptor 0x50

parental_rating_descriptor 0x55

content_descriptor 0x54

Note: The T2_delivery_system_descriptor and the C2_delivery_system_descriptor are extended DVB
descriptors, see EN 300 468 [10], sections 6.2.16 and 6.3.

14.6.5 Host Tuning protocol

Figure 14.10 provides an overview of the Host behaviour upon reception of a DVB Host Control Version 2 tune

request.

1) The Host receives a tune_broadcast_req().

2) The Hosts checks the availability and consistency of the parameters. If one or more parameters is not

consistent or is missing then the Host continues at step 11.

3) The Host checks that the delivery system is supported. If the delivery system descriptor is not

supported then the Host continues to step 12.

4) The Host tunes the tuner passing through the described transport stream.

5) The Host confirms that the tuning operation is successful and a valid signal is received. If the tuning

failed then the Host continues to step 13.

6) If the service_id is zero then the Host does not search for a PMT and continues to step 14. If the

service_id is not zero then the Host continues to step 7.

7) The Host determines if a PMT was passed in the request, if the PMT is not present then is shall be

acquired from the broadcast stream. If a PMT is not available then the Host continues to step 15.

8) The Host sends the tune_reply() to the CICAM with status 0x00 (OK).

9) The Host uses the PMT in order to select the elementary streams.

10) The Host sends a ca_pmt() to the CICAM.

11) The Host sends a tune_reply() with status 0x04 (Bad or missing parameters).

12) The Host sends a tune_reply() with status 0x01 (Unsupported delivery system descriptor).

13) The Host sends a tune_reply() with status 0x02 (tuner not locking).

14) The Host sends a tune_reply() to the CICAM with status 0x00 (OK).

15) The Host acquires the PAT from the transport stream. On acquiring the PAT the Host locates the PMT

PID matching the program_number with the service_id field in the tune_broadcast_request APDU. The

corresponding PMT is then acquired from the transport stream.

16) The Host checks that the PMT has been successfully loaded. If the PMT is not loaded then the Host

continues to step 17.

17) The Host sends a tune_reply() with status 0x05 (service not found).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 181

(1) Start

tune_broadcast_req() received

(2) Parameters

OK ?

yes

(3) Delivery

System

supported?

yes

(4) Host Tunes to the

described transport stream

(5) Tune

successful?

(7) PMT in tune

request ?

yes

(9) Host performs PMT

component selection

No

(15) Host fetches PMT from

tuned transport stream

yes

(16) PMT found?

Yes

No

No

No

No

Successful tuning

Failed tuning

Failed tuning

Failed tuning

Failed tuning

(11) Host sends tune_reply()

with status 0x04

(Bad or missing parameters)

(12) Host sends tune_reply()

with status 0x01

(unsupported delivery system)

(13) Host sends tune_reply()

with status 0x02

(tuner not locking)

(17) Host sends tune_reply()

with status 0x05

(Service not found)
(8) Host sends tune_reply()

with OK status 0x00

(10) Host sends ca_pmt()

(6) Service_id is

zero

no

(14) Host sends tune_reply()

with OK status 0x00
Successful tuning

Yes

Figure 14.10: Tuning process with Host Control Version 2 (informative)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 182

14.6.6 Host Control release requests

When a session is opened with the DVB Host Control resource and the Host detects user interaction which

would result in tuning to another service, the Host shall seek permission from the CICAM to release the tuner

for Host use.

Figure 14.11 provides an overview of the Host behaviour when it detects user interaction while a DVB Host

control session is opened.

1) The CICAM has opened a session with the DVB Host Control resource.

2) The Hosts detects user interaction that would normally result in tuning to a new service.

3) The Host sends a ask_release() to the CICAM to request that the tuner is released.

4) The CICAM receives the ask_release() and processes it.

5) The Host receives an ask_release_reply() from the CICAM in response to the query.

6) The Host checks whether the CICAM accepts the ask_release(). This may involve the CICAM use of

MMI to query the user. If the CICAM does acknowledge, then the Host goes to step 7). If the CICAM

does not acknowledge, then the Host goes back to step 1).

7) The Host receives a close session from the CICAM.

8) The Host tunes to the user selected service.

(1) DVB Host Control session opened

(6) Release

Acknowledged ?

yes

(8) Host performs user

interaction

no

(2) Host detects user

interaction

(4) CICAM processes the

release request

(3) Host sends ask_release()

(5) Host receives

ask_release_reply()

(7) Host receives close

session from the CICAM

Figure 14.11: Tuning process with Host Control Version 2

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 183

14.7 Operator Profile

14.7.1 Introduction

The broadcast profiles in the vertical market segment are typically encumbered by the deployment of existing

proprietary receivers that utilise private signalling to convey information from the broadcast Head-end to the

receivers in the field. As an established network then it is very difficult for the service operator to modify the

network to cater for the introduction of horizontal market receiver devices using the Common Interface without

disturbing the network and the existing receiver base.

The private signalling on these networks requires that horizontal market receivers are tailored to understand any

proprietary signalling before they are able to be utilised on the network. Analysis of this private signalling

reveals that proprietary signalling is most diverse at the higher levels in the network profile while the signalling

at the service level and PSI level is generally consistent with standardised DVB signalling. The higher level

networking signalling of the network typically includes strict controls on the channel list and logical channel

numbering which may be based, in part, on the subscription and entitlement rights purchased by the user.

The Operator Profile resource attempts to resolve the network and receiver interoperability issues by providing a

CI Plus standardised broadcast profile and uses the CICAM to translate the network private signalling into a

uniform information structure allowing all CI Plus Host devices to perform a full installation and a channel

listing of all of the services required by the Service Operator.

14.7.2 Operational Overview

The Operator Profile resource enables the delivery of a Network Information Table (NIT) through the CICAM

which is used in preference to any broadcast network NIT. The NIT delivery mechanism enables the CICAM to

transform private network information and service operator specific signalling into a single format that is

delivered in a NIT that may be universally understood by all CI Plus Host devices that conform to this version

of the specification.

Service operators in the vertical market are unlikely to be able to significantly alter their existing SI/PSI

signalling because of legacy receivers that may already be deployed in the network. The Operator Profile

resource provides a mechanism for the higher level SI signalling to be configured, re-packaged and delivered to

a CI Plus Host locally without affecting the existing broadcast signalling of the network. Full control over the

NIT is provided by a CICAM NIT messaging mechanism which allows the broadcast SDT to be partially

reconfigured from the NIT using the ciplus_service_descriptor. Some adjustment of the broadcast PSI and EIT

within the network may be required to allow full compatibility with a CI Plus Host, this generally means fuller

conformance with the standard DVB specifications. The operational behaviour of the existing network may be

provided to the Host via the operator_info() APDU which defines the operational environment allowing the

Host to compensate for operational variations in the different networks.

The Operator Profile resource provides two different modes of operation depending on the profile_type which is

defined as follows:

 profile_type = 0 – A non-profiled CICAM for a DVB network that follows normal DVB SI rules. The

network service list is determined from the broadcast Service Information by the Host. This profile

allows the CICAM to collect entitlement rights information. Additional information about the network

behaviour may be defined and conveyed to the Host in the resource.

 profile_type = 1 – Profiled operation where the Host constructs a local channel list explicitly for the

service operator and the CICAM delivers an alternative CICAM NIT to the Host which defines the

network. The Host does not interrogate the broadcast network to determine the logical channel line up.

Figure 14.12 shows the conceptual operation of the Operator Profile resource when running in a CICAM NIT

delivery mode.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 184

Figure 14.12: Conceptual operation of the Operator Profile resource (Informative)

The transport stream TS in passes through the CICAM and is descrambled under Host control according to the

ca_pmt(). Optionally, the Service Information (SI) of the network is demultiplexed by the CICAM and used to

construct a new CICAM NIT which is passed to the Host via the operator_status() and operator_nit() APDUs.

The tables used by the CICAM to construct the CICAM NIT are determined by the service operator and may be

derived from the broadcast stream NIT, BAT, SDT or any other private table sections appearing on the network.

Entitlement rights of the CAS/Smartcard and service_type from the operator_search_start() APDU are used to

determine which services may appear in the CICAM NIT. The CICAM NIT is a quasi-static structure and is

stored in persistent storage within the CICAM once the table has been built. The table is maintained by the

CICAM by monitoring the network in addition to the CAS/Smartcard entitlement rights and passing any

changes to the Host by managing the version number of the CICAM NIT.

The Host provides a dedicated channel list for each CICAM profile to which it has attached. Whilst operating on

a CICAM profile channel list then the CICAM NIT is always used in preference to any broadcast NIT which is

ignored. The CICAM NIT information is used to construct the channel list for the attached CICAM profile.

Changes in the profile are sent to the Host with an asynchronous operator_status() APDU which contains

version information of any updated CICAM NIT with a new table section version number and operates in the

same way as a NIT table section update in a conventional broadcast network.

The CICAM NIT fully describes the services appearing in the service operator channel list and sufficient

information is present in the CICAM NIT to enable the Host to build a complete channel list. The Host is not

required to interrogate the broadcast NIT, BAT or SDT for channel list construction or maintenance and all

information is provided in the CICAM NIT. The CICAM is required to construct and maintain the CICAM NIT

using the latest channel list information which may require the CICAM to monitor the SI tables of the network

dynamically.

Within the context of a CICAM profile then the native Electronic Programme Guide of the Host may be used to

display programme event information of the profile acquired through EITsch information from each multiplex,

acquired from the same multiplex when fully cross carried or acquired by tuning to a dedicated barker channel.

EITsch may be delivered in a scrambled form across the network.

The CICAM and Host shall strictly adhere to the broadcast profile that is defined in Annex N to ensure full

interoperability with all CI Plus devices.

Host CICAM

De-multiplex

Network descrambler /

CI Plus scrambler

SDT NIT /

BAT

Private

sections

CICAM

NIT

TS in

De-multiplex

CI Plus descrambler

NIT
CICAM

NIT

Host Digital Television

Middleware

Build NIT

Select

CICAM

NIT or

off-air

NIT

SDT … other

tables

o
p

e
ra

to
r_

sta
tu

s()

o
p

e
ra

to
r_

n
it()

operator_stat-

us_req()

TS or CI Plus Scrambled TS

Persistent

Storage

A/V

decode

Host shunning

control

Channel

List

C List

Channel

List

CAS /

smartcard

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 185

14.7.3 Host Operator Profile Handling

The CICAM Operator Profile resource with a non-zero profile_type requires the Host to create a separate logical

channel list for the service operator with a label described by the profile_name field of the operator_info()

APDU. A selection mechanism shall be provided by the Host to move into different channel lists as shown in

Figure 14.13 where a CICAM has reported a profile with profile name "CICAM network 1".

Figure 14.13: Example Network Selection User Interface with 2 CICAMs

The exact Host mechanism by which the different network profiles are selected, manipulated and finally deleted

is not defined by this specification. The installation procedure of a new CICAM advertising an Operator Profile

shall ideally be simple for the user and the Host shall automatically initiate and guide the user through the

installation procedure when a new CICAM with a profile that may be supported and populated is inserted into

the Host.

The Host shall retain the network profile of the CICAM until such time that the CI Plus CICAM authentication

pairing is removed or the user explicitly removes the profile. The Host shall retain the profile through a CICAM

un-plug operation allowing a limited number of different CICAMs to be cycled without losing the stored

channel list information.

The CICAM Operator Profile information shall comprise an independent logical channel list which shall honour

the NIT signalling of the CICAM network for profile_type 1. A mechanism shall be provided by the Host to

move from one Operator Profile to another.

14.7.4 Operator Profile Resource exchange

This section describes the APDU exchange between the Host and the CICAM.

14.7.4.1 Initialisation

The operator_status() APDU shall be automatically reported at start up by the CICAM and shall contain the

profile information cached in the CICAM which shall be made available immediately. If the CICAM is un-

initialised then the initialised_flag shall be "0" to indicate that an immediate search operation is required to

initialise the CICAM.

14.7.4.1.1 Non-profile CICAM

A CICAM that reports profile_type zero (0) does not support a separate logical channel list and operates as a

conventional DVB CICAM and is considered to be non-profiled. The Host is expected to understand the

information that is broadcast on the network and either the network is fully DVB conformant or the Host has

been specifically customised to operate with the network, the operator_info() APDU provides some information

to the Host about the network environment.

Network Selection

CICAM network 1

Digital Terrestrial

Analogue TV

Other Cable

CICAM network 2

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 186

The CICAM flags are interpreted in an identical way to a profiled CICAM and the CICAM may request a tune

etc. which may be used to acquire information from the network and control the Host. Typically the CICAM

starts in an initialised state as there is no additional information to be propagated to the Host.

14.7.4.1.2 Profiled CICAM

A CICAM that reports profile_type one (1) requires Host support for an operator profile and the Host is

expected to create a separate logical channel list for the service operator according to the rules outlined in

Annex N.

The Host shall ideally automatically install the profile on insertion of CICAM and build the logical channel list

with minimal user intervention. The profile and logical channel list shall be persistent in both the CICAM and

the Host and shall not be automatically erased if the CICAM or SmartCard is removed on a temporary basis. It

is suggested that the profile is retained until the user explicitly deletes it or any CI Plus authentication pairing

between the CICAM and the Host is discarded.

The CICAM shall retain the profile information in persistent memory (including the CICAM NIT or information

to rebuild the CICAM NIT). The CICAM shall ensure that the caching update mechanism is robust and is able

to support a power-off operation at any stage in the writing operation without losing any existing cached

information until the new information has been completely written. This prevents the profile information from

being lost and randomly reverting to an un-initialised state.

14.7.4.1.3 Profile Discovery

A profiled CICAM is likely to start in an un-initialised state and the Host is required to determine the delivery

system of the CICAM. This may be determined by querying the CICAM as shown in Figure 14.14.

The behaviour of the system is described as follows:

1. The CICAM reports the current profile on opening the session.

2. The Host queries the CICAM for the general profile information for the service operator and the

network using a operator_info_req() APDU.

3. The CICAM reports the profile information to the Host in the operator_info() APDU. The version

number of the operator information is maintained in the operator_status() APDU and the Host may

detect a change in the information from the version number without interrogating the Operator Profile

information again.

4. The Host installs the profile, if the profile is uninitialised then a profile search is initiated to search for

the profile information using the operator_search_start () APDU.

5. On receiving an operator_search_start () APDU then the CICAM shall direct the Host tuning

operations and display the on-going search status via the CICAM MMI. The CICAM may request zero

or more tune operations to the required multiplex(es) with a operator_tune() APDU.

6. On receipt of a operator_tune() then the Host tunes to the required multiplex and acknowledges the

tune with a operator_tune_status() APDU that contains the status of the tune. If the CICAM requires

the Host to find the next digital location then the CICAM may issue another operator_tune() APDU

CICAM Host

operator_status (1)

At start up then the CICAM sends the current

profile status used by the CICAM.

Host is not required to process the operator_status

immediately. The Host shall determine if this is a

profile that is already installed or process any new

profile when it is ready. This may be used as a trigger

to automatically install the CICAM profile

operator_search_start(4)

operator_tune (5) CICAM performs the profile search and tunes

around. Once the search is complete then the NIT

profile is updated. The CICAM shall keep the user

informed of progress using the Application MMI

or high level MMI of the CICAM when the Host

is in an interactive mode.

operator_tune_status(6)

operator_tune(5)

operator_tune_status(6)

operator_search_status (7)

Host initiates a search if the operator status is un-

initialised.

The Host tunes on behalf of the CICAM.

The CICAM has finished searching when the

operator_search_status APDU is returned.

operator_nit_req(8)

operator_nit (9)
The CICAM returns the latest CICAM NIT when

requested by the Host.

The Host requests the CICAM NIT and constructs the

channel list using this table information for type=1

If the process is successful then the service operator

profile is installed as a separate sandbox logical

channel list with the text label specified in the

operator status APDU.

Host requests the quasi-static information about the

network using the operator_info_req() APDU. This is

valid for type 0 and type 1 profiles.

operator_info_req(2)

operator_info(3) CICAM returns the profile information to the

Host on request.

Figure 14.14: Profile Discovery APDU sequence

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 187

which performs a channel search using the locations described in the APDU and is acknowledged by

the Host with a operator_tune_status() APDU when the search completes.

7. Once the CICAM has completed the profile search then any NIT is internally updated on the CICAM

with the new network information and the NIT version is updated. The operator_search_status() APDU

is sent and shall include the status and any new NIT version number. The error_flag is set appropriately

if the system_descriptor of the search is not supported. Any Application or high level MMI shall be

removed before the operator_search_status() APDU is sent.

8. If the profile search has no errors then the Host may install the profile based on the CICAM NIT

information, the Host shall request the NIT using the operator_nit_req() APDU.

9. The CICAM shall return the latest version of the NIT to the Host with the operator_nit() APDU.

If the profile cannot be found by the CICAM then the initialised_flag and error_flag shall be set in any

operator_status_body() indicating that the Operator Profile is in error. The error_flag for a failed profile search

shall be persistent. The error_flag shall only be cleared by a Host initiated operator search or reset or by some

other external interaction with the CICAM e.g. MMI option to reset or CICAM detection that it has been

unplugged and re-plugged.

14.7.4.1.4 Start-up Considerations

The Operator Profile session shall be opened within 30 seconds of power-on of the CICAM to afford the Host

an opportunity to include the Operator Profile in any installation procedure. A profiled CICAM should advertise

the presence of an Operator Profile in the CIS information to inform the Host that an Operator Profile is present

and the Host may then wait for the CICAM to create the Operator Profile resource before proceeding with any

installation process.

On first installation then it is likely that the Operator Profile resource should be processed before the Host and

CICAM are able to connect to the network and subsequently acquire the time and date. The CICAM shall ensure

that any Content Control resource authentication procedure is only initiated once the CICAM and Host have

both acquired a valid date and time. i.e. the Operator Profile resource is processed before any Content Control

authentication is performed.

14.7.4.2 Moving between profiles

The Host is required to inform the CICAM when it enters and leaves a profile_type 1 environment. A Host

enters a operator environment by sending a operator_status_req() APDU, the CICAM may assume that the Host

is actively running in the profile until a operator_exit() APDU is received. On entering the operator profile

environment then the following behaviour is required:

 The CICAM shall actively maintain the operator profile environment.

 The CICAM may assume that transport streams passing through the CICAM are part of the operator

profile environment.

 The Host shall maintain the profile environment using the operator_status() APDU.

The Host may leave an operator profile for another profile or any of its private channel lists. When the Host

leaves the profile then the following behaviour is required:

 The CICAM shall not assume that transport streams passing through the CICAM are part of the

operator profile environment.

 The CICAM shall continue to handle the ca_pmt() and descramble content when it is able to.

 The Host is not required to maintain the profile environment or process the operator_status() APDU.

The Host may subsequently return to the operator profile environment again by issuing a operator_status_req()

APDU. The APDU sequence is depicted in Figure 14.15.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 188

The behaviour of the system is defined as follows:

1. The CICAM reports the operator_status() APDU automatically at start-up.

2. The Host moves into the operator profile environment and sends a operator_status_req() APDU.

3. The CICAM is operating within the operator profiled environment and acknowledges the Host with a

operator_status() APDU.

4. The Host leaves the operator profile environment, by sending a operator_exit() APDU, and may be

operating in a different operator profile or with a different delivery system using a different channel

list.

5. The Host moves back to the operator profiled environment and sends a operator_status_req() APDU.

6. The CICAM is again operating within the operator profiled environment and acknowledges the Host

with a operator_status() APDU.

14.7.4.3 Entitlement Change

The entitlement_change_flag of the operator_status_body() is set when the CAS entitlement has changed. A

change in entitlement may be signalled as a result of the user updating their subscription. A change in

subscription may make more/less services accessible and may require an update to the Host channel list. On

detecting a change in entitlement then the Host updates the channel list where necessary and then acknowledges

the CICAM that the entitlement has been processed when the CICAM shall clear the entitlement change flag.

The entitlement_change_flag shall not be used to simply indicate a change in the service line-up. A change in

the service line-up is indicated by a change in the nit_version field of the operator_status_body() which the Host

shall process in the same manner as a NIT table update in a conventional broadcast network.

The entitlement_change_flag shall be processed by the Host as quickly as practically possible so to install any

new services corresponding to the entitlement change. This may require notifying the user that an entitlement

change has occurred and then immediately passing tuning control to the CICAM to acquire the service line up

changes form the network.

The flag states of the operator_status_body() indicate how the Host should process the entitlement change.

14.7.4.3.1 Simple entitlement change

In the simple case then the entitlements are updated, which may entail a change to the CICAM NIT table. The

Host updates the channel list with any CICAM NIT change and then acknowledges the CICAM that the

entitlement has been processed. The APDU exchange is shown in Figure 14.16.

The behaviour of the system is described as follows:

CICAM Host

operator_status (1)

operator_entitlement_ack(4)

operator_status(5)

CICAM detects entitlement change and re-

evaluates the CICAM NIT if necessary and then

reports the change to the Host.

CICAM removes the entitlement change flag

when the Host has acknowledged it.

Host requests the CICAM NIT and updates the

channel list. (Profiled CICAMs only)

notifies user of entitlement change and the Host

updates the channel list with any new NIT

operator_nit_req(2)

operator_nit (3)

Host informs the CICAM that the entitlement change

has been processed and the channel list has been

updated.

notifies user of entitlement change and the Host

updates the channel list with any new NIT

CICAM sends the latest version of the NIT to the

Host when requested. (Profiled CICAMs only)

CICAM Host

operator_status (1)

operator_exit(4)

At start-up then the operator_status() APDU is

dispatched. Host notifies the user of the entitlement change.

CICAM understands that not all transport streams

passing through the CICAM belong to the

operator environment

The Host moves to the operator profile environment

notifies user of entitlement change and the Host

updates the channel list with any new NIT

operator_status_req(2)

operator_status (3)

Host informs the CICAM that it has left the operator

environment.

notifies user of entitlement change and the Host

updates the channel list with any new NIT

The operator profile is activated on a

operator_status_req().

operator_status (6)

operator_status_req(5) Host informs the CICAM that it has entered the

operator environment.

notifies user of entitlement change and the Host

updates the channel list with any new NIT

The operator profile is activated on a

operator_status_req().

Figure 1 Entering and Leaving a profiled environment

Figure 14.16: Simple Entitlement Change APDU sequence

Figure 14.15: Entering and Leaving a profiled environment

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 189

1. The CICAM detects a change in the entitlement rights and updates the NIT if necessary. The change is

reported in an operator_status() APDU with the entitlement_change_flag field set. The

refresh_request_flag may be unset indicating that the CICAM has already captured the entitlement

change and the NIT is ready, no search is required.

2. The CICAM NIT of a profiled CICAM may have changed, indicated by a version number update, and

if so the Host prepares to update the channel list by requesting the new CICAM NIT from the CICAM

(this may require permission from the user to process the entitlement change immediately).

3. A profiled CICAM then sends the new CICAM NIT to the Host. The Host processes the CICAM NIT

and updates the channel list.

4. The Host processes the entitlement change and acknowledges the CICAM by sending a

operator_entitlement_ack().

5. On receiving a operator_entitlement_ack() to clear the entitlement request then the CICAM clears the

entitlement_change_flag and acknowledges the change of state with a new operator_status() APDU.

Note that the CICAM may not require an update to the CICAM NIT and the CICAM may signal an entitlement

change without updating the CICAM NIT version.

14.7.4.3.2 Entitlement change where a search is required

An entitlement change may sometimes require the CICAM to search the network to acquire a new service line

up change, in this case the CICAM may signal the entitlement change with a refresh request together in the

same APDU i.e. entitlement_change_flag=1 and refresh_request_flag=1. If the tuning operation is urgent then

the CICAM may signal the refresh_request_flag=2 indicating that the entitlement cannot be processed until the

Host has issued a search. The APDU exchange is shown in Figure 14.17.

The behaviour of the system is described as follows:

1. The CICAM detects the change in the entitlement rights but is not able to determine if the channel list

is altered by the change without scanning the network. The change is reported in an operator_status()

APDU and the entitlement_pending_flag is set and the refresh_request_flag is set to 1 or 2 depending

on the urgency of a network search.

2. The Host informs the user about the entitlement change, if the refresh_request_flag is set to 1 then the

user may be given an option to process the entitlement change immediately where the

refresh_request_flag is 2 then the requirement to interrogate the network is more urgent then the user

may be not given any options to install later. When the Host is ready to process the entitlement change

a search is initiated to start the network scan and a operator_search_start() APDU is sent and control

effectively moves to the CICAM.

3. On receiving a operator_search_start() then the CICAM may request one or more tune operations to the

required multiplex(es) with a operator_tune () APDU. In a Host attended mode then the CICAM shall

keep the user informed of progress using the Application or high level MMI.

4. On receipt of a operator_tune () then the Host tunes to the required multiplex and acknowledges the

tune with a operator_tune_status() APDU that contains the status of the tune request.

CICAM Host

operator_status (1)

operator_search_start(2)

operator_status(9)

CICAM detects entitlement change and re-

evaluates the CICAM NIT if necessary and then

reports the change to the Host.

Host notifies the user of the entitlement change and

confirms with the user that they wish to process the

entitlement change immediately.

Host requests a profile search.

CICAM removes the entitlement change flag.

operator_tune(3)

CICAM performs the profile search and tunes

around. Once the search is complete then the NIT

profile is updated. The CICAM shall keep the user

informed of progress using the Application or

high level MMI in a Host attended mode.

operator_tune_status(4)

operator_tune (3)

operator_tune_status(4)

operator_search_status (5)

Host tunes on behalf of the CICAM.

The CICAM has finished searching when the search

status is returned. The entitlement change flag shall

still be set.

operator_entitlement_ack(8)

If profile_type is not 0 the Host requests any new

CICAM NIT and updates the channel list.
operator_nit_req(6)

operator_nit (7)

Host acknowledges the entitlement change once the

channel list has been updated.

A profiled CICAM then returns the cached

CICAM NIT to the Host on request.

Figure 14.17: Search Entitlement Change APDU sequence

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 190

5. Once the CICAM has completed the search then any cached NIT is updated with the new network

information, the version number updated and a operator_search_status() APDU is sent to the Host. The

entitlement_change_flag field shall remain set as the entitlement change has not been acknowledged by

the Host. Any Application or high level MMI shall be removed prior to sending the search status.

6. On receipt of the operator_search_status() APDU the Host determines if the NIT has changed using the

nit_version field. If the NIT version has been updated then the Host may request the new CICAM NIT

using the operator_nit_req() APDU.

7. The CICAM returns the updated NIT to the Host with the operator_nit() APDU and the Host updates

the channel list if the CICAM NIT has changed.

8. Once the channel list has been updated then the entitlement change is acknowledged to the CICAM by

sending a operator_entitlement_ack() APDU.

9. On receiving a operator_entitlement_ack() to clear the entitlement request then the CICAM clears the

entitlement_change_flag and acknowledges the change of state with a new operator_status() APDU.

14.7.4.4 Tuning and Scanning

There are a number of different tuning and scanning scenarios which are required by the operator profile, all

tuning scenarios are explicitly initiated by the Host using the operator_search_start() APDU. The Host may

choose to initiate a tuning sequence as a result of:

 A tune explicitly solicited by the CICAM with the refresh_request_flag in the operator_status_body()

of a operator profile APDU.

 An unsolicited search by the Host, typically as part of the Host receiver network maintenance

performed in a stand-by state etc.

It is highly recommended that the Host provides the CICAM with an opportunity to update itself from the

network on at least a weekly basis as part of any Host initiated maintenance cycle by initiating an unsolicited

search operation. The CICAM may communicate a recommended date and time to perform a background scan

using a timed refresh request.

The CICAM has the capability to notify the Host that it requires a tune using the refresh_request_flag in the

operator_status_body() component of an APDU. The urgency of the tune request is determined from the state of

this field.

 Advanced warning (1) informs the Host that a tune is required in the near future. This notification

should not affect the user and shall ideally be serviced at the next opportune moment of the Host i.e. a

back ground scan when the user enters stand-by etc.

 Urgent request (2) informs the Host that an immediate tune is required. This is only signalled by the

CICAM in cases where some parts of the network or content, in the case of type 0 profiles, are not

accessible until the tune is performed. The Host is strongly recommended to initiate an immediate tune

after confirmation from the user.

 Timed request (3) informs the Host that a scheduled search is requested at a time and date in the future.

The Host shall perform the scheduled search if it is able to (i.e. is not powered off). If the search has

been missed then the CICAM shall not unnecessarily force the Host to perform an immediate scan but

ideally reschedule for a later date. This prevents unnecessary interruptions for the user.

A tune operation is considered more urgent if the entitlement_pending_flag is set in conjunction with the

refresh_request_flag as this indicates that the entitlement rights have been updated and a tune operation is

required to re-evaluate that entitlement. The Host may, in this case, choose to inform the user of an entitlement

change and request permission to initiate an immediate search to re-evaluate the network.

The refresh_request_flag may be set and cleared as part of the normal running of the system (i.e. when the user

is watching a service) as information is received from the current multiplex which may cause a pending request

to be added or removed if information updates have been received from the network.

14.7.4.4.1 Profile Search

A profile search APDU exchange is shown in Figure 14.18.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 191

The behaviour of the system is described as follows:

1. The CICAM optionally detects the change in the network that requires it to perform a search operation.

The priority of the search request is determined and the refresh_request_flag is set to the appropriate

value for that search priority. The change is reported in an operator_status() APDU and the

refresh_request_flag is set to a non-zero value depending on the urgency of a tune.

2. When the Host is ready to process the profile search then the operator_search_start() APDU is sent to

the CICAM and control of the tuner and MMI is effectively passed to the CICAM.

3. On receiving a operator_search_start() with a profile search then the CICAM requests one or more tune

operations to the required multiplex(es) with a operator_tune () APDU. The progress of the search shall

be conveyed to the user using the Application or high level MMI where the Host is attended.

4. On receipt of a operator_tune () APDU then the Host tunes to the required multiplex and acknowledges

the tune with a operator_tune_status() APDU that contains the status of the tune.

5. Once the CICAM has completed the profile search then any NIT is updated within the CICAM with the

new network information, the CICAM NIT version is updated and a operator_search_status() APDU is

sent to the Host. The refresh_request_flag is reset. Any Application or high level MMI shall be

removed.

6. If the NIT version has changed in the operator_status_body() then the Host may request the new

CICAM NIT table with the operator_nit_req() APDU.

7. On receipt of the operator_nit_req() APDU then the CICAM returns the latest cached CICAM NIT

sections to the Host in a operator_nit() APDU. The Host may use the CICAM NIT to update the

channel list.

14.7.4.4.2 Tuning Requests

The CICAM may only initiate a tuning request operator_tune () APDU in response to the Host

operator_search_start() APDU. Once the search has been initiated then the CICAM is permitted to initiate

multiple tuning requests. The tune operation may:

 Move to an explicit delivery system location.

 Request the Host to perform a scanning tune from based on a list of delivery system locations.

The explicit tune requires the Host to move the tuner to the location specified by the

delivery_system_descriptor, the Host is not required to select any service on this multiplex. Multiple tuning

locations may be specified and the Host shall process the locations sequentially in the order specified in the

APDU until a valid signal is found when it completes the tune request.

Within the context of a CICAM search then the Host shall allow the CICAM to use other APDUs to acquire

information including, but not exclusively, the Low Speed Communications resource. The CICAM shall ensure

that other APDUs opened in the context of the search are closed before the search completes. The CICAM is not

permitted to use the software upgrade APDU in the context of a search.

The operator_tune() APDU command may also be used by the CICAM for service discovery and requires the

Host to scan the network sequentially using the delivery system descriptors to find a location that carries a

signal. The Host command completes when the next carrier is found or the list is exhausted. The Host returns

CICAM Host

operator_status (1)

operator_search_start(2)

Optionally the CICAM may request a tune

operation by setting the refresh_request_flag() and

sending a operator_status() APDU to the Host.

The Host may initiate a profile search based on a

solicited CICAM operator_status()

refresh_request_flag or unsolicited as part of the Host

routine maintenance.

operator_tune (3) CICAM receives the profile search request and

may tune around. Once the search is complete

then the NIT is optionally updated and any refresh

request is removed. The CICAM shall keep the

user informed of the search progress in a Host

attended mode using the Application or high level

MMI.

operator_tune_status(4)

operator_tune (3)

operator_tune_status(4)

operator_search_status (5)

Host tunes on behalf of the CICAM.

The CICAM has finished searching when the search

status is returned. The entitlement change flag may be

set if the entitlement has changed. The refresh request

flag shall be updated.

If profile_type is not 0 then the Host requests the

latest CICAM NIT if the version has changed which

may result in a update to the channel list as a result of

any NIT change.

operator_nit (7)

operator_nit_req (6) A profiled CICAM then sends the latest CICAM

NIT on request from the Host.

Figure 14.18: Profile search APDU sequence

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 192

information about the tuned location to the CICAM. The information returned by the Host in any delivery

system descriptor definition shall be accurate as this information may be used to construct the CICAM NIT.

The Host completes a tuning request by sending a operator_tune_status() APDU to the CICAM which contains

information on the status of the tune operation. The Host shall return a delivery_system_descriptor which shall

be fully and accurately populated describing the currently tuned location, some values of the

system_delivery_descriptor may be derived from the tuner parameter signalling information carried in the actual

signal. The signal strength and quality information from the network interface shall be included in the APDU

expressed as a percentage relative values which should not be interpreted literally by the CICAM. The Host

shall not report non-viable signals to the CICAM as being present, the Host may report a frequency location

where a data carrier is detected by the network interface but the signal does not contain a valid transport stream

i.e. the Host is not required to determine that the signal actually carries a valid transport stream.

During a tuning operation then the CICAM shall be robust against data fluctuations and noise on the transport

stream bus. The Host may choose to, but is not required to, disconnect the transport stream interface for the

duration of a tune operation to further increase the robustness of the system. Where the transport stream is

disconnected by the Host for the duration of the tune then it shall be reconnected before issuing the

operator_tune_status() APDU to the CICAM.

The CICAM shall keep the user informed of the search progress in a Host attended mode using the MMI, ideally

the CICAM shall present an option to cancel in the MMI. If the user chooses to cancel the scan, the CICAM

shall cancel the tune and send an operator_search_status() to the Host with error_flag set to 0x3.

The Host may cancel the tune by sending a operator_search_cancel(), the CICAM shall cancel the tune and send

an operator_search_status() to the Host with the error_flag set to 0x3.

14.7.4.4.3 CAM Upgrade Consideration

A CICAM firmware upgrade APDU sequence shall not be initiated in the middle of a operator_search_start()

sequence until the CICAM returns the final operator_search_status() acknowledgement.

Where the Host initiates a periodical maintenance search in a stand-by mode, where the Host is unattended, then

the Host is required to provide the CICAM with a window of opportunity to make further Host requests. A grace

period of 30s after receipt of the operator_search_status() acknowledgement shall be provided by the Host

allowing the CICAM sufficient time to initiate a firmware upgrade APDU request before the Host returns to any

deep stand-by mode.

14.7.5 Operator Profile Resource

The Operator Profile resource enables the CICAM to coordinate the profile management with the Host. The

messages allow the CICAM to acquire and maintain the operator profile information with some agreement from

the Host device. The Host is informed of changes to the operator environment including changes in the service

line up and is advised when the CICAM needs to search the network to acquire the very latest information. The

CICAM is provided with the facility to tune and scan a network to acquire network information which is

facilitated by the Host.

The Host is only required to support a single Operator Profile session per CICAM. Where a CICAM has a

capability to support a multitude of different profiles then the CICAM shall determine which profile to map to

the session. The exact mechanism by which the CICAM determines the active profile to map is unspecified;

ideally the CICAM shall determine this automatically using the broadcast information, entitlement rights etc.

14.7.5.1 Operator Profile Resource APDUs

The CICAM opens the operator_profile resource immediately from start up and the resource remains open in

order to deliver any subsequent changes to the profile information.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 193

Table 14.35: Operator Profile APDUs

Operator Profile APDU Direction Description
operator_status_req HOST  CICAM Enter profile and/or request current profile

information.
operator_status CICAM  HOST The current profile status information.
operator_nit_req HOST  CICAM Request the current CICAM NIT sections.
operator_nit CICAM  HOST The current CICAM NIT sections.
operator_info_req HOST  CICAM Request the Operator information
operator_info CICAM  HOST The Operator information
operator_search_start HOST  CICAM Host permission to initiate a network search.
operator_search_cancel HOST  CICAM Cancel the current network search.
operator_search_status CICAM  HOST CICAM notification that the search has completed.
operator_exit HOST  CICAM The Host has left the service operator profile.
operator_tune CICAM  HOST Request to tune to a specific multiplex location.
operator_tune_status HOST  CICAM Host tune request has completed.
operator_entitlement_ack HOST  CICAM Confirmation that entitlement change has been

enacted.

14.7.5.2 operator_status_req APDU

The Host sends this APDU to the CICAM when entering the service operator profile and to query the current

operator profile status. The CICAM replies with a operator_status() APDU. When the CICAM receives the

operator_status_req() then it may assume that the Host is operating in the operator profile context until such

time that a operator_exit() APDU is received when no further asynchronous operator profile APDU updates may

be reported to the Host until such time that the Host enters the profile again with a operator_status_req() APDU.

Table 14.36: operator_status_req APDU syntax

Syntax No. of bits Mnemonic
operator_status_req() {

 operator_status_req_tag

 length_field()

}

24

uimsbf

Where the fields are defined as follows:

operator_status_req_tag: See Table L.1 in Annex L.

14.7.5.3 operator_status APDU

This APDU is sent by the CICAM to inform the Host about the CICAMs current operator profile settings. It is

sent in response to a operator_status_req() or operator_entitlement_ack() APDUs from the Host. The CICAM

also sends this APDU asynchronously on opening of the session or when there is a change in the

operator_status_body() that must be enacted by the Host.

The operator_status_body() should be considered to be quasi-static and contains information which represents

the operational state of the operator_profile session. The CICAM shall only send an operator_status APDU

when the operational state of the session changes.

On opening the Operator Profile resource the CICAM sends one operator_status () APDU to the Host conveying

the current profile setting.

Table 14.37: operator_status APDU syntax

Syntax No. of bits Mnemonic
operator_status() {

 operator_status_tag

 length_field()

 operator_status_body()

}

24

uimsbf

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 194

Where the operator_status_body() is defined as defined in Table 14.38. The operator_status_body() conveys

information about the state of the CA system in the context of CA services which are controlled by the CICAM.

The operator_status_body() contains flags and values that may cause the Host to perform some action. As a

general rule the Host and CICAM shall be sympathetic to the type of the currently selected service as follows:

 A Free-to-air service

o The CICAM shall not change the refresh_request_flag setting to urgent.

o The Host shall not unnecessarily interrupt or prevent the viewer from viewing the current

service. The Host shall process any urgent or expired timed request at the earliest opportunity

following the event when the user is not unnecessarily interrupted from viewing the current

service. The Host may choose to inform the user that the CA System requires some action and

allow the user to decide if this operation may be undertaken immediately or shall be deferred.

Any action, urgent or otherwise, may be deferred to prevent viewer interruption e.g. deferred

until the next channel change.

 A CA Service not owned by the operator profile CICAM – As Free-to-air service.

 A CA Service owned by the operator profile CICAM

o The CICAM may change the resfresh_request_flag to any setting including urgent.

o The Host shall action the change of the refresh_request_flag to urgent immediately which is

likely to interrupt the viewing of the current service. An outstanding urgent

refresh_request_flag setting shall be actioned immediately on selection of the CA service.

Table 14.38: operator_status_body syntax

Syntax No. of bits Mnemonic
operator_status_body() {

 info_version

 nit_version

 profile_type

 initialised_flag

 entitlement_change_flag

 entitlement_valid_flag

 reserved

 refresh_request_flag

 error_flag

 delivery_system_hint

 refresh_request_date

 refresh_request_time

}

3

5

2

1

1

1

1

2

4

4

16

8

uimsbf

uimsbf

uimsbf

bslbf

bslbf

bslbf

bslbf

uimsbf

uimsbf

bslbf

uimsbf

uimsbf

Where the fields are defined as follows:

operator_status_tag: See Table L.1 in Annex L.

info_version: This 3-bit field is an identifier that uniquely identifies the version of the profile information

contained in the operator_info() APDU. The profile information version shall be incremented by 1, wrapping to

0, when the profile information changes and the Host is required to re-evaluate the profile container. The profile

information version shall only be incremented on gross profile changes including a profile name change, profile

type change etc. This field shall not be incremented on a nit_version change or any changes in the status flags

e.g. initialised_flag, refresh_request_flag, etc.

nit_version: This 5-bit field is only interpreted in the context of a non-zero profile and is set to the current

version number of the NIT delivered by the CICAM. The Host shall monitor this field and shall respond to any

change in the same manner as a NIT table update in a conventional broadcast network.

When profile_type is 0 then the field shall be zero and shall not be interpreted by the Host.

profile_type: This 2-bit field identifies the type of CICAM profile, the CICAM profiles are identified in Table

14.39.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 195

Table 14.39: profile_type values

Value Description

0 The CICAM does not support any profiles and descrambles elementary streams as per DVB CI.

1 Profile is a private network that uses a CICAM NIT and has a private profile logical channel list.

2-3 Reserved for future use.

initialised_flag: This 1-bit field contains the status of the profile initialisation for the specified profile. A value

of "0" indicates that the profile has not been determined by the CICAM and the Host shall initiate an

operator_search_start(). A value of "1" indicates that the profile has been determined by the CICAM. When this

flag is clear other flags of the operator status body shall not be interpreted by the Host.

entitlement_change_flag: This 1-bit field shall be set when an entitlement change has occurred which has not

been acknowledged by the Host. A value of "0", the default, indicates that there are no entitlement changes

pending, a value of "1" indicates that an unacknowledged entitlement change is pending.

entitlement_valid_flag: This 1-bit field shall be set when the entitlement is valid, the field is provided for

information only. A value of "1" indicates that entitlement rights have been gained and are valid. A value of "0"

indicates that there are no entitlement rights.

refresh_request_flag: This 2-bit field shall be set when the CICAM requires a tuning operation to visit another

multiplex in order to acquire further information about the profile or to check entitlement rights etc. The

refresh_request_flag shall be set to zero when the CICAM no longer requires a tuning operation.

The CICAM may only request a single refresh request which may be deferred, urgent or scheduled. The Host is

required to action the last received refresh request discarding any previous request.

Table 14.40: refresh_request_flag values

Value Description

0 The default state, indicates that the CICAM does not need to interrogate the network and is up to
date.

1 Advance warning to the Host that something in the network has changed and the CICAM
requires the Host to tune in order to perform an update check when convenient. The request
shall be deferred until the Host is ready to do the search without interrupting the user.

2 Urgent request from the CICAM that the network needs to be interrogated in order to acquire
information. An urgent request shall only be notified where the CICAM does not have full
functional capability until the network has been interrogated. The Host shall initiate a profile
search as soon as possible.

A Host on a Free-to-air or CA service not associated with the CICAM that owns the operator
profile is not required to process this flag immediately when processing the request will interrupt
or prevent the user from viewing the current service.

3 Scheduled refresh request from the CICAM that the network needs to be interrogated at a
specific update time. The Host shall initiate a profile search at or after the specified time. This
may require the Host to automatically wake from standby at the specified time to initiate the
search. If the search slot is missed, for example if the receiver is powered off at the mains or the
user is viewing a service at the scheduled time, then the Host shall initiate an operator search
request as soon as possible after the event. Where there is an outstanding expired schedule
refresh request then the CICAM shall wait for the Host to initiate an operator search before
rescheduling for a later time.

The scheduled refresh requires that the Host shall invoke the operator search on or as soon as
possible after the event has expired. When the operator profile search is invoked by the Host
then the CICAM may perform the search and/or reschedule another search for a later time/date
by updating the refresh request fields.

The state of the refresh_request_flag (and time/date) shall be updated by the CICAM to reflect the next refresh

state required by the CICAM on completion of any operator search operation. The Host is notified of the new

refresh request flag setting in addition to the other flags of the operator_status_body() in the

operator_search_status() APDU.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 196

error_flag: This 4-bit field contains the status of the current active profile. The bits of the field shall be set

according to Table 14.41.

Table 14.41: error_flag values

Value Description

0 There are no errors.

1 Profile error. The CICAM has encountered an error and cannot acquire the profile, no profile
information is cached.

2 Unsupported delivery system. The CICAM does not support the delivery system descriptor(s)
reported by the Host.

3 Cancelled. The operator search has been interrupted and is incomplete.

4-15 Reserved for future use.

delivery_system_hint: This 4-bit field contains a hint of the delivery systems supported by the Operator Profile

and provides the Host with an assessment of the CICAM profile. This field shall be interpreted as a bitmask and

shall be set according to Table 14.42. This field shall not be set to zero.

Table 14.42: delivery_system_hint values

Bit Description

0b0001 This is a cable network and may be DVB-C and/or DVB-C2

0b0010 This is a satellite network and may be DVB-S and/or DVB-S2

0b0100 This is a terrestrial network and may be DVB-T and/or DVB-T2

0b1000 Reserved for future use.

The CICAM may support multiple delivery systems which shall result in multiple bits of this field being set. If

the Host does not support any of the reported delivery systems then the profile may be ignored by the Host.

refresh_request_date: This 16-bit field indicates the date of the next scheduled refresh cycle requested by the

CICAM. The date is specified as UTC Modified Julian Date (MJD) as defined in EN 300 468 [10], Annex C. A

value of 0x0000 indicates that no schedule refresh is requested.

refresh_request_time: This 8-bit field indicates the time of a scheduled refresh cycle requested by the CICAM.

The time is specified in UTC as an integer value in 6 minute intervals from midnight and is valid in the range

0..239. This field is only interpreted when the refresh_request_date is non-zero. When the refresh_request_flag

is zero then this field shall also be zero.

EXAMPLE: 0 00:00 – Midnight

 44 04:24 – 24 minutes past 4 in the morning.

 239 23:54 – 6 minutes to midnight.

14.7.5.4 operator_nit_req APDU

The Host sends this APDU to the CICAM to query the current Network Information Table (NIT). The CICAM

replies with an operator_nit APDU returning the CICAM NIT to the Host.

Table 14.43: operator_nit_req APDU syntax

Syntax No. of bits Mnemonic
operator_nit_req() {

 operator_nit_req_tag

 length_field()

}

24

uimsbf

Where the fields are defined as follows:

operator_nit_req_tag: See Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 197

14.7.5.5 operator_nit APDU

The CICAM sends this APDU to the Host in response to a operator_nit_req() APDU. The ADPU, if successful,

contains the latest CICAM NIT sections.

Table 14.44: operator_nit APDU syntax

Syntax No. of bits Mnemonic
operator_nit () {

 operator_nit_tag

 length_field()

 nit_loop_length

 for (i=0; i<N; i++){

 nit_section_byte

 }

}

24

16

8

uimsbf

uimsbf

uimsbf

Where the fields are defined as follows:

operator_nit_tag: See Table L.1 in Annex L.

nit_loop_length: This 16-bit field specifies the length in bytes of the following NIT section field containing the

CICAM NIT sections. The field may be zero (0) if there is no NIT.

nit_section_byte: A loop of one or more Network Information Table (NIT) sections that fully describe the

network. A NIT shall only be provided where the broadcast Network and/or Bouquet information is to be

ignored and is prepared by the CICAM. The NIT sections shall respect the broadcast signalling rules and shall

be a maximum size of 1024 bytes, shall appear in ascending section number order and shall each contain a valid

CRC-32. The NIT first loop may be split over multiple sections and shall adhere to the DVB splitting rules. The

NIT second loop may be split over multiple sections, the sections shall be sequentially numbered sections and

the appropriate delivery_system_descriptors and private data specifiers shall appear in each section.

When the NIT is returned to the Host then the NIT version shall typically match the version number in the last

reported operator_status() APDU. The NIT version shall only be different when the NIT has been updated and

the CICAM has not yet dispatched the operator_status() APDU containing the latest nit_version information.

The CICAM NIT shall contain all of the information that the Host requires to construct and maintain the logical

channel list of the operator profile. The Host is not required to interrogate the broadcast Service Information (SI)

for construction or maintenance of the profile channel list.

The first loop of the NIT may optionally contain a network name in a network_name_descriptor in addition to

CI Plus private descriptors to provide an indication of the broadcast network operation and to assign content text

labels. The first loop may also optionally include other broadcast signalling information such DVB-SSU which

shall be signalled in accordance with the DVB standards.

The second loop of the NIT shall contain system_delivery_descriptor(s) accurately specifying the network

location of the multiplex in addition to one or more ciplus_service_descriptor(s) describing the text label and

service type of each service to be included in the profiled logical channel list. Services are assigned a logical

channel number and may be hidden.

The Host shall always honour private descriptor scope. The Host is not obliged to interpret any other private

descriptors encountered in any loop of the NIT and shall ignore and skip over any unknown descriptors.

Refer to Annex N for full profile information.

14.7.5.6 operator_info_req APDU

The Host sends this APDU to the CICAM to query the operator information. The CICAM replies with a

operator_info() APDU returning the quasi-static operator information to the Host.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 198

Table 14.45: operator_info_req APDU syntax

Syntax No. of bits Mnemonic
operator_info_req() {

 operator_info_req_tag

 length_field()

}

24

uimsbf

Where the fields are defined as follows:

operator_info_req_tag: See Table L.1 in Annex L.

14.7.5.7 operator_info APDU

The CICAM sends this APDU to the Host in response to a operator_info_req() APDU. The APDU contains

important information for the Host for the correct interpretation and representation of the configuration of the SI

in the multiplexes of the network. It is important that any information provided in the APDU accurately matches

the actual network operation otherwise the behaviour of the Host may be adversely affected. The information in

this APDU shall be considered as quasi-static. The operator_info APDU is only interpreted for profile type 1

and type 0 for DVB-C/C2 networks. The operator_info APDU for type 0 is optionally interpreted for DVB-T/T2

and DVB-S/S2 networks.

Table 14.46: operator_info APDU syntax

Syntax No. of bits Mnemonic
operator_info () {

 operator_info_tag

 length_field()

 reserved

 info_valid

 info_version

 if (info_valid == 1) {

 cicam_original_network_id

 cicam_identifier

 character_code_table

 if (character_code_table == 0x1f) {

 encoding_type_id

 }

 else if (character_code_table == 0x10) {

 second_byte_value

 third_byte_value

 }

 sdt_running_status_trusted

 eit_running_status_trusted

 eit_present_following_usage

 eit_schedule_usage

 extended_event_usage

 sdt_other_trusted

 eit_event_trigger

 reserved

 ISO_639_language_code

 profile_name_length

 for (i=0; i< profile_name_length; i++) {

 profile_name_byte;

 }

 }

}

24

4

1

3

16

32

8

8

8

8

1

1

2

3

1

1

1

6

24

8

8

uimsbf

bslbf

bslbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf

bslbf

bslbf

bslbf

bslbf

uimsbf

uimsbf

Where the fields are defined as follows:

operator_info_tag: See Table L.1 in Annex L.

info_valid: this 1-bit field, when set to "1", indicates that the operator information is present. This bit shall only

be set to "1" when the operator information accurately reflects the contents of the broadcast network.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 199

info_version: This 3-bit field is an identifier that uniquely identifies the version of the profile information

contained within this APDU. The profile information version shall be incremented by 1, wrapping to 0, when

the profile information changes and the Host is required to re-evaluate the profile container. The profile

information version shall only be incremented on gross profile changes including a profile_name change,

profile_type change etc.

cicam_original_network_id: This 16-bit field unambiguously identifies the original_network_id identity of the

service operator according to the allocations found in ETSI TS 101 162 [32]. This may differ from the

original_network_id reported in the network due to the historical evolution of the network.

cicam_identifier: This 32-bit field identifies a particular hardware instance of the CICAM. The

cicam_identifier shall be unique enough to be used in conjunction with the CICAM_original_network_id to link

a CICAM with an operator profile. For example, the value may be constructed using any of the following:

 hash of the CICAM_ID

 hash of the serial number of the CICAM device

 hash of the serial number field of the CICAM device certificate

 value determined by the CICAM manufacturer

The chances of two CICAMs with the same identity should be less than 1 in 10
9
. The Host may use this field

value in conjunction with other information about the CICAM to associate a profiled channel list to a given

CICAM.

character_code_table: This 8-bit field identifies the default character set encoding that has been used on the

network where the network operator has deviated from the DVB character encoding format defined by ETSI EN

300 468 [10], Annex A. The default is 0x00 representing the DVB Character code table 00 – Latin alphabet

defined by the superset of ISO/IEC 6937. Where a non-zero character_code_table value has been specified by

this field then all of the text fields of the network, including text fields in the CI Plus private descriptors of the

NIT, which do not start with non-spacing, non-displayed data shall assume the character code specified by this

and/or its associated fields.

encoding_type_id: This 8-bit field qualifies the character_code_table field when set to 0x1f and indicates the

encoding scheme of the string according to the allocations found in ETSI TS 101 162 [32].

second_byte_value: This 8-bit field qualifies the character_code_table field when set to 0x10 and is the first

byte of the 16-bit value used to specify the character code table as defined in ETSI EN 300 468 [10], Annex A,

Table A.4.

third_byte_value: This 8-bit field qualifies the character_code_table field when set to 0x10 and is the second

byte of the 16-bit value used to specify the character code table as defined in ETSI EN 300 468 [10], Annex A,

Table A.4.

sdt_running_status_trusted: This 1-bit field is a hint to the Host that identifies if the running_status field of

the SDT is accurate, is trustable and may be interpreted by the Host. When the field is set to "1" then the SDT

running status is trusted and the Host may indicate services that are not in a active running state. When the field

is set to "0" then the SDT running status shall be interpreted to be always in a running state. The default Host

operation is "0".

eit_running_status_trusted: This 1-bit field is a hint to the Host that identifies if the running_status field of

the EIT is accurate, is trusted and may be interpreted by the Host. When the field is set to "1" then the EIT

running status is trusted and correctly indicates whether services are in an active running state. When the field is

set to "0" then the Host shall assume that the EIT running status is always in an active running state. The default

Host operation is "0".

eit_present_following_usage: This 2-bit field describes the operating state of the EITpresent/following event

information in the network according to the values in Table 14.47. The default Host operation is acquisition

from the local multiplex (1).

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 200

Table 14.47: EIT present/following operation values

Value Description

0 The EIT table is not present.

1 The EIT table is present on the network. The EIT table is not fully cross carried and is delivered
on the multiplex containing the service only. The Host is required to scan around the network to
acquire the complete set of EIT information. Networks that are partially cross carried shall use
this setting.

2 The EIT table is present on the network and is fully cross carried. The Host may remain on the
same multiplex to acquire the complete set of EIT information.

3 Reserved for future use.

eit_schedule_usage: This 3-bit field describes the operating state of the EIT scheduled event information in the

network according to the values in Table 14.48. The default Host operation is acquisition from the local

multiplex (1) or Barker channel operation (3) when a EPG service linkage is present.

Table 14.48: EIT schedule operation values

Value Description

0 The EIT table is not present.

1 The EIT table is present on the network. The EIT table is not fully cross carried and is delivered
on the multiplex containing the service only. The Host is required to scan around the network to
acquire the complete set of EIT information. Networks that are partially cross carried shall use
this setting.

2 The EIT table is present on the network and is fully cross carried. The Host may remain on the
same multiplex to acquire the complete set of EIT information.

3 The EIT table is present on the network and is available from a barker channel. The Host is
required to move to the Barker channel to acquire a complete set of EIT information. The
location of the barker channel(s) is indicated by a linkage descriptor with linkage_type 0x02
(EPG Service) in the 1

st
 loop of the NIT.

4 The Electronic Programme Guide information is delivered using an application.

5-7 Reserved for future use.

extended_event_usage: This 1-bit field identifies how extended event information is presented and identifies

whether the short_event_descriptor (0x4d) and extended_event_descriptor (0x4e) text fields are used mutually

exclusively. The values are defined in Table 14.49.

Table 14.49: EIT extended event semantics values

Value Description

0 The text of the extended_event_descriptor is different from the short_event_descriptor and shall
be concatenated together to provide extended event information.

1 The text of the extended_event_descriptor includes the text of the short_event_descriptor and
the descriptors are used mutually exclusively. The short_event_descriptor is used on its own to
provided a short description only, the extended_event_descriptor is used on its own to provide a
fuller text description.

sdt_other_trusted: This 1-bit field identifies the trusted state of SDTother tables in the network. The field shall

be set to "1" when the SDT is fully cross carried across the network and may be trusted by the Host for accurate

state information. The default is "0" and information in SDTactual is trusted only.

eit_event_trigger: This 1-bit field identifies if the EITp/f event transition across the network is accurate enough

to be used for event based recording. When the field is set to "1" then the EITp/f event transition (when

EITfollowing becomes EITpresent) is accurately transitioned and may be used as a trigger to start and stop recording

of an event. When the field is "0" then the EITp/f transition is inaccurate and the Host may use another

mechanism to ensure that the whole event is recorded e.g. addition of a 5min lead-in and trailer time before and

after the event signalled time.

EITp/f trigging requires that the service operator accurately aligns the broadcast content with the event delivery

and only allows events to transition when the programme content changes. This requires the service operator to

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 201

hold the current event when a programme is running late and to transition to the next event when a programme

is running early.

ISO_639_language_code: This 24-bit field identifies the default language code of unlabelled text fields and

elementary stream components. The default language code shall be used by the Host to perform component and

text selection in the absence of any explicit signalling from the service operator. Language codes which are

undefined (including ‘und’ or ‘qaa’) shall be assumed to be the default language code specified by this field.

profile_name_length: This 8-bit field specifies the length in bytes of the following text field describing the

profile name. For profile_type=1 this field shall always be non-zero and contain a valid profile name. The field

may be zero (0) if there is no profile name.

profile_name_byte: This is a 8-bit field, a string of "char" fields specifies the profile name. Text information is

coded using the character sets and methods defined in ETSI EN 300 468 [10], Annex A. The profile name shall

be used to label a profile and shall be used in preference to any network name found in any broadcast

information or CICAM NIT.

14.7.5.8 operator_search_start APDU

The Host sends this APDU to the CICAM to initiate a profile search sequence. On issuing the APDU then the

Host relinquishes control and passes that control (MMI and tuning) to the CICAM. Within the context of a

search then the CICAM shall control the user interface through the Application or High level MMI and may

take control of the Host tuner in order to move within the Network to acquire profile information. When the

CICAM has completed the search then it shall respond to the Host with a operator_search_status() APDU.

Table 14.50: operator_search_start APDU syntax

Syntax No. of bits Mnemonic
operator_search_start() {

 operator_search_start_tag

 length_field()

 unattended_flag

 service_type_loop_length

 for (i=0; i<N; i++) {

 service_type

 }

 delivery_capability_loop_length

 for (i=0; i<N; i++) {

 delivery_capability_byte

 }

 application_capability_loop_length

 for (i=0; i<N; i++) {

 application_capability_byte;

 }

}

24

1

7

8

8

8

8

8

uimsbf

bslbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

operator_search_start_tag: See Table L.1 in Annex L.

unattended_flag: This 1-bit field specifies whether the Host is operating in an unattended mode (i.e. the user is

not present). A value of "1" indicates that the user is not present and the Host is not able to service any

interactive requests. When the Host is unattended then the CICAM shall refrain from using the High Level or

Application MMI which cannot be serviced. A value of "0" indicates that the user is present and interactive

displays may be utilised by the CICAM.

service_type_loop_length: This 7-bit field specifies the number of bytes immediately following this field

defining the list of service_type’s the Host is able to present.

service_type: This 8-bit field specifies the type of service the Host is able to present. The service type values

are defined by the service_type field in the service_descriptor described in EN 300 468 [10].

EXAMPLE: 0x0102 MPEG-2 television (0x01) and MPEG-1, Layer-II radio (0x02)

services supported.

 0x01020c MPEG-2 television (0x01), MPEG-1, Layer-II radio (0x02) and data

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 202

services identified by the application_capability_byte field (0x0c)

supported.

 0x0102030a16 MPEG-2 television (0x01), MPEG-1, Layer-II radio (0x02), Teletext

(0x03), Advanced codec radio (0x0a) and Advanced codec SD video

(0x16) services supported

 0x0102030a101619 MPEG-2 television (0x01), MPEG-1, Layer-II radio (0x02), Teletext

(0x03), Advanced codec radio (0x0a), MHP (0x10), Advanced codec

SD (0x16) and HD (0x19) video services supported.

delivery_capability_loop_length: This 8-bit field specifies the length in bytes of the delivery_capability loop.

delivery_capability_byte: This 8-bit field describes the delivery system(s) which are supported by the Host.

Each delivery system supported by the Host is described by the EN 300 468 [10] delivery system descriptor

descriptor_tag, any extended descriptor shall be preceded by the extended descriptor tag (0x7F). A Host may

choose to advertise all supported delivery system descriptors or the delivery system descriptors applicable to the

current operational mode of the Host.

EXAMPLE: 0x43 DVB-S. A Host with a satellite tuner only.

 0x4379 DVB-S and DVB-S2. A Host with a satellite tuner supporting S and S2.

 0x5a7f0444 DVB-T, DVB-T2 and DVB-C. A Host with a multi-functional hybrid

terrestrial and cable tuner.

application_capability_loop_length: This 8-bit field specifies the length in bytes of the application_capability

loop.

application_capability_byte: This 8-bit field describes zero or more applications that are supported by the

Host. Each application natively supported by the Host is described by ETSI TS 101 162 [32] data_broadcast_id

value of 16-bits, multiple application environments are advertised by including multiple 16-bit values

corresponding to each supported application environment. A Host shall only advertise those applications types

which it is able to present. The versions of the application profiles are not specified and there is no guarantee

that a Host is able to support the version of any application environment.

EXAMPLE: 0x00f0 Host supports broadcast MHP

 0x0106 Host supports broadcast MHEG-5 profile

 0x01230107 Host supports broadcast HbbTV and Open TV

14.7.5.9 operator_search_cancel APDU

The Host sends this APDU to the CICAM to cancel a profile search sequence. On issuing the APDU then the

Host requests the CICAM to terminate the current profile search and responds with a operator_search_status()

APDU. The CICAM should attempt to stop the current profile search as quickly as possible, e.g. without waiting

for any outstanding operator_tune_status().

Table 14.51: operator_search_cancel APDU syntax

Syntax No. of bits Mnemonic
operator_search_cancel() {

 operator_search_cancel_tag

 length_field() = 0

}

24

uimsbf

Where the fields are defined as follows:

operator_search_cancel_tag: See Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 203

14.7.5.10 operator_search_status APDU

This APDU is sent by the CICAM to inform the Host that the profile search has been completed or cancelled.

The APDU content is identical to a operator_status() APDU with the exception of the APDU tag.

At the end of the operator search then the CICAM shall set the flag settings in the operator_status_body() to

accurately reflect the current CICAM state e.g. the refresh_request_flag shall be cleared or initialised with the

next search request. The Host shall process the operator_search_status() APDU as an indication that the search

has terminated and shall additionally process all of the flags of the operator_status_body() to ascertain the

current state of the operator profile. The CICAM shall not issue a operator_status() APDU in addition to a

operator_search_status() APDU at the end of the search.

Table 14.52: operator_search_status APDU syntax

Syntax No. of bits Mnemonic
operator_search_status() {

 operator_search_status_tag

 length_field()

 operator_status_body()

}

24

uimsbf

Where the fields are defined as follows:

operator_search_status_tag: See Table L.1 in Annex L.

operator_status_body(): See Table 14.38 in section 14.7.5.3.

14.7.5.11 operator_tune APDU

The CICAM sends this APDU to the Host to request a tuning operation in the context of the

operator_search_start() APDU under Host control when a profile search operation is requested. The APDU shall

not be used for tuning outside of this context. The Host replies with a operator_tune_status() APDU when the

tune operation has been completed. The APDU enables the CICAM to perform a direct tuning operation.

The Host is required to tune to the location specified by the delivery_system_descriptor field and to leave the

transport stream of this location passing through the CICAM. Multiple locations may be specified by this APDU

and the Host shall attempt to tune to each location in the order that they are presented in the APDU until the

Host locates a valid data carrier signal when the search is terminated without processing any more of the

locations and a operator_tune_status() APDU is returned to the CICAM identifying the multiplex that has been

found.

The Host shall count the descriptors processed in the APDU descriptor loop and is required to return the

descriptor number of the next unprocessed descriptor to the CICAM in the operator_tune_status() APDU on

completion of the tune. The descriptor count commences from 0 which identifies the first descriptor of the loop.

The Host processing of the tune request is depicted in the following pseudo code:

// Initialise

tuner_information = not found;

desc_num = 0;

// Loop over all of the descriptors in the APDU

while (descriptor[desc_num] is present in descriptor loop) {

 current_location_info = descriptor [desc_num];

 desc_num++;

 while (descriptor [desc_num] present and additionally describes the current_location) {

 current_location_info += descriptor [desc_num];

 desc_num++;

 }

 // Check the tuning parameters quit if these descriptors are not supported and

 // the CICAM may then re-build the list excluding this delivery location.

 if (current_location_info has bad parameters OR is invalid OR is not supported) {

 current_location_info = descriptor information + error codes.

 break;

 }

 // All of the descriptors that identify this tuning location have been found.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 204

 // Initiate a tune.

 tune_status = tune (current_location_info);

 // If a data carrier is found then save the tuner information and quit loop.

 if (tune_status == signal present AND signal viable AND is a data carrier) {

 tuner_information = current tuner location information;

 break;

 }

}

// If nothing has been found we have reached the end of the loop

if (tuner_information == not found) {

 desc_num = 0xff;

}

// Stay at the tuned location and send the tune status back to the CICAM.

send APDU operator_tune_status (desc_num, tuner_information)

The Host shall utilise any hardware assistance of the tuner to speed up the search and may skip over tuner

locations without initiating an explicit tune operation if the tuner location is considered to have been previously

searched by the hardware. This Host optimisation relies on the CICAM correctly grouping similar tuning

requests such that the Host is able to identify and trivially discard these locations.

Table 14.53: operator_tune APDU syntax

Syntax No. of bits Mnemonic
operator_tune () {

 operator_tune_ tag

 length_field()

 reserved

 descriptor_loop_length

 for (i=0; i<N; i++) {

 descriptor()

 }

}

24

4

12

8

uimsbf

bslbf

uimsbf

uimsbf

Where the fields are defined as follows:

operator_tune_tag: See Table L.1 in Annex L.

length_field(): The APDU shall be limited to a maximum of 2048 bytes which allows 157

system_delivery_descriptors with a length of 13 bytes.

descriptor_loop_length: This 12-bit field specifies the length in bytes of the descriptor() loop that follows this

field.

descriptor(): A loop of delivery system descriptors that describes the location of the CICAM tune request. The

descriptor loop shall contain one or more delivery system descriptors which are all from the same delivery

system. The CICAM shall produce a complete and optimal tuner parameter set in the delivery descriptor i.e.

frequencies shall be grouped etc. The Host shall attempt to tune to each specified location and locate a viable

signal with appropriate data carrier indication, as soon as the Host locates a carrier location, or the end of the

descriptor list is reached, then the tune operation is stopped and the status is reported to the CICAM with a

operator_tune_status() APDU.

14.7.5.12 operator_tune_status APDU

The Host sends this APDU to the CICAM in response to a operator_tune () or APDU operation after the Host

has tuned to the requested location.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 205

Table 14.54: operator_tune_status APDU syntax

Syntax No. of bits Mnemonic
operator_tune_status() {

 operator_tune_status_tag

 length_field()

 descriptor_number

 signal_strength

 signal_quality

 status

 descriptor_loop_length

 for (i=0; i<N; i++) {

 descriptor()

 }

}

24

8

8

8

4

12

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

Where the fields are defined as follows:

operator_tune_status_tag: See Table L.1 in Annex L.

descriptor_number: This 8-bit field identifies the next unprocessed descriptor number in the operator_tune()

APDU which has not been processed by the Host, a value of 0xff indicates that the Host has reached the end of

the table. The descriptors are counted from 0, the descriptor_number handling is described in the introductory

text for the operator_tune() APDU.

Table 14.55: status values

Value Description

0 The tuning operation was successful and the Host has successfully tuned to the requested
location; the tuner is locked and a digital signal is available. The transport stream shall be
passing through the CICAM.
The descriptor_number field shall be the next unprocessed descriptor number.
The signal_strength field shall be non-zero.
The signal_quality_field shall be non-zero.
The descriptors() field shall contain the delivery_system_descriptor(s) that describe the current
fully qualified tuning location. This may be slightly different from the original CICAM delivery
descriptor if the information has been corrected by the Host tuner information.

1 The delivery system descriptor is not supported by the Host.
The descriptor_number field shall be the next unprocessed descriptor number.
The signal_strength field shall be 0.
The signal_quality_field shall be 0.
The descriptor_loop shall contain the descriptor(s) that are not supported

2 The delivery system descriptor parameters are invalid.
The descriptor_number field shall be the next unprocessed descriptor number.
The signal_strength field shall be 0.
The signal_quality_field shall be 0.
The descriptor_loop shall contain the descriptor(s) that are invalid.

3 The tuning operation failed. The Host has successfully tuned to the requested location and no
signal is present.
The descriptor_number field shall be 0xff as the descriptor list will have been exhausted.

The signal_strength field shall be 0.
The signal_quality_field shall be 0.
The descriptor_loop_length shall be 0.

4-15 Reserved for future use.

Where the Host reports an unknown or illegal delivery_system_descriptor then the Host shall stop the search

and return the erroneous system_delivery_descriptor to the CICAM. The CICAM may then re-build the tuning

list with a new set of tuning locations which shall exclude descriptors of a similar type if the search is to

continue.

signal_strength: This 8-bit field specifies the signal strength as a percentage value in the range 0 to 100, where

0 represents no signal and 100 is a full strength signal. Note that an indication of signal strength is not a measure

of signal quality and the signal_quality field shall be interrogated to assess the signal quality.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 206

signal_quality: This 8-bit field specifies the quality of the signal as a percentage value in the range 0 to 100,

where 0 represents a signal with no viable quality and 100 is a perfect signal.

status: This 4-bit is the status of the tune request. The status values are defined in Table 14.54.

descriptor_loop_length: This 12-bit field specifies the length in bytes of the descriptor() loop that follows this

field.

descriptor(): A loop of delivery system descriptors that describes the currently tuned location of the Host that is

passing through the CICAM or descriptors causing an error. The descriptor loop shall contain a single delivery

system location only, which may be described by one or more descriptors.

14.7.5.13 operator_entitlement_ack APDU

The Host sends this APDU to the CICAM to acknowledge that any change in the entitlement has been processed

by the Host, which may have resulted in a change in the logical channel list etc. The CICAM shall send a

operator_status() APDU in response to the command with the entitlement_change_flag field cleared.

Table 14.56: operator_entitlement_ack APDU syntax

Syntax No. of bits Mnemonic
operator_entitlement_ack() {

 operator_entitlement_ack_tag

 length_field()

}

24

uimsbf

Where the fields are defined as follows:

operator_entitlement_ack_tag: See Table L.1 in Annex L.

14.7.5.14 operator_exit APDU

The Host sends this APDU to the CICAM to inform the CICAM that the Host has left a profile_type=1

environment and is operating in a different channel list or context. Any transport stream passing through the

CICAM may not originate from the operator profile environment until such time that the Host returns to the

operator environment signified with a operator_status_req() APDU.

Table 14.57: operator_exit APDU syntax

Syntax No. of bits Mnemonic
operator_exit() {

 operator_exit_tag

 length_field()

}

24

uimsbf

Where the fields are defined as follows:

operator_exit_tag: See Table L.1 in Annex L.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 207

Annex A (normative):
Random Number Generator

A.1 Random Number Generator Definition

The random number generator is used to generate following random numbers in this specification:

Table A.1: random numbers

Field Length (bits) Comment

DHX 2048 Diffie Hellman exponent "x"

DHY 2048 Diffie Hellman exponent "y"

Kp 256 CICAM's key precursor to Host for CCK

Ns_Host 64 Host's challenge to CICAM for SAC

Ns_Module 64 CICAM's challenge to CICAM for SAC

Auth_nonce 256 nonce in authentication protocol

The random number generator shall adhere to either of the following:

1) The PRNG described in SCTE 41 [5], section 4.6.

NOTE: The uniquely generated seed value is prng_seed in this specification. Unless explicitly noted

otherwise, the seed values shall be treated as highly confidential as described in the CI Plus

Licensee Specification [33]. It is advised that SHA implementations adhere to the SHS validation

list, refer to SHS Validation List [11].

2) An AES based algorithm inspired by ANSI X 9.31 [12] illustrated in Figure A.1 and described below:

k

DTi

AES-

128

Si

Ri

AES-

128

Ii

k
AES-

128

Ri

Si+1

Ii

k

Figure A.1: AES Based PRNG Example

In Figure A.1, k is a 128-bit constant value, DTi is a 128 bit value that is updated on each iteration (e.g.

date/time vector or monotonic counter) and s is a seed value. The CICAM and the Host shall each have a

uniquely generated seed value S.

NOTE: Unless explicitly noted otherwise, the values k and S shall be treated as highly confidential as

described in the license agreement.

The combination of fixed value k and initial seed value S0 shall be unpredictable and unique per licensed

product. The seed generator for S0 shall comply with SP800-22b [36]. If there is no seed generator for S0, then S

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 208

shall be maintained in a non-volatile register, in which case a source of entropy is not required. Additionally DT

must be ensured to be non-repeating only until the next time the licensed product is re-started.

The 128 bit random values Ri (i=0,1….) are generated as follows:

)}({128 iAESi DTkEI  Eq. A.1

)}({128 iiAESi SIkER   Eq. A.2

)}({1281 iiAESi RIkES   Eq. A.3

For random numbers that are not an exact multiple of the AES block size the last AES block is truncated LSB to

the length specified in Table A.1.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 209

Annex B (normative):
Device ID Protocol

B.1 Device ID Specification

Note: The Device ID format is not defined in this document and may be obtained from the CI Plus

Licensee Specification [33].

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 210

Annex C (normative):
Checksum Algorithms

C.1 Checksum Algorithms

This section is deprecated. Communication between the CICAM and the service operator is not within scope of

this specification.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 211

Annex D (normative):
SD and HD capabilities

D.1 SD and HD Definitions

In this specification the definition for an SD device or an HD device is not specified. A HD device is a device

that can process and decode HD signals passed through the Common Interface. This could mean for example

that the HD device conforms to the HD TV logo of the EICTA. Several countries or continents have different

definitions of logo programs, other logo definitions may apply to conform to the capability to process HD

signals.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 212

Annex E (normative):
Clarification of DVB-CI Use Cases

E.1 Initialisation

E.1.1 Specification

PCMCIA standard defines in volume 2, section 4.4.6 that the Host has to wait 5s for the ready signal to be set.

As a reminder, a specification extract is shown below in italic.

A card that requires more than 20 ms for internal initialization before access shall negate READY until it is

ready for initial access, a period of time which is not to exceed five seconds following the time at which the

RESET signal is negated (or if no RESET is implemented, VCC is stable).

E.1.2 Requirement

The Host shall explicitly check for the READY signal until it is set by the module or until a timeout of 5s has

expired.

E.2 CA_PMT in Clear

E.2.1 Specification

DVB-CI specifications define in the "Guidelines for Implementation and Use of the Common Interface for DVB

Decoder Applications (R206-001:1998)" [24] that the Host has to send the ca_pmt object even when the

selected programme is in the clear. As a reminder, the specification extract is shown below in italic.

CA_PMT is sent by the Host even when a programme in clear is selected by the user (typically a programme for

which there are no CA_descriptor in the PMT). In this case, the Host shall issue a CA_PMT without any

CA_descriptors (i.e.: CA_PMT with program_info_length == 0 and ES_info_length == 0).

E.2.2 Requirement

Hosts shall send the CA_PMT even when selected programme is in the clear (FTA).

E.3 CA_PMT Clear to Scrambled / Scrambled to
Clear

E.3.1 Specification

It has been defined in Guidelines for Implementation and Use of the Common Interface for DVB Decoder

Applications (R206-001 [24]; section 9.5.6.2):

Switch from scrambled to unscrambled and vice-versa.

 When one programme switches from scrambled to clear, there are several possibilities:

1. This change is not signalled in the PMT, but only in the TSC field of the packet header or in

the PES_SC field of the PES header. In this case, there is no reason for the Host to send a new

CA_PMT to remove the programme from the list. The programme remains selected and the

Host keeps on sending CA_PMT when the version_number of the PMT evolves.

2. This change results in a modification of the PMT. In this case, a CA_PMT is issued by the

Host.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 213

 When one programme switches from clear to scrambled, there are several possibilities:

1. This change is not signalled in the PMT, but only in the TSC field of the packet header or in

the PES_SC field of the PES header. In this case, the Host does not send a new CA_PMT. The

CA application must detect that switch.

2. This change results in a modification of the PMT (e.g.: CA_descriptors are removed). In this

case, a CA_PMT is issued by the Host.

NOTE: In both cases it is recommended that the CA application attempt to create a user dialogue to

inform the user.

E.3.2 Recommendation

The CA application shall not create a user dialogue when not necessary.

E.4 PMT Update and New CA_PMT

E.4.1 Specification

It has been described in R206-001 [24] (section 9.5.5.1) that:

If the Host wants to update a CA_PMT of one of the programmes of the list it sends a CA_PMT with

ca_pmt_list_management == update. This happens when the Host detects that the version_number or the

current_next_indicator of the PMT has changed. The CA application in the module then checks whether this

change has consequences in the CA operations or not. It also happens when the list of elementary streams of a

selected programme changes (e.g.: the user has selected another language). In this case, the Host has to resend

the whole list of elementary streams of that updated programme.

E.4.2 Recommendation

When the PMT version is changed, the CA_PMT_Update object shall be used in order to avoid a black screen.

E.5 Spontaneous MMI

E.5.1 Specification

It has been defined in Guidelines for Implementation and Use of the Common Interface for DVB Decoder

Applications R206-001 [24] (section 9.5.6.1):

CA applications currently not active for any current programmes selected by the user may create MMI sessions

for user dialogue, for example to warn of an impending PPV event on another programme previously purchased

by the user.

E.5.2 Resolution

Display all MMI messages sent by the CICAM. Do not allow automatic MMI closing, allow the user to close

the MMI.

The CICAM shall deal with situations when the Host is busy and cannot service the CICAM's request to display

a spontaneous MMI message. In this case, the Host returns an open_session_response object with session_status

F3 (resource busy) when the module tries to open the MMI session. The module may retry opening an MMI

session until the Host is able to open the session but it must take into account that some messages become

obsolete when the current service is changed (e.g. a spontaneous MMI message saying "you are not allowed to

watch this programme").

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 214

E.6 Transport Stream to CICAM

E.6.1 Specification

DVB-CI specifications define in EN 50221 [7] (section 5.4.3) that a transport stream connection has to be

established if the module is found as DVB conformant. As a reminder, a specification extract is shown below in

italic.

When a module is not connected the Transport Stream Interface shall bypass the module, and the Command

Interface to that module shall be inactive. On connection of a module, the Host shall initiate a low-level

initialisation sequence with the module. This will carry out whatever low-level connection establishment

procedures are used by the particular Physical Layer, and then establish that the module is a conformant DVB

module. If successfully completed, the Host shall establish the Transport Stream connection by inserting the

module into the Host's Transport Stream path. It is acceptable that some Transport Stream data is lost during

this process.

E.6.2 Resolution

Always send the transport stream to the CICAM when it has been initialized.

E.7 Profile Reply

E.7.1 Specification

DVB-CI specifications define in EN 50221 [7] (section 8.4.1.1) that when a profile enquiry is sent by Host or

module, a profile reply has to be sent by module or Host. As a reminder, a specification extract is shown below

in italic.

When a module is plugged in or the Host is powered up one or perhaps two transport connections are created to

the module, serving an application and/or a resource provider.

The first thing an application or resource provider does is to request a session to the Resource Manager

resource, which is invariably created as the Resource Manager has no session limit. The Resource Manager

then sends a Profile Enquiry to the application or resource provider which responds with a Profile Reply listing

the resources it provides (if any). The application or resource provider must now wait for a Profile Change

object. Whilst waiting for Profile Change it can neither create sessions to other resources nor can it accept

sessions from other applications, returning a reply of 'resource non-existent' or 'resource exists but unavailable'

as appropriate.

E.7.2 Recommendation

Reply to profile enquiry object.

E.8 Operation on a Shared Bus

E.8.1 Background

In many setups, a PCMCIA slot shares address and data lines with other devices such as a second PCMCIA slot

or a flash memory chip. Each device will have its own Chip Enable line that is negated when the current access

refers to this particular device. For a PCMCIA slot, this Chip Enable line is connected to the CICAM's Chip

Enable #1 (CE1#) pin, Chip Enable #2 (CE2#) is ignored.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 215

E.8.2 Recommendation

The CICAM shall check its CE1# pin and make sure it is low before processing any data from the bus. When

Chip Enable #1 (CE1#) pin is high, the CICAM shall not send any data or change its internal state based on

signals from the bus.

E.9 Maximum APDU Size

EN 50221 [7] section 7 states:

The objects are coded by means of a general Tag-Length-Value coding derived from that used to code ASN.1

syntax.

And later in this section:

Any value field length up to 65535 can thus be encoded by three bytes.

ASN.1 Basic Encoding Rules (BER) allow for the encoding of lengths using more than three bytes. Using the

long form a length value may occupy a maximum of 127 bytes giving an encoded length which is 128 bytes

long that may represent a length of greater than 10
305

 bytes.

The second fragment of EN 50221 text is in fact an example of how one can use three bytes to encode a length.

One could equally give the example of using four bytes which could encode a length of up to 16 777 216 bytes.

E.10 Host Control resource

E.10.1 Specification

The Host Control resource 00 20 00 4x is mandatory for a CI Plus Host to support, it allows the CICAM tune

away to another service for CAM upgrade as specified in section 14.3 and support Video on Demand (VoD)

type applications as specified in section 14.6.1.

E.10.2 Recommendation

Host Control shall only be used when the User interacts with the CICAM allowing the CICAM to tune away to

another service (i.e. CAM upgrade and MMI).

E.11 CA-PMT Reply

E.11.1 Specification

DVB-CI specifications define in EN 50221 [7] (section 8.4.3.5). This object is always sent by the application to

the Host after reception of a ca_pmt object with the ca_pmt_cmd_id set to 'query'. It may also be sent after

reception of a ca_pmt object with the ca_pmt_cmd_id set to 'ok_mmi' in order to indicate to the Host the result

of the MMI dialogue. e.g. 'descrambling_possible'; if the user has purchased the content, or 'descrambling not

possible (because no entitlement)'; if the user has not purchased the content.

E.11.2 Recommendation

The CICAM shall always send a ca_pmt_reply when the ca_pmt object is sent with the ca_pmt_cmd_id set to

'query' and shall not start descrambling until the Host sends a ca_pmt with ca_pmt_cmd_id set to

'ok_descrambling'.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 216

E.12 CC and CP Resource

E.12.1 Specification

The CC resource in CI plus offers enhanced Content Control using the URI as defined in section [5.7], the

extensions in DVB TS 101 699 [8], section 6.6, offers the CP resource for Content Control. Both of these

resources are used to control the distribution of content and shall never be opened at the same time.

E.12.2 Recommendation

The CICAM shall not open a session to both the CC resource and the CP resource at the same time. The Host

shall reply 'session not opened, resource exists but unavailable (0xf1)'

E.13 Physical Requirements

E.13.1 Data Interface

EN 50221 [7] section 5.4.2.5 states:

All interfaces shall support a data rate of at least 58 Mb/s averaged over the period between the sync bytes of

successive transport packets.

This specification increases this data rate requirement. CICAMs conforming to this specification shall support

96 Mb/s. Hosts conforming to this specification shall have sufficient bandwidth for their network interfaces.

Refer to section 11.1.3 for further information on the CI Plus data rate requirements.

E.13.2 Command Interface

EN 50221 [7] section 5.4.2 states:

The Command Interface shall transfer commands as defined by the appropriate Transport Layer part of this

specification in both directions. The data rate supported in each direction shall be at least 3.5 Megabits/sec.

This requirement shall still hold for this specification.

E.14 Low-Speed Communication comms reply object

E.14.1 Specification

In section 8.7.1.5 of EN 50221 [7] the return_value in the description of the Comms Reply object coding is

categorised by the mnemonic “uimsbf”. However, in the text of the specification is states that return_value

contains negative values to indicate an error and specifically a value of -1 for non-specific errors.

E.14.2 Recommendation

It is recommended that the eight bit return_value field in a comms_reply APDU should be interpreted as a

signed “two’s complement” value.

E.15 High-Level MMI Text Object Coding

E.15.1 Specification

Section 8.6.5.1 of EN 50221 [7] states that Text information is coded using the character sets and methods

described in EN 300 468 [10] and that text sent by the application may include such control characters as are

defined by [10] to provide indication of how the display is to be presented.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 217

The Host may render any text object without a preceding character table selection byte as Table 00 – Latin

Alphabet as shown in EN 300 468 [10] Annex A1, Figure A.1, which may not be what the CICAM wants.

E.15.2 Recommendation

It is recommended that the CICAM always includes the preceding character table selection byte to ensure that

the correct character table is used by the Host. See EN 300 468 [10] Annex A.

E.16 DVB Host Control Tune Object

E.16.1 Specification

Section 8.5.1.1 of EN 50221 [7] describes how the Host Control resource allows a CICAM to instruct the Host

to tune to another location. The new location is defined by a combination of network_id, original_network_id,

transport_stream_id and service_id. The behaviour of the receiver when some of these values are zero and any

method of setting a wild card value is not described.

E.16.2 Recommendation

It is recommended that the network_id shall not be used. A value of zero (0) shall be considered a wild card or

don’t care value. It is recommended that there shall be only two valid combinations of tuning parameters and

wild card values. The valid combinations are shown in Table E.1.

Table E.1: Valid combinations of DVB Host Control Tune object parameters

network_id transport_stream_id original_network_id service_id Action

0 TSID ONID SID Tune to a service,
service must exist

0 TSID ONID 0 Tune to a multiplex,
Host does not select
service, a ca_pmt will
not be sent by the
Host.

Note: It is assumed that the receiver has the desired location already referenced in its service list so that the
actual tuning parameters may be found. The Host service list may only contain services interpreted by
the Host i.e. Television and Radio services only.

E.17 Conditional Access Support

E.17.1 Specification

EN 50221 [7], section 8.4.3.4 states:

The CA PMT contains all of the CA_descriptors of the selected programme. If several programmes are selected,

the Host sends several CA PMT objects to the application. The CA_PMT only contains CA_descriptors. All

other descriptors must be removed from the PMT by the Host.

R206-001:1998 [24], section 9.5.5 Description of the feature, states:

If simulcrypt techniques are in use then an entry for one programme in the PMT may contain CA descriptors for

more than one CA ID. In this case the CA_PMT object will contain all the CA descriptors in use, that is, the

receiver will not attempt to select on the basis of the CA ID(s) advertised by a particular CA application.

E.17.2 Host Requirement

On selection of a service to be descrambled, the Host is required to process ALL CA_descriptors appearing in

both the first descriptor loop (Program Stream Loop) and second descriptor loops (Elementary Stream Loop) of

the PMT. Multiple CA_descriptors with different CA_system_ID's may be present in either or both loops.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 218

The Host shall pass all CA_descriptors appearing in the PMT to the CICAM in the ca_pmt using the

corresponding program level and/or elementary stream level loops, with the exception that the Host may

optionally discard any CA_descriptors that do not match any of the CA_system_id's advertised by the CICAM

in the ca_info() APDU.

The Host is recommended to, but not obliged to, to maintain the same CA_descriptor and Elementary Stream

ordering of the PMT in the ca_pmt.

E.17.3 CICAM Requirement

The CICAM shall include all CA_system_IDs that it supports in the ca_info() APDU when requested by the

Host.

The CICAM shall be robust in the presence of multiple CA_descriptors which may appear in any order. The

CICAM shall be robust in the presence of CA_descriptors that do match any CA_system_id(s) of the CICAM

and shall ignore the CA_descriptors if they are not supported by the CICAM.

The CICAM shall be robust with respect to the order of Elementary Streams and shall be able to descramble

correctly signalled and CA supported elementary streams irrespective of their order in the ca_pmt.

E.18 Resource Version Handling

E.18.1 Specification

En 50221 [7], section 8.4.1.1 Resource Management Protocol states:

When it has asked for profiles on all transport connections and received Profile Replies the host builds a list of

available resources. Where two or more resources match in both class and type the host keeps the one with the

highest version number in its list.

E.18.2 Requirement

Where a Host supports multiple versions of the same resource then the highest version number of the resource is

reported by the Host ONLY. Lower versions of the resource shall be supported by the Host but are not reported

in the profile_reply() APDU.

The CICAM may request a lower version of the resource than reported by the Host which is discussed in section

E.19.

E.19 Open Session Request

E.19.1 Specification

En 50221 [7], section 7.2.6.1 Open Session Request states:

This object is issued by the module to the host in order to request the opening of a session between the module

and one resource provided either by the host or by a module. The resource_identifier must match in both class

and type a resource that the host has in its list of available resources. If the version field of the supplied

resource identifier is zero, then the host will use the current version in its list. If the version number in the

request is less than or equal to the current version number in the host’s list then the current version is used. If

the requested version number is higher than the version in the host’s list, then the host will refuse the request

with the appropriate return code.

E.19.2 Specification Correction

In a change to the EN 50221 [7] specification then the paragraph is revised as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 219

This object is issued by the module to the host in order to request the opening of a session between the module

and one resource provided either by the host or by a module. The resource_identifier must match in both class

and type a resource that the host has in its list of available resources. If the version field of the supplied

resource identifier is zero, then the host will use the current version in its list. If the version number in the

request is equal to the current version number in the host’s list then the current version is used. If the version

number in the request is less than the current version number in the host's list then the Host shall use the

version number requested by the CICAM. If the requested version number is higher than the version in the

host’s list, then the host will refuse the request with the appropriate return code.

This requires that the Host shall always support all lower versions of an advertised resource.

E.19.3 Recommendation

The CICAM is recommended not to use a resource identifier version field value of zero and shall specify the

highest version number of the resource that is supported by the CICAM.

The CICAM shall never request a version number that it is not able to fully support and shall not return the

version number advertised by the Host unless it is fully supported.

E.20 CA PMT Provision

E.20.1 Background

Omission of the Host to send a CA PMT on each and every service change causes issues on the CICAM

including:

1) Pay Per Time (PPT) is not counted correctly (as no notification of service change),

2) Parental control is not always enforced when re-entering a protected service.

3) Application MMI is not restarted.

E.20.2 Specification

EN 50221 [7] 8.4.3.3 CA_PMT states:

The host may decide to send the CA PMT to all connected CA applications or preferably only to the applications

supporting the same CA_system_id value as the value given in the CA_descriptor of the selected elementary

streams (ES).

EN 50221 [7], section 8.4.3.4 states:

The receiver sends a new CA PMT or a new list of CA PMT to the Application when:

• the user selects another programme

• a 'tune' command selects another service (see 8.5.1.1)

• the version_number changes

• the current_next_indicator changes

E.20.3 Host Recommendation

The Host should send a new CA PMT on every service change and on change of the version_number or

current_next_indicator to all connected CA applications that are actively descrambling.

E.21 CICAM evaluation of CA_descriptors

E.21.1 Specification

EN50221:1997 [7], section 8.4.3.4 CA_PMT states:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 220

The CA_descriptor(s) at elementary_stream level is (are) valid for the elementary_stream only. If, for one

elementary_stream, CA_descriptor(s) exist at programme level and at elementary_stream level, only the

CA_descriptor(s) at elementary_stream level are taken into account.

ITU-T J.96:2001 [39], section 6.2.3 Modes 2 and 3 states:

One CA_descriptor may be present in PMT at program level, giving an ECM_pid for all components of the

program. Additional CA_descriptors may be present at component level. In this case, it supersedes the value

which has been specified at program level, only for the concerned component.

E.21.2 CICAM Requirement

Within the ca_pmt() APDU; CA_descriptors that are available at the component level (ES) for a given

component that may be descrambled by the CICAM then any CA_descriptors at the program level shall be

ignored for this component.

E.22 CA Support session closing behaviour

E.22.1 Specification

EN-50221:1997 [7], section 8.4.3 Conditional Access Support states:

The session is then kept open for periodic operation of the protocol associated with the CA PMT and CA PMT

Reply objects.

R206-001:1998 [24], - 9.5.5.1. General rules, and 9.5.6.1. General rules states:

In case of repetitive errors, it may also close the CA support session and re-open it.

If the session to the CA support resource closes down, the CA application should attempt to open another

session.

E.22.2 Host Requirement

The Host shall support the closing and reopening of the CA support session.

E.22.3 CICAM Requirement

If the current session of the CA support resource is closed, the CICAM shall try to reopen it.

E.23 ca_pmt commands

E.23.1 Specification

EN50221 [7] lists several ca_pmt_cmd_id values. The influence the way a ca_pmt from the host is interpreted

by the CICAM.

E.23.2 CICAM Requirement

A CICAM shall support all ca_pmt_cmd_id values listed in EN 50221 [7], section 8.4.3.4. When the CICAM

receives a ca_pmt with ca_pmt_cmd_id set to query for a program or elementary stream, the CICAM shall send

a ca_pmt_reply to the host and shall not start descrambling and shall not display any MMI.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 221

E.24 Open Session Response

E.24.1 Specification

The host sends an open_session_response() SPDU in response to an open_session_request() by the CICAM.

The open_session_response() contains a status value according to EN 50221 [7], table 7.

E.24.2 CICAM Requirement

The CICAM shall process all status values in EN 50221 [7], table 7.

A CICAM shall be robust if the Host returns the status "session not opened, resource busy". In this case, it is

recommended that the CICAM retry opening the session until the Host is able to service the request.

E.25 Character Coding

E.25.1 Specification

With respect to EN50221 [7] specification, section 8.6.2.3 Display Reply and a change to the R206-001[24],

section 9.8.5 Output character codes.

E.25.2 Host Requirement

The Host shall respond to a display_control() APDU of types get_display_character_table_list (02) and

get_input_character_table_list (03).

E.25.3 Host Recommendation

A Host is recommended to reply with all of the character codes required by the base profile of the country or

region or network for which the Host is currently configured. The Host may optionally include all other

character code tables that are supported by the High Level MMI which might not be required for the Hosts

current configuration.

In the case where the network requires only the default character set (ISO/IEC 6937) then the Host shall respond

to the display_control() APDU request with a display_reply() APDU and the character_table_byte loop shall be

zero length indicating that the default character set is supported.

Example:

Country/Region character_table_byte Character Tables

France, Germany, …

{0x01} ISO/IEC 6937 and ISO/IEC 8859-9

United Kingdom

{} ISO/IEC 6937 only

Nordig {0x01, 0x05, 0x10, 0x00, 0x01,

 0x10, 0x00, 0x04, 0x10, 0x00,

 0x0f}

ISO/IEC 6937, ISO/IEC 8859-9,

ISO/IEC 8859-9, ISO/IEC 8859-1,

ISO/IEC 8859-4, ISO/IEC 8859-15

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 222

Annex F (normative)
Error Code Definition and Handling

F.1 Error Codes

Table F.1: ARC Error Codes

Error
Code

+

Error condition

Error
detected by

Host action CI Plus Module action Comments

00 None N/A None None

01 Module Revoked CICAM None CICAM goes to pass-through mode (note 1)

02 Host Revoked CICAM - CICAM goes to pass-through mode (Note 1)
- a revocation notification message is
displayed.

03 SAC Failed CICAM/Host - If EMI>0 CICAM goes to pass-through mode,
otherwise switches to DVB CI mode
- a response error notification message is
displayed.

The service
operator and CAS
may choose under
what conditions to
descramble when
operating in DVB CI
mode.

04 CCK Failed CICAM/Host - If EMI>0 CICAM goes to pass-through mode,
otherwise switches to DVB CI mode
- a response error notification message is
displayed.

The service
operator and CAS
may choose under
what conditions to
descramble when
operating in DVB CI
mode.

05 CICAM Firmware Upgrade
Failed
- Bootloader

CICAM None Recommended:
- CICAM retries the download 2 times
- a response error notification message is
displayed.

06 CICAM Firmware Upgrade
Failed
- Location Error

CICAM None Recommended:
- CICAM retries the download 2 times.
- a response error notification message is
displayed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 223

Error
Code

+

Error condition

Error
detected by

Host action CI Plus Module action Comments

07 CICAM Firmware Upgrade
Failed
- Image Signature Error

CICAM None Recommended:
- CICAM retries the download 2 times
- a response error notification message is
displayed.

08 Authentication Failed
- Retries Exhausted

CICAM None CICAM goes to pass-through mode

09 Authentication Failed
- Signature Verification Failed

CICAM/Host Host stops the CICAM. CICAM goes to pass-through mode

10 Authentication Failed
- Auth Key Verification Failed

CICAM/Host Host stops the CICAM. CICAM goes to pass-through mode

11 Authentication Failed
- Key Computation Failed

CICAM/Host Host stops the CICAM. CICAM goes to pass-through mode

12 Authentication Failed
- DH Failed

CICAM/Host Host stops the CICAM. CICAM goes to pass-through mode

13 CICAM Certificate Invalid
- Syntax Incorrect

Host Host stops the CICAM. None

14 CICAM Certificate Invalid
- Expired

Host Host goes to DVB-CI mode. (Note 2) None

15 CICAM Certificate Invalid
- Signature Verification Failed

Host Host stops the CICAM. None

16 Host Certificate Invalid
- Syntax Incorrect

CICAM None - CICAM goes to pass-through mode
- a response error notification message is
displayed.

17 Host Certificate Invalid
- Expired

CICAM None - CICAM goes to DVB-CI mode (Note 3)
- a response error notification message is
displayed.

18 Host Certificate Invalid
- Signature Verification Failed

CICAM None - CICAM goes to pass-through mode
- a response error notification message is
displayed.

19 Service Operator Certificate
Invalid
- Syntax Incorrect

CICAM None - CICAM goes to DVB-CI mode (Note 3)
- a response error notification message is
displayed.

20 Service Operator Certificate
Invalid
- Expired

CICAM None - CICAM goes to DVB-CI mode (Note 3)
- a response error notification message is
displayed.

21 Service Operator Certificate
Invalid
- Signature Verification Failed

CICAM None - CICAM goes to DVB-CI mode (Note 3)
- a response error notification message is
displayed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 224

Error
Code

+

Error condition

Error
detected by

Host action CI Plus Module action Comments

22 CICAM Requires Update CICAM None - CICAM goes to pass-through mode
- a response error notification message is
displayed.

23 –
127

Reserved for CI Plus CICAM None - a response error notification message is
displayed.

128 –
255

Private Use for Service Operator CICAM None - a response error notification message is
displayed.

NOTE:
1: The CICAM relays the transport stream unaltered and does not descramble any services (CI Plus or DVB-CI services).
2: The Host behaves like a DVB-CI compliant Host.
3: The CICAM descrambles only services that require no CI Plus protection (DVB-CI fallback mode)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 225

Annex G (normative):
PCMCIA Optimizations

The PC-Card based physical layer for DVB-CI is described in EN 50221 [7], annex A. In CI Plus, more data has to be

transferred over the command interface than in DVB-CI. The following section defines changes to the DVB-CI physical

layer in order to increase throughput on the command interface. Please note that these changes do not affect the

transport stream interface.

G.1 Buffer Size

The buffer size for sending and receiving data on the command interface is negotiated during initialisation of the

command interface, see EN 50221 [7], annex A.2.2.1.1.

A CI Plus compliant device shall provide a minimum buffer size of 1024 bytes but it can be up to 65535 bytes.

G.2 Interrupt Mode

The CI Plus uses interrupt driven operation on the command interface outlined in R206-001 [24]. A CICAM may assert

IREQ# when it has data to send or when it is ready to receive data from the Host, i.e. when it sets the DA bit or the FR

bit in the status register.

Two additional bits are defined in the command register to control the occasions when the CICAM actually triggers an

interrupt.

Table G.1: Command Register

7 6 5 4 3 2 1 0

DAIE FRIE R R RS SR SW HC

Table G.2: Interrupt Enable Bits

DAIE when this bit is set, the module asserts IREQ# each time it has data to send

FRIE when this bit is set, the module asserts IREQ# each time it is free to receive data

The default values at start-up are 0 for both bits. Before setting DAIE or FRIE to 1, the Host shall ensure that the

CICAM is CI Plus compliant.

A CI Plus compliant CAM shall announce interrupt support in the Card Information Structure (CIS). The CIS contains

one CISTPL_CFTABLE_ENTRY for each interface the PC-Card supports. A CI Plus CAM uses the same PC card

custom interface as a DVB-CI CAM and therefore the same CISTPL_CFTABLE_ENTRY. Table G.3 explains the

changes in the CISTPL_CFTABLE_ENTRY to indicate interrupt support. See PC Card Standard Volume 4 [30],

section 3.3.2 for a complete explanation of the CFTABLE_ENTRY and its components.

Table G.3: Changes to CISTPL_CFTABLE_ENTRY

TPCE_FS (feature selection byte) set bit 4 (IRQ) to 1
this indicates that a TPCE_IR entry is present

TPCE_IR only one byte is used for the TPCE_IR
set bit 5 (Level) to 1, all other bits to 0

The CICAM uses level-triggered interrupts. To signal an interrupt, the CICAM asserts the IREQ# line by setting it to

low. The line is kept asserted until the Host acknowledges that the interrupt is being serviced. The acknowledgement is

given implicitly by a read or write operation on the bus. Pulsed interrupts are not supported in CI Plus.

When the Host receives an interrupt from the CICAM, it checks its settings for DAIE and FRIE and the CICAM's DA

and FR bits in the status register in order to determine the cause of the interrupt. The Host must be prepared to find both

FR and DA set to 0. This may occur if the CICAM signalled that it is free to receive data but it has become busy and

reclaimed the free buffer before the interrupt was serviced.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 226

If the interrupt was triggered because the CICAM has data available, the Host performs a module to Host transfer as

described in EN 50221 [7], annex A.2.2.1.3. If the interrupt signals that the CICAM is free to receive data, the Host

may perform a Host to module transfer according to EN 50221 [7], annex A.2.2.1.2.

In interrupt mode if the CICAM requests a reset (i.e. setting the IIR bit in the status register) it can assert the FR bit in

the status register to cause an interrupt and assert the IREQ# signal.

Support for interrupt handling is mandatory in both the Host and CICAM. See R206-001 [24], section 4.3.3 for further

information about interrupt driven operation.

A CI Plus module shall always be capable of operating with polling operation even though interrupt support is

mandatory. The module will raise an interrupt and wait for the Host to initiate a data transfer; the Host may poll

regularly without checking for an interrupt, the actual transfer of data is not changed.

G.3 CI Plus Compatibility Identification

A CI Plus CICAM (and optionally any other CICAM that is not necessarily CI Plus but is able to operate correctly in a

CI Plus Host) shall declare CI Plus compatibility in the CIS information. A CICAM shall declare CI Plus compatibility

in the CISTPL_VERS_1 tuple. Within the TPLLV1_INFO a CI Plus compliant CICAM shall include a CI Plus

compatibility string declaration in one of the two lines for Additional Product Information.

The compatibility string shall strictly adhere to the following BNF definition:

<compatibility> ::= "$compatible[" <compatibility_sequence> "]$"

<compatibility_sequence> ::= <compatibility_item> { " " <compatibility_item> }

<compatibility_item> := <label> "=" [<compatibility_flag>] <identity>

<compatibility_flag> ::= "-"|"+"|"*"

<label> ::= <word>

<identity> ::= <word>

<word> ::= <char> {<char>}

<char> ::= "a"-"z"|"A"-"Z"|"0"-"9"|"."|"_"

Where the fields are defined as follows:

<compatibility>: the compatibility string is used to indicate the start and end of the compatibility information. The

string is delimited by the dollar ($) character which shall appear at both the start and end of the compatibility string

enclosure. The enclosed string commences with the case insensitive key word compatible followed by a square bracket

with no spaces i.e. "$compatible[". The <compatibility_sequence> shall immediately follow the square bracket and

shall be terminated with a closing square bracket "]". The string may appear once only in either one of the two lines for

Additional Product Information. The string may be preceded or followed by other text characters.

<compatibility_sequence>: a space separated string of <compatibility_item>’s, a single space only shall separate each

<compatibility_item>.

<label>: a character string that identifies the compatibility that is supported. The label shall comprise the uppercase or

lowercase alphabetic characters "a" to "z" and "A" to "Z", numeric’s "0" to "9", period character (".") and underscore

("_"). For CI Plus compatibility then the label is defined as the case insensitive string "ciplus".

<identity>: a character string that qualifies the compatibility of the given label.

<compatibility_flag>: an optional character that identifies the compatibility of the item with the associated label as

defined in Table G.4.

Table G.4: Compatibility Flag

Character Description

- (Minus) The CICAM is not compatible with the <identity>

+ (Plus) The CICAM is compatible with the given <identity> only. This is the default when
omitted.

* (Asterisk) The CICAM is compatible with all versions up to and including the <identity>.

Where a label appears in the compatibility string with multiple compatibility settings then the compatibility string set

shall be fully evaluated for the label before being applied. In the example "label=*4 label=-2" then "label" is valid for

the set of values {0,1,3,4} only and the value 2 is excluded.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 227

All components of the compatibility string are defined as case insensitive and a Host processing the CIS compatibility

string shall perform case insensitive parsing. As an example the following Additional Product Information strings are

considered to be compatibility equivalent:

"Some text $compatible[acme=+this ciplus=1 acme=-that]$ more text"

"Some text $COMPATIBLE[Acme=+This CIPLUS=1 Acme=-that]$ more text"

"Some text $CoMpAtIbLe[AcMe=+ThIs CIplus=1 aCmE=-tHaT]$ more text"

A CICAM shall not under any circumstances advertise compatibility with CI Plus at a given version unless that CICAM

has been fully tested with a CI Plus Host at that specified version. It is mandatory for a CI Plus CICAM to indicate its

CI Plus compatibility status in the CIS information.

A CI Plus Host may optionally process the CIS compatibility information. A CI Plus Host that processes the

compatibility information and determines that the CICAM is not CI Plus compatible may optionally omit advertising CI

Plus resources or refrain from using specific CI Plus APDUs. Removal of the CI Plus specific APDUs minimises

interoperability issues with CICAMs that are not CI Plus compatible. It is mandatory for a CI Plus Host to advertise its

CI Plus specific resources to a compatible CICAM irrespective of whether the module is actually a CI Plus CICAM.

G.3.1 CI Plus Identification

A CI Plus CICAM shall declare support for CI Plus with the <label> "ciplus". For the <label> "ciplus" then the

<identity> shall be a decimal integer version number comprising one or more decimal digits. For this version of the

specification then the <identity> shall be "1". The version shall remain at 1, irrespective of the specification version,

until such time that there is an APDU or functional incompatibility which shall force the version number to be increased

by 1.

For a CICAM that is compatible with the CI Plus specification then the <label> and <compatibilty_item> shall be

defined as "ciplus=1". A typical compatibility string for a CI Plus CICAM (or a CICAM that has been tested with a CI

Plus Host) shall be:

$compatible[ciplus=1]$

The compatibility information may appear with other information embedded in the string, a complex string example

might be:

"Some text $compatible[acme=+this ciplus=1 acme=-that]$ more text"

Where the CICAM is compatible with "acme=this" but is not compatible with "acme=that" and is also compatible with

CI Plus specification 1.2 ("ciplus=1").

A later revision of the CI Plus specification may require the CI Plus identification number to be incremented and a

CICAM that is compatible with versions 1 and 2 of the identifier would advertise compatibility as follows:

$compatible[ciplus=*2]$

indicating that the CICAM is compatible with identity 1 CI Plus Specification and identity 2 (some later version of the

specification). All Hosts that interpret the CIS information shall process the compatibility flag.

G.3.2 Additional CI Plus Feature Identification

A CICAM shall declare support for additional CI Plus features in the CIS information e.g. Operator Profile Resource.

The compatibility string shall strictly adhere to the BNF definition defined in G.3.

For a CICAM that is compatible with the additional CI Plus features <label> and <compatibilty_item> shall be defined

as "ciprof=int". A typical compatibility and features string for a CICAM which supports the additional CI Plus features

shall be:

$compatible[ciplus=1 ciprof=int]$

Where int is defined as a 32-bit unsigned integer which may be expressed as an unsigned decimal integer using the

digits 0..9 or as a hexadecimal integer which shall be prefixed with 0x and include the digits 0..9 and characters a..f.

The hexadecimal notation shall be case insensitive i.e. 0x4ac or 0X4AC or 0x4Ac are all valid.

The ciprof identity is interpreted as a bit mask as follows:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 228

Table G.5: Features Bit Mask

Features (resources) bit mask Note

Operator Profile Resource 0x00000001 See section 14.7.4.1.4

Reserved 0x00000002 – 0x80000000

Examples of compatibility and features might be:

$compatible[ciplus=1 ciprof=1]$

$compatible[ciplus=1 ciprof=0x4401]$

$compatible[ciplus=*22 ciprof=116893]$

$compatible[ciplus=*3 ciprof=0x890a4401]$

A CICAM shall not under any circumstances advertise CI Plus feature unless the CICAM has been fully tested with a

CI Plus Host. It is mandatory for a CI Plus CICAM to indicate its CI Plus compatibility and features in the CIS

information.

A CI Plus Host may optionally process the CIS additional CI Plus Features information.

When the ciprof string is omitted from the CIS information then the Host shall assume that none of the features that are

known are supported, unless otherwise determined by the Host when full communication with the CICAM has been

initiated.

It is recommended that the ciprof label is placed after the ciplus label in the string.

G.3.2.1 Operator Profile Resource (Bit 0 – 0x00000001)

The operator profile resource bit when set to "1" indicates that the CICAM supports an active operator profile. This bit

is set to "0" when there is no operator profile on the CICAM or the operator profile has not been advertised in advance.

The Host device may optionally interpret this bit to determine if an operator profile is present and may wait for the

CICAM to create the operator profile APDU before continuing with any installation process. When the bit is zero then

the CICAM may still have an operator profile present however it may not be possible for the Host to install the profile

in any initial installation procedure as it was not advertised early enough. In such an event then the operator profile shall

be installed by the Host in a separate installation procedure following the initial installation.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 229

Annex H (normative):
Credential Specification

H.1 Parameters Exchanged in APDUs

Table H.1: Input Parameters in Computations (exchanged in APDUs)

Key or variable Size (bits) Comments datatype id

Reserved - - 1

Reserved - - 2

Reserved - - 3

Reserved - - 4

HOST_ID 64 Generated by the ROT and included in the X.509 certificate. 5

CICAM_ID 64 Generated by the ROT and included in the X.509 certificate. 6

Host_BrandCert Note 1 Host Brand Certificate 7

CICAM_BrandCert Note 1 CICAM Brand Certificate 8

Reserved - - 9

Reserved - - 10

Reserved - - 11

Kp 256 CICAM's key precursor to Host for CCK 12

DHPH 2048 DH Public Key Host 13

DHPM 2048 DH Public Key module/CICAM 14

Host_DevCert Note 1 Host Device Certificate Data 15

CICAM_DevCert Note 1 CICAM Device Certificate Data 16

Signature_A 2048 The signature of Host DH public key 17

Signature_B 2048 The signature of CICAM DH public key 18

auth_nonce 256 Random nonce of 256 bits generated by the CICAM and
transmitted by the CICAM to the Host for use in the
authentication protocol.

19

Ns_Host 64 Host's challenge to CICAM for SAC 20

Ns_module 64 CICAM's challenge to Host for SAC 21

AKH 256 Authentication Key Host 22

AKM 256 Authentication Key Module/CICAM 23

Reserved - - 24

uri_message 64 Data message carrying the Usage Rules Information. 25

program_number 16 MPEG program number. 26

uri_confirm 256 Hash on the data confirmed by the Host. 27

key register 8 (uimsbf) 0 = even, 1 = odd, other values not supported. 28

uri_versions 256 Bitmask expressing the URI versions that can be supported
by the Host. Format is 'uimsbf'

29

status_field 8 Status field in APDU confirm messages. 30

HDCP.srm Note 2 SRM for HDCP 31

srm_confirm 256 Hash on the data confirmed by the Host. 32

cicam_license variable License from CICAM associated with content (Note 3) 33

license status 8 Current status of the content license 34

license_rcvd_status 8 Status from the exchange of content license 35

Host_license variable License for which the Host requires current status. (Note 3) 36

play_count 8 Remaining Play Count 37

operating_mode 8 Record operating mode 38

PINcode data variable CICAM PIN code one byte for each pin code digit 39

record_start_status 8 CICAM status after a record_start protocol 40

mode_change_status 8 CICAM status after a change operating mode protocol 41

record_stop_status 8 CICAM status after a record_stop protocol 42

DTCP.srm Note 4 Reserved for DTCP SRM. 43

XXXX.srm Note 4 Reserved for future SRM use 44-49
Notes:
1. Certificate lengths are of variable size.
2. SRMs for HDCP are defined in the HDCP specification, [34]. First generation HDCP v1.x SRMs shall not exceed 5

kilobytes. Second generation HDCP v2.x SRMs may be larger than 5 kilobytes.
3. Licenses must not be zero length and shall be padded to the next byte boundary. Licenses shall be no larger than 1024

bytes.
4. For CI Plus specification v1.4 and above then datatype_id 43-49 inclusive are SRM messages. A Host complying with v1.4

shall correctly handle all such datatype_ids that are designated as SRM messages.SRM message lengths are of variable
size.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 230

Annex I (normative):
Use of PKCS#1

I.1 RSA Signatures under PKCS#1

RSA signatures shall be constructed using the implementation guidelines of RSA PKCS#1 [1].

The scheme is RSA + SHA1. There are two choices specified in RSA PKCS#1 [1] as they are RSASSA-PSS and

RSASSA-PKCS1-V1_5. RSASSA-PSS shall be used to sign and validate messages.

The signatures shall be 2048 bits long.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 231

Annex J (normative):
Tag Length Format

J.1 Tag Length Format

A tag length format (TLF) is defined to identify the items in the signatures of the authentication protocol (see section 6).

An item in the signature is identified by following syntax:

<tag> <length><signature_item>

<tag> - this is a field of 8 bits with a unique value (uimsbf) for the data item as specified in Table J.1. The tag is

encoded as binary value. The following tag values are defined and shall be used.

Table J.1: Tag and length definition

tag value
(8 bits)

tag name Comment length
(16 bits)

0x00 version version of the protocol (value is fixed to 0x01 for
this version of the specification)

8

0x01 msg_label message label 8

0x02 auth_nonce authentication nonce 256

0x03 DHPM DH Public key CICAM Module 2048

0x04 DHPH DH Public key Host 2048

0x05-0xFF reserved reserved for future use N/A

<length> - this is a field of 16 bits (uimsbf) to express the length of the actual data item in the signature in bits. The

length is encoded as binary value with min 0 and max 2
16

 -1.

<signature_item> - this field carries the actual data item in the signature.

Example; following signature:

<version 1> + <msg_label 02> + <auth_nonce> + <DHPH>

would encode as explained in Table J.2:

Table J.2: Example

Item Encoding

<version> 0000 0000
0000 0000 0000 1000
0000 0001

<msg_label 02> 0000 0001
0000 0000 0000 1000
0000 0010

<auth_nonce> 0000 0010
0000 0001 0000 0000
(followed by 256 bits of random data)

<DHPH> 0000 0100
0000 1000 0000 0000
(followed by 2048 bits of random data)

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 232

Annex K (normative):
Electrical Specification

K.1 Electrical Specification

This Annex reiterates the electrical requirements for CI Plus Host and CICAM. There are no new electrical

requirements for CI Plus. This information is extracted from EN 50221 [7], PCM CIA Volume 2 [28] and PCM CIA

Volume 3 [29].

K.1.1 General Information

DVB compliant Hosts shall accept any forms of PCMCIA module without damage to either the Host or PCMICA

module and determine that it is not a CICAM. Similarly CICAM may be plugged into a PCMCIA socket on any other

system without damage to either the Host or CICAM and the usability of the CICAM in that system will be determined.

K.1.2 Connector Layout

Common Interface physical layer uses PC Card Type I and II physical form factor which is defined in PCMCIA 8.0

Volume 3 Physical Specification [29]. The interface specifies a connector with 68 pins. At power up just after Reset the

pin assignment of the CICAM is shown in Table L.1 which is an abstract of the 16 bit PC Card signal definition as

defined in the PCMCIA Electrical specification [28]. When the CICAM is configured as the DVB-CI variant during the

initialisation process, the following pin reassignments are made is shown in Table L.2

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 233

Table K.1: Common Interface pin assignment before Personality Change

Pin assignment before personality change

Pin Signal I/O Comment Pin Signal I/O Comment

1 GND Ground 35 GND

2 D3 I/O Data Bit 3 36 CD1# Card Detect 1

3 D4 I/O Data Bit 4 37 D11 I/O High Z

4 D5 I/O Data Bit 5 38 D12 I/O High Z

5 D6 I/O Data Bit 6 39 D13 I/O High Z

6 D7 I/O Data Bit 7 40 D14 I/O High Z

7 CE1# I Card Enable 1 41 D15 I/O High Z

8 A10 I Address Bit 10 42 CE2# I Card Enable 2

9 OE# I Output Enable 43 VS1# O Voltage Sense 1

10 A11 I Address Bit 11 44 RFU

11 A9 I Address Bit 9 45 RFU

12 A8 I Address Bit 8 46 A17 I High Z

13 A13 I Address Bit 13 47 A18 I High Z

14 A14 I Address Bit 14 48 A19 I High Z

15 WE# I Write Enable 49 A20 I High Z

16 Ready O Ready 50 A21 I High Z

17 VCC Supply 51 VCC Supply

18 VPP1 Program Voltage1 52 VPP2 Program Voltage2

19 A16 I High Z 53 A22 I High Z

20 A15 I High Z 54 A23 I High Z

21 A12 I Address Bit 12 55 A24 I High Z

22 A7 I Address Bit 7 56 A25 I High Z

23 A6 I Address Bit 6 57 VS2# O Voltage Sense 2

24 A5 I Address Bit 5 58 RESET I Card Reset

25 A4 I Address Bit 4 59 WAIT# O Extend Bus Cycle

26 A3 I Address Bit 3 60 RFU

27 A2 I Address Bit 2 61 REG# I Register Select

28 A1 I Address Bit 1 62 BVD2 O

29 A0 I Address Bit 0 63 BVD1 O

30 D0 I/O Data Bit 0 64 D8 I/O High Z

31 D1 I/O Data Bit 1 65 D9 I/O High Z

32 D2 I/O Data Bit 2 66 D10 I/O High Z

33 WP O Write Protect 67 CD2# Card Detect 2

34 GND 68 GND

Notes:
1. "I" indicates signals input to the CICAM.
2. "O" indicates signals output from the CICAM.
3. Uses the least significant byte of the data bus. 16 bit read and writes are not supported.
4. Data signals D8 – D15 shall not be available as data lines.
5. Address Lines A15 – A25 shall not be available as address lines.
6. Signals BVD1 BVD2 shall remain "High" during initialization phase.
7. CE2# shall be ignored and interpreted by the module as being in the "High" state.
8. Signals shown in grey are non used signals on the CICAM in this personality.
9. The following items apply to all signals marked with High Z. Signals marked as input indicated

with "I", shall not be actively driven by the Host and kept in High Z state except the signals
pulled up / down by the Host according to Tables K5, K6 and K7.

10. The following items apply to all signals marked with High Z. Signals marked as output
indicated with "O", shall not be actively driven by the CICAM and kept in High Z state except
the signals pulled up / down by the Host according to Tables K5, K6 and K7.

11. All signals that are not active (greyed out) should be ignored at the input end.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 234

Table K.2: Common Interface pin assignment after Personality Change

Pin assignment after personality change

Pin Signal I/O Comment Pin Signal I/O Comment

1 GND Ground 35 GND

2 D3 I/O Data Bit 3 36 CD1# Card Detect 1

3 D4 I/O Data Bit 4 37 MDO3 O MP data out 3

4 D5 I/O Data Bit 5 38 MDO4 O MP data out 4

5 D6 I/O Data Bit 6 39 MDO5 O MP data out 5

6 D7 I/O Data Bit 7 40 MDO6 O MP data out 6

7 CE1# I Card Enable 1 41 MDO7 O MP data out 7

8 A10 I Address Bit 10 42 CE2# I Card Enable 2

9 OE# I Output Enable 43 VS1# O Voltage Sense 1

10 A11 I Address Bit 11 44 IORD# I I/O read

11 A9 I Address Bit 9 45 IOWR# I I/O write

12 A8 I Address Bit 8 46 MISTRT I MP in start

13 A13 I Address Bit 13 47 MDI0 I MP data in 0

14 A14 I Address Bit 14 48 MDI1 I MP data in 1

15 WE# I Write Enable 49 MDI2 I MP data in 2

16 IREQ# O Interrupt Request 50 MDI3 I MP data in 3

17 VCC Supply 51 VCC Supply

18 VPP1 Program Voltage1 52 VPP2 Program Voltage2

19 MIVAL I MP invalid 53 MDI4 I MP data in 4

20 MCLKI I MP clock input 54 MDI5 I MP data in 5

21 A12 I Address Bit 12 55 MDI6 I MP data in 6

22 A7 I Address Bit 7 56 MDI7 I MP data in 7

23 A6 I Address Bit 6 57 MCLKO O MP clock output

24 A5 I Address Bit 5 58 RESET I Card Reset

25 A4 I Address Bit 4 59 WAIT# O Extend Bus Cycle

26 A3 I Address Bit 3 60 INPACK# O In Port Ack.

27 A2 I Address Bit 2 61 REG# I Register Select

28 A1 I Address Bit 1 62 MOVAL O MP out valid

29 A0 I Address Bit 0 63 MOSTRT O MP out start

30 D0 I/O Data Bit 0 64 MDO0 O MP data out 0

31 D1 I/O Data Bit 1 65 MDO1 O MP data out 1

32 D2 I/O Data Bit 2 66 MDO2 O MP data out 2

33 IOIS16# 16 bit I/O 67 CD2# Card Detect 2

34 GND 68 GND

Notes:
1. IOIS16# is never asserted.
2. CE2# is ignored by the CICAM and is pulled up to Vcc by the Host.
3. INPACK# is optional for Hosts with single CI slots, mandatory for CICAMS

K.1.3 Configuration Pins

K.1.3.1 Card Detection Pins

 Card Detect pins (CD1# and CD2#) are used by the Host to detect the presence of a CICAM.

 Both Card Detect pins are placed at opposite ends of the connector in order to detect correct insertion.

 The Host shall provide a 10KΩ or larger pull up resistor to "Vcc" on each of the Card Detect pins. This Vcc is

not the same Vcc as used to supply the CICAM.

 The CICAM shall tie both of the Card Detect pins to "GND".

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 235

Figure K.1: Card Detect Mechanism

 Host shall only report valid insertion when both Card Detect pins are asserted.

 Card Detect pins shall not be interconnected between CICAMs.

 If the Host senses only one Card Detect pin asserted, it may notify the user one of the following conditions:

The CICAM has not been inserted correctly or completely.

The card inserted is of a type not supported by the common interface.

K.1.3.2 Voltage Sense Pins And Socket Key

 Following the PCMCIA version 8 specifications, voltage sense pins are used to configure supply voltage

levels.

 CI Plus Host shall support 5V and optionally 3.3V.

 CI Plus CICAM shall support 5V supply only.

 Voltage sense pin VS1# may be connected to GND or left open on the CICAM due to previous demand.

 VS1# pins shall not be interconnected between CICAMs.

 Socket Key for the Host is of 5V type.

K.1.3.3 Function Of VPP1 And VPP2

 CICAMs are allowed to use pins VPP1 and VPP2 as power pins.

 The CICAM is not allowed to short pin VPP1 to VPP2.

 The CICAM is not allowed to short pin VPP1 or VPP2 to VCC.

 When pins VPP1 and VPP2 are used as power pins they have to follow the power up/down conditions and

sequence that are valid for the VCC pins.

 CICAM must not derive more than 30% of the consumed power via the VPP pins and not more than 15% for

each VPP pin.

 VPP pins shall not be interconnected between CICAMs.

CI

connector CI CARD

CD 1 # 3
6

10 K

Vcc

GND

CD 2 # 6
7

10 K

Vcc

GND

Detection Logic

HOST

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 236

K.1.4 Power Supply Specifications

K.1.4.1 5V DC Supply Specification

Table K.3: Card supply characteristics for 5V indication

Common Interface Card DC Characteristics

Supply Name Min Max Unit Remark

Vcc 4.75 5.25 V See 1.

Vpp 4.75 5.25 V See 1.

Icc + Ipp - 300 mA See 2.

Ipp 50 mA valid per VPP pin

Icc + Ipppower up 100 mA See 4.

Icc + Ipppeak 500 mA See 3.

Ptotal 1.5 W See 2.

Notes:
1. "Vcc" is the voltage indication for the VCC pins and "Vpp" is the voltage

indication for the VPP1 and VPP2 pins. When indicated with 5V it
demands that the card functions properly in the specified supply voltage
range.

2. Total long term power dissipation of a single common interface card must
not exceed Ptotal.

3. Short term peak current are allowed but not longer than 1ms
4. Maximum current consumption directly after power up and reset and

during the configuration access.

Table K.4: Host supply characteristics for 5V indication

Host DC Characteristics

Supply Name Min Max Unit Remark

Vcc 4.75 5.25 V See 1.

Vpp 4.75 5.25 V See 1.

Icc 330 mA See 2.

Ipp 55 mA

Icc + Ipppeak 500 mA See 3.

Notes:
1. "Vcc" or "Vpp" indicated with 5V meet the specification under all static

load conditions that does not pass load limits with the remark that the
Host is not in a power up/down state.

3. It is recommended that the Host is able to provide the minimal peak load
for duration of at least 1ms.

4. Current load requirements are based on a single card. Hosts that support
multiple cards shall provide the current load requirements times the
number of card slots.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 237

K.1.4.2 Host Supply Power Up Timing Diagram

Figure K.2: Host supply power up timing diagram

K.1.4.3 Host Supply Power Down Timing Diagram

Figure K.3: Host supply power down timing diagram

Vcc

Vcc

10

10

%

%

0

3

.

–

1

–

300

ms

100

Vcc

ms

90

Vcc

%

90

supply voltage on VCC and VPP pins

%

signal on CE1#

supply voltage on VCC and VPP pins

2

signal on CE1#

V

2

signal level “high”

V

>

signal level “high”

20

>

ms

20

signal on RESET pin

ms

signal level “high Z”

signal on RESET pin

signal level “high”

signal level “high Z”

signal level “low”

signal level “high”

signal level “low”

signal level “low”

 > 0 us

signal level “low”

> 1 ms

> 10 us

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 238

K.1.5 Signal Level Specifications

K.1.5.1 Pull Up/Pull Down And Capacitive Load Requirements

Table K.5: Load requirements control signals

Load requirements control signals

Signal Name Card Host Remark

CE1#
CE2#
REG#
IORD#
IOWR#

Pull up to "Vcc" 10KΩ
Must be sufficient to keep inputs
inactive when pins are not connected
at the Host.

Capacitive Load  50pF

OE#
WE#

Pull up to VCC 10KΩ

Capacitive Load  50pF

RESET

Pull up to VCC 100KΩ

Capacitive Load  50pF

Table K.6: Load requirements status signals

Load requirements status signals

Signal Name Card Host Remark

READY
INPACK#
WAIT#
WP = IOIS16#

 Pull up to VCC 10KΩ

 Capacitive Load  50pF

Table K.7: Load requirements address and data signals

Load requirements address and data signals

Signal Name Card Host Remark

A[14:0] Pull down to GND 100KΩ

Capacitive Load  100pF

D[7:0] Pull down to GND 100KΩ

 Capacitive Load  50pF

Table K.8: Load requirements MPEG input signals

Load requirements MPEG input signals

Signal Name Card Host Remark

MDI[7:0]
MISTRT
MICLK
MIVAL

Pull down to GND 100KΩ

Capacitive Load between 5
and 25pF

Table K.9: Load requirements MPEG output signals

Load Requirements MPEG Output Signals

Signal Name Card Host Remark

MDO[7:0]
MOCLK
MOVAL

Pull down to GND 100KΩ

Capacitive Load  50pF

NOTE: The load requirements are applicable for each single card.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 239

K.1.5.2 DC Specification For Signals With 5V Supply

Table K.10: DC specifications for signals with 5V supply

Name Parameter min max units

VIH = "high" input high voltage 2.4 "Vcc" + 0.25 V

VOH = "high" output high voltage 2.8 "Vcc" V

VIL = "low" input low voltage 0.0 0.8 V

VOL = "low" output high voltage 0.0 0.5 V

IIH control signal

input high current for defined max.
load conditions per card see
K.1.5.1.

 150 μA

IOH control signal

output high current drive capacity
Host for defined max. load
conditions

300 μA

IIL control signal

input low current for defined max.
load conditions per card see
K.1.5.1.

 700 μA

IOH control signal

output high current drive capacity
Host for defined max. load
conditions

1400 μA

IIH status signal

input high current for defined max.
Host load conditions see K.1.5.1.

 100 μA

IOH status signal

output high current drive capacity
per card for defined max. load
conditions

100 μA

IIL status signal

input low current for defined max.
Host load conditions see K.1.5.1.

 400 μA

IOH status signal

output high current drive capacity
per card for defined max. load
conditions

400 μA

IIH data and
address signal

input high current for defined max.
load conditions for each card and
Host see K.1.5.1.

 150 μA

IOH data and
address signal

output high current drive capacity
Host for defined max. load
conditions

300 μA

IIL data and
address signal

input low current for defined max.
load conditions per card see
K.1.5.1.

 450 μA

IOH data and
address signal

output high current drive capacity
Host for defined max. load
conditions

1600 μA

1. All specifications are valid for each individual signals.
2. While 0V is recommended min. for VIL, allowable absolute min. limit for VIL is -0,5V

undershoot.

K.1.6 Common Interface Signal Description

K.1.6.1 Common Interface CPU Related Signals

The Common Interface specification is derived from the PC card specification. The Common Interface is a variant of

the PC Card with the differences as described in this section.

Just after reset and before configuration and personality change the pin out is shown in Table K.1. In this mode

CICAM shall behave as a memory only device. This mode does not support I/O cycles.

After personality change the pin out is shown in Table K.2. In this mode CICAM supports I/O cycles and attribute

memory cycles.

Attribute Memory is used for storing CICAM identification and configuration information and shall not require a large

address space. To access attribute memory signal REG# is kept active. Attribute memory support by Hosts and CICAM

is mandatory. After personality change the CICAM shall provide at least the Configuration Option Register address.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 240

Common Memory is the collective name for a variety of different memory types like SRAM, MaskROM, OTPROM,

(E)EPROM and FLASH. Common memory support by the Host is optional. The CICAM shall not implement common

memory.

I/O support by Host and CICAM is mandatory after personality change. CICAM shall support the Configuration Option

Register. Host support for registers other than the Configuration Option Register is optional.

Address Lines A[14 : 0]:

 Before personality change the following items apply.

 The Host shall provide a full 32kByte A[14:0] address space to the CICAM.

 The CICAM shall decode at least 12 bits of addresses A[11:0].

 Due to the byte mode operation of the CICAM access to odd addresses are not supported and the Host shall

not access odd addresses.

 After personality change the following items apply.

 The Host shall provide at least 4 address locations in I/O mode A[1:0] starting at 00h.

 The CICAM shall decode the 4 address locations in I/O mode using address lines A[1:0] and shall ignore

address lines A[14:2] in I/O mode.

 For attribute memory access the Host and the CICAM shall support the same address range as before the

personality change.

 Multiple CICAMs may share the same Address lines.

Data Lines D[7:0]:

 Data Lines D[7:0] constitutes the bidirectional data bus.

 Data lines must turn to "high Z" when not enabled.

 The most significant bit is D[7], least significant bit is D[0].

 Multiple CICAMs may share the same Data lines.

Card Enable CE2# and CE1#:

 CE1# (in diagrams named CE#) is enabled on even addresses only.

 CE2# is ignored by the CICAM and interpreted as always being "high".

 CE1# is active for attribute memory access and I/O access.

 Host may never assert CE1# lines to more than one CICAM at the same time.

 CE2# and CE1# shall not be interconnected between CICAM.

Output Enable OE#:

 OE# is used to read data from the CICAM's attribute memory.

 Hosts must negate OE# during memory write and I/O read and write operation.

 Multiple CICAMs may share the same OE#.

Write Enable WE#:

 WE# is used to write date to the CICAM's attribute memory.

 Multiple CICAMs may share the same WE#.

Interrupt Request IREQ#:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 241

 IREQ# is available after personality change.

 IREQ# is asserted to indicate to the Host that the CICAM requires Host software service.

 The Host must support one IREQ# input per Common Interface slot. Support for more than one IREQ# per

slot is optional.

 It is recommended to route IREQ# to one of the standard interrupt inputs when the Host is a PC compatible

computer. In this case it must be guaranteed that the interrupt is not occupied by the Host itself.

 The interrupt shall be level dependant.

Attribute Memory Select REG#:

 In case of memory read or write cycle, access is limited to attribute memory when REG# is asserted.

 In case of I/O read and write cycle, REG# is asserted.

 Multiple CICAMs cards may share the same REG#.

Input Output Read IORD#:

 IORD# is supported after personality change.

 IORD# is asserted during I/O read action from CICAM into the Host.

 Multiple CICAMs may share the same IORD#.

Input Output Write IOWR#:

 IOWR# is supported after personality change.

 IOWR# is asserted during I/O write action from Host into the CICAM.

 Multiple CICAMs may share the same IOWR#.

Extend Bus Cycle WAIT#:

 WAIT# is asserted by the CICAM to delay completion of memory or I/O read or write cycles.

 WAIT# shall not be interconnected between CICAMs.

Input Port Acknowledge INPACK#:

 INPACK# is active low.

 INPACK# is asserted by the CICAM when the card is selected to respond to an I/O read cycle and can handle

the response.

 This signal is used by the Host to control the enable of any input data buffer between CICAM and Host system

data bus D[7:0].

 INPACK# must be inactive until the card has passed personality change.

 INPACK# shall not be interconnected between CICAMs.

K.1.6.2 MPEG Transport Stream Related Signals

This section describes the signal definitions of the MPEG stream ports of the Common Interface. The Common

Interface replaces the signals as defined in Table K.1 with the signals as defined in Table L2 after personality change to

enable the port signals as required for the MPEG transport stream. Before personality change the MPEG stream related

signals are not defined and the Host shall keep these signals in "High Z" state. In a multiple CICAM configuration, the

MPEG stream signals may be daisy chained via the socket on the Host.

The MPEG stream part of the Common Interface has signals as defined below.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 242

MPEG Data Input MDI[7:0]:

 MPEG stream data lines MDI[7:0] constitutes the input data bus.

 The most significant bit is MDI[7], least significant bit is MDI[0].

 CICAM may connect the MPEG stream data input to the MPEG stream data output taking the timing

specifications into account.

MPEG Input Start MISTRT:

 This signal is active to indicate the first byte of a MPEG Transport Packet on MDI[7:0].

 CICAM may connect MISTRT to MOSTRT taking the timing specifications into account.

MPEG Input Valid MIVAL:

 This signal is active to indicate valid byte of a MPEG Transport Packet on MDI[7:0].

 In a phase that the interface is clocked continuously it is required to have and use this signal for non valid data

identifications between and within MPEG Transport Packet transfers.

 CICAM may connect MIVAL to MOVAL taking the timing specifications into account.

MPEG Input Clock MCLKI:

 This signal is a continuously running clock input after personality change under the condition the transport

stream redirection switch is set to module pass through. "leading to the condition that the transport stream is

routed through the CICAM".

 It is recommended that MCLKI shall have a continuous frequency clock related to the data rate of the transport

stream being received.

 CICAM may connect MCLKI to MCLKO taking the timing specifications into account. MCLKO is in that

case the buffered version of MCLKI with a small delay.

MPEG Data Output MDO[7:0]:

 MPEG stream data lines MDO[7:0] constitutes the output data bus.

 The most significant bit is MDO[7] , least significant bit is MDO[0].

MPEG Output Start MOSTRT:

 This signal is active to indicate the first byte of a MPEG Transport Packet on MDO[7:0].

MPEG Output Valid MOVAL:

 This signal is active to indicate valid byte of a MPEG Transport Packet on MDO[7:0].

 In a phase that the interface is clocked continuously it is required to have and use this signal for non valid data

identifications between and within MPEG Transport Packet transfers.

MPEG Output Clock MCLKO:

 This signal is a continuously running clock output after personality change under the condition the transport

stream redirection switch is set to module pass through. "leading to the condition that the transport stream is

routed through the CICAM".

 Multiple CICAMs may interconnect MCLKO of one card with MCLKI of the other consecutive card taking

the timing specifications into account.

K.1.6.3 MPEG Clock Timing Considerations.

 To ease EMC design on the Common Interface it is recommended to fulfil the minimum specification of 5ns

for rise and fall time for clock signals MCLKI and MCLKO.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 243

 Due to potential cumulative distortion for chaining of clocks through at least 2 cascaded CICAMs and to keep

clock reshaping and buffering economically attractive and still meet the timing requirements at max clock

speed it is recommended to fulfil the maximum specification of 20ns for rise and fall time for clock signals

MCLKI and MCLKO.

The fall time is defined as the transition time from Vhmin to Vlmax as defined in section K.1.5.

 The rise time is defined as the transition time from Vlmax to Vhmin as defined in section K.1.5.

 Hosts that buffer the one's Common Interface MCLKO to pass to the next Common Interface MCLKI shall not

produce a cumulative absolute difference between rise and fall time of more than 20ns.

 To fulfil the rise and fall time requirements the next addition to the requirements in section K.1.5 are made.

The capacitive load presented to MCLKO shall be between 10pF and 50pF. The capacitive load presented to

MCLKI shall be between 5pF and 25pF.

 It is recommend not to use simple clock shapers in combination with multiple CICAMs that pass MCLKO

from one CICAM via a buffer on the Host to MCLKI of the next CICAM.

K.1.7 Timing Specifications

For a detailed description of the signals and bus see section K.1.6.1.

K.1.7.1 Common Interface Attribute Memory Read Diagram

Figure K.4: Attribute Memory Read Timing Diagram

 [14 : 0]
REG #

V IH min

 IL max

t c (R)

CE # IH min

V IL max

OE # V

 min

V IL max

WAIT # V IH min

V IL max

V IH min

V IL max

t a (A) (2) t h (A)

t su (CE #)

t a (CE #) (2)

t v (A)

t su (A) t a (OE #) (2) t h (CE #)

t v (WT - OE #) (3) t w (WT) (3)

t en (OE #) t v (WT)
t dis (CE #)

t dis (OE #)

D [7 : 0]

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 244

Table K.11: Attribute Memory Read Timing Specifications

Item Symbol 300 ns

min max

Read Cycle Time tcR 300

Address Access Time ta(A) 300

Card Enable Access Time ta(CE#) 300

Output Enable Access Time ta(OE#) 150

Output Disable Time from OE# tdis(OE#) 100

Output Enable Time from OE# ten(OE#) 5

Data valid from Add Change tv(A) 0

Address Setup Time
1

 tsu(A) 100

Address Hold Time
1

 th(A) 35

Card Enable Setup Time
1

 tsu(CE#) 0

Card Enable Hold Time
1

 th(CE#) 35

WAIT# valid from OE#
1

 tv(WT- OE#) 100

WAIT# Pulse Width
6

 tw(WT) 12 μs

Data Setup for WAIT# Released tv(WT) 0

1. These timings are specified for Hosts and CICAM which support
the WAIT# signal.

2. All timings in ns when not explicitly mentioned.

K.1.7.2 Common Interface Attribute Memory Write Diagram

Figure K.5: Attribute Memory Write Timing Diagram

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 245

Table K.12: Attribute Memory Write Timing Specifications

Item Symbol 250 ns

min max

Write Cycle Time tc(W) 250

Write Pulse Width tw(WE#) 150

Address Setup Time
1

 tsu(A) 30

Address Setup Time for WE#
1

 tsu(A-WE#) 180

Card Enable Setup Time for WE# tsu(CE#-WE#) 180

Data Setup Time for WE# t(D-CE#) 80

Data Hold Time th(D) 30

Write Recover Time trec(WE#) 30

Output Disable Time from WE# tdis(WE#) 100

Output Disable Time from OE# tdis(OE#) 100

Output Enable Time from WE# ten(WE#) 5

Output Enable Time from OE# ten(OE#) 5

Output En. Setup from WE# tsu(OE#-WE#) 10

Output Enable Hold from WE# th(OE#-WE#) 10

Card Enable Setup Time
2

 tsu(CE#) 0

Card Enable Hold Time
2

 th(CE#) 20

WAIT# Valid from WE#
2

 tv(WT-WE#) 35

WAIT# Pulse Width
4

 tw(WT) 12 μs

WE# High from WAIT# released
3

 tv(WT) 0

Notes:
1. The REG# signal timing is identical to address signal timing.
2. These timings are specified for Hosts and cards which support the WAIT# signal.
3. These timings specified only when WAIT# is asserted within the cycle.
4. All timings measured at the CI card. Skews and delays from the system driver/receiver to the CI

card must be accounted by the system.
6. All timings in ns when not explicitly mentioned.

K.1.7.3 Common Interface I/O Read Timing

Figure K.6: I/O Read Timing Diagram

A[14:0]

VIH min

VIL max

REG#

VIH min

VIL max

CE#

VIH min

VIL max

IORD#

VIH min

VIL max

VIH min

VIL max

tsu(CE#)

tsu(REG#)

th(CE#)

tsu(A) tw(IORD)

D[7:0]

tdf(INPACK#)

INPACK#

WAIT#

th(REG#)

th(A)

tdr(INPACK#)

tdf(WAIT#) tw(WAIT#)

tsu(D)

tdr(WAIT#)

th(D)

VIH min

VIL max

VIH min

VIL max

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 246

Table K.13: I/O Read Timing Specifications

Item Symbol min max

Data Delay after IORD# tsu(D) 100

Data Hold following IORD# th(D) 0

IORD# Width Time tw(IORD) 165

Address Setup before IORD# tsu(A) 70

Address Hold following IORD# th(A) 20

CE# Setup before IORD# tsu(CE#) 5

CE# Hold following IORD# th(CE#) 20

REG# Setup before IORD# tsu(REG#) 5

REG# Hold following IORD# th(REG#) 0

INPACK# Delay Falling from IORD# df(INPACK#) 0 45

INPACK# Delay Rising from IORD# dr(INPACK#) 45

WAIT# Delay Falling from IORD# tdf(WAIT#) 35

Data Delay from WAIT# Rising tdr(WAIT#) 0

WAIT# Width Timing tw(WAIT#) 12000

NOTE: All timings in ns.

K.1.7.4 Common Interface I/O Write Timing

Figure K.7: I/O Write Timing Diagram

A[14:0]

VIH min

VIL max

REG#

VIH min

VIL max

CE#

VIH min

VIL max

IOWR#

VIH min

VIL max

tsu(CE#)

tsu(REG#)

th(CE#)

tsu(A) tw(IOWR)

D[7:0]

WAIT#

th(REG#)

th(A)

tdf(WAIT#) tw(WAIT#)

tsu(D)

tdr(WAIT#)

th(D)

VIH min

VIL max

VIH min

VIL max

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 247

Table K.14: I/O Write Timing Specifications

Item Symbol min Max

Data Delay before IOWR# tsu(D) 60

Data Hold following IOWR# th(D) 30

IOWR# Width Time tw(IOWR) 165

Address Setup before IOWR# tsu(A) 70

Address Hold following IOWR# th(A) 20

CE# Setup before IOWR# tsu(CE#) 5

CE# Hold following IOWR# th(CE#) 20

REG# Setup before IOWR# tsu(REG#) 5

REG# Hold following IOWR# th(REG#) 0

WAIT# Delay Falling from IOWR# tdf(WAIT#) 35

IOWR# High from WAIT# High tdr(WAIT#) 0

WAIT# Width Timing tw(WAIT#) 12000

NOTE: All timings in ns.

K.1.7.5 Common Interface MPEG Signal Timing

Figure K.8: MPEG Stream Signals Timing Diagram

Table K.15: MPEG Stream Signals Timing Specifications

Item Symbol Minimum Timings

72 MBits/s 96 MBits/s

Clock Period tclkp 111 83

Clock High Time tclkh 40 20

Clock Low Time tclkl 40 20

Input Data Setup Time tsu 15 10

Input Data Hold Time th 10 10

Output Data Setup Time tosu 20 10

Output Data Hold Time toh 15 10

NOTE: All timings in ns.

MCLKI

VIH min

VIL max

tclkp

MDI[7:0]

MISTR

MIVAL

VIH min

VIL max

tclkh

tsu

tclkl

th

MCLKO

VIH min

VIL max

tclkp

MDO[7:0]

MOSTR

MOVAL

VIH min

VIL max

tclkh

tosu

tclkl

toh

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 248

Annex L (normative):
Resource Summary

L.1 Resource IDs

There are two different versions of Resource IDs. Version 1 is defined in EN 50221 [7], section 8.2.2, version 2 is defined in TS 101 699 [8] section 4.1. In version 1, the

resource_type is 10 bits. Version 2 splits this field into 4 bits resource_type and 6 bits resource_instance. The resource_instance is identical to the module_id described in TS 101

699 [8], section 4.2.

The resource_instance is used to distinguish between different implementations of the same resource provided by the Host and by CICAMs that need to co-exist. This concept is

only applicable to the resources listed in TS 101 699 [8], section 4.2. A Host supporting one of these resources has to implement resource manager version 2 and negotiate a

module_id with each CICAM.

For all resources not listed in TS 101 699 [8], section 4.2, resource ID version 1 is used. All resources defined in this specification use resource ID version 1. Such resources may

be handled by resource manager version 1 or 2.

The resource_id_type (see EN 50221 [7], section 8.8.2) is set to 0 for all resources to indicate that they are public resources.

L.2 Resource Summary

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 249

Table L.1: Resource Summary

Resource Application Object Direction

Name Resource
Identifier

class type vers. APDU Tag Tag
value

Host CAM Mandatory Spec

Resource
Manager

00 01 00 41 1 1 1 profile_enq 9F 80 10  Yes
(version 1
or version 2
may be
used), see
section L.1)

EN 50221

profile 9F 80 11 

profile_change 9F 80 12 

00 01 00 42 1 1 2 profile_enq 9F 80 10  TS 101 699

profile 9F 80 11 

profile_change 9F 80 12 

module_id_send 9F 80 13 

module_id_command 9F 80 14 

Application
Information

00 02 00 41 2 1 1 application_info_enq 9F 80 20  Yes EN 50221

application_info 9F 80 21 

enter_menu 9F 80 22 

00 02 00 42 2 1 2 application_info_enq 9F 80 20  Yes TS 101 699

application_info 9F 80 21 

enter_menu 9F 80 22 

00 02 00 43 2 1 3 application_info_enq 9F 80 20  Yes CI Plus

application_info 9F 80 21 

enter_menu 9F 80 22 

request_cicam_reset 9F 80 23 

data_rate_info 9F 80 24 

Conditional
Access Support

00 03 00 41 3 1 1 ca_info_enq 9F 80 30  Yes EN 50221

ca_info 9F 80 31 

ca_pmt 9F 80 32 

ca_pmt_reply 9F 80 33 

Host Control 00 20 00 41 32 1 1 tune 9F 84 00  Yes EN 50221

replace 9F 84 01 

clear_replace 9F 84 02 

ask_release 9F 84 03 

00 20 00 42 32 1 2 tune 9F 84 00  Yes CI Plus 1.3

replace 9F 84 01 

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 250

clear_replace 9F 84 02 

ask_release 9F 84 03 

tune_broadcast_req 9F 84 04 

tune_reply 9F 84 05 

ask_release_reply 9F 84 06 

Date-Time 00 24 00 41 36 1 1 date_time_enq 9F 84 40  Yes EN 50221

date_time 9F 84 41 

MMI 00 40 00 41 64 1 1 close_mmi 9F 88 00  High level
only

EN 50221

display_control 9F 88 01 

display_reply 9F 88 02 

text_last 9F 88 03 

text_more 9F 88 04 

keypad_control 9F 88 05 

keypress 9F 88 06 

enq 9F 88 07 

answ 9F 88 08 

menu_last 9F 88 09 

menu_more 9F 88 0A 

menu_answ 9F 88 0B 

list_last 9F 88 0C 

list_more 9F 88 0D 

subtitle_segment_last 9F 88 0E 

subtitle_segment_more 9F 88 0F 

display_message 9F 88 10 

scene_end_mark 9F 88 11 

scene_done 9F 88 12 

scene_control 9F 88 13 

subtitle_download_last 9F 88 14 

subtitle_download_more 9F 88 15 

flush_download 9F 88 16 

download_reply 9F 88 17 

low-speed
comms.

00 60 xx x1 96 1 comms_cmd 9F 8C 00  Yes for
v1.3 where
Host IP

EN 50221

connection_descriptor 9F 8C 01 

comms_reply 9F 8C 02 

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 251

comms_send_last 9F 8C 03  support
exists comms_send_more 9F 8C 04 

comms_rcv_last 9F 8C 05 

comms_rcv_more 9F 8C 06 

00 60 xx x2 96 2 comms_cmd 9F 8C 00  Yes for
v1.3 where
Host IP
support
exists

CI Plus

connection_descriptor 9F 8C 01 

comms_reply 9F 8C 02 

comms_send_last 9F 8C 03 

comms_send_more 9F 8C 04 

comms_rcv_last 9F 8C 05 

comms_rcv_more 9F 8C 06 

00 60 xx x3 96 3 comms_cmd 9F 8C 00  Yes for
v1.3 where
Host IP
support
exists

CI Plus 1.3

connection_descriptor 9F 8C 01 

comms_reply 9F 8C 02 

comms_send_last 9F 8C 03 

comms_send_more 9F 8C 04 

comms_rcv_last 9F 8C 05 

comms_rcv_more 9F 8C 06 

Content Control 00 8C 10 01 140 64 1 cc_open_req 9F 90 01  Yes CI Plus

cc_open_cnf 9F 90 02 

cc_data_req 9F 90 03 

cc_data_cnf 9F 90 04 

cc_sync_req 9F 90 05 

cc_sync_cnf 9F 90 06 

cc_sac_data_req 9F 90 07 

cc_sac_data_cnf 9F 90 08 

cc_sac_sync_req 9F 90 09 

cc_sac_sync_cnf 9F 90 10 

00 8C 10 02 140 64 2 cc_open_req 9F 90 01  Yes CI Plus 1.3

cc_open_cnf 9F 90 02 

cc_data_req 9F 90 03 

cc_data_cnf 9F 90 04 

cc_sync_req 9F 90 05 

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 252

cc_sync_cnf 9F 90 06 

cc_sac_data_req 9F 90 07 

cc_sac_data_cnf 9F 90 08 

cc_sac_sync_req 9F 90 09 

cc_sac_sync_cnf 9F 90 10 

cc_PIN_capabilities_req 9F 90 11 

cc_PIN_capabilities_reply 9F 90 12 

cc_PIN_cmd 9F 90 13 

cc_PIN_reply 9F 90 14 

cc_PIN_event 9F 90 15 

cc_PIN_playback 9F 90 16 

cc_PIN_MMI_req 9F 90 17 

Host Language &
Country

00 8D 10 01 141 64 1 Host_country_enq 9F 81 00  Yes CI Plus

Host_country 9F 81 01 

Host_language_enq 9F 81 10 

Host_language 9F 81 11 

CAM_Upgrade 00 8E 10 01 142 64 1 cam_firmware_upgrade 9F 9D 01  Yes CI Plus

cam_firmware_upgrade_reply 9F 9D 02 

cam_firmware_upgrade_progress 9F 9D 03 

cam_firmware_upgrade_complete 9F 9D 04 

Operator Profile 00 8F 10 01 143 64 1 operator_status_req 9F 9C 00  Yes CI Plus 1.3

operator_status 9F 9C 01 

operator_nit_req 9F 9C 02 

operator_nit 9F 9C 03 

operator_info_req 9F 9C 04 

operator_info 9F 9C 05 

operator_search_start 9F 9C 06 

operator_search_status 9F 9C 07 

operator_exit 9F 9C 08 

operator_tune 9F 9C 09 

operator_tune_status 9F 9C 0A 

operator_entitlement_ack 9F 9C 0B 

operator_search_cancel 9F 9C 0C 

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 253

SAS 00 96 10 01 150 64 1 SAS_connect_rqst 9F 9A 00  No CI Plus

SAS_connect_cnf 9F 9A 01 

SAS_data_rqst (see note 1) 9F 9A 02 

SAS_data_av (see note 1) 9F 9A 03 

SAS_data_cnf (see note 1) 9F 9A 04 

SAS_server_query (see note 1) 9F 9A 05 

SAS_server_reply (see note 1) 9F 9A 06 

SAS_async_msg 9F 9A 07 

Application MMI

00 41 00 41 65 1 1 RequestStart 9F 80 00  Yes TS 101 699

RequestStartAck 9F 80 01 

FileRequest 9F 80 02 

FileAcknowledge 9F 80 03 

AppAbortRequest 9F 80 04 

AppAbortAck 9F 80 05 

00 41 00 42 65 1 2 RequestStart 9F 80 00  No for Host
Yes for
CICAM

CI Plus 1.3

RequestStartAck 9F 80 01 

FileRequest 9F 80 02 

FileAcknowledge 9F 80 03 

AppAbortRequest 9F 80 04 

AppAbortAck 9F 80 05 

Note 1: The synchronous SAS APDUs are not used by this specification.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 254

Annex M (normative):
MHP Application Message Format

M.1 Background (Informative)

This Annex describes the MHP application message format that facilitates the connection between the CA system that

exists on the CICAM and the MHP application interface defined by TS 102 757 [35]. In considering the message format

then the architecture differences of an integrated receiver containing no conditional access system and a receiver

containing an integrated CA system have been considered. An architectural overview of the different environments is

presented.

M.1.1 Embedded CAS Environment (Informative)

An embedded CAS environment is depicted in Figure M.1 and is perhaps the simplest environment for Conditional

Access application environment. In this case the manufacturer has control of the middleware on the receiver and works

with the CA provider allowing the MHP component to be connected to the CA system. Interoperability issues between

the CA system and the MHP application API may be resolved by the manufacturer.

Figure M.1: Embedded CAS Environment

M.1.2 CI CAS Environment (Informative)

Within a CI CAS environment then the architecture of the system differs as there is no tight coupling of the CA system

and complete ownership may not lie with the manufacturer, as depicted in Figure M.2. A CAS-less receiver does not

include the CA subsystem and relies on a Conditional Access Module (CAM) on the Common Interface (CI) to perform

the CA services and de-scrambling. A CAS-less receiver has no knowledge of the CA system with which it is

interfacing, relying instead on the Common Interface protocol[4,3] to effect the CA services and descrambling (possibly

using the High Level MMI resource of the CI).

CA System

Smart
Card

CA Domain

Native

MHP

App

Broadcast

xlet
it.dtt.ca Native

CA I/F

CA Head-end System

Possible return path for enablement, also telephone etc

CA Provider Manufacturer Manufacturer

or

3rd Party

Broadcaster

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 255

Figure M.2: CICAM CAS Environment

In this environment then the CICAM Manufacturer has knowledge of the CA interfaces, the DTV Manufacturer does

not, therefore Pay-per-view and CA information has to be passed through the CI to the application environment and

presented at the application interface. For a manufacturer to realise it.dtt.ca then the Common Interface has to

provide all of the information as new CI messages which are understood by the native TV environment. This requires

that there is a CA information CI resource which is known to MHP enabled receivers and CI CA information enabled

CICAMs.

CA System

Smart

Card

CA

Domain

CI CAM

MHP

App

B’cast

xlet

it.dtt.c

a

CA Head-end System

Possible return path for enablement, also telephone etc

CA Provider CI CAM

Manufacturer

iDTV
Manufacturer

or 3rd Party

Broadcaster

CI

 Link

TV

 Native

Native

CA I/F

CI Plus

native

iDTV

Manufacturer

iDTV CI CAM

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 256

M.1.3 Use of SAS for MHP Support (Informative)

The SAS resource has been selected as the data transfer APDU resource to move data between the CICAM and Host

(and vice versa). This resource provides better control of asynchronous transfers than the DVB CA pipeline resource.

Figure M.3 depicts a conceptual view of the connection between the CICAM and the Host.

SAS

Resource

CAM

SAS

Resource

Host

CAS

Specific

Application

MHP

Specific

Application

for CI Plus

Establish SAS

Communication

MHP Stack

CI Plus

API

Spec

MHP CA

API for

CI Plus
CAS

Specific

subset

iDTV or CI Plus Host

CI Plus CAM

CAS

library

Register Application ID

with SAS Resource

Host

1

2

3

3

This is a generic SAS

resource that can

handle other SAS

sessions

XLET

Start Communication

between Specific

Applications

Resident

Java

Apps

DVB

CA API

for MHP

Figure M.3: CA system and MHP connectivity through SAS

Where:

 The private_Host_application_ID shall be predefined for MHP environments.

 The Open_Session_Request/Response and SAS_Connect_Request/cnf are used to establish

communication session.

 Thereafter the SAS_async_msg() is used to send data asynchronously between the specific applications in

Host and CICAM.

Additionally,

 The MHP CA API implementation must be processed by the MHP SAS application in the event that the

CICAM is used for CAS (or to the embedded CA if local CAS is selected).

 The SAS MHP application shall map between the MHP CA API and the MHP CA API for CI Plus as specified

in this Annex.

 The SAS MHP messages shall support the full MHP CA API superset. Private Data that is CA vendor specific

shall be passed transparently through the interface in a defined way and is unambiguously specified in the

MHP CA API for CI Plus.

 The SAS MHP Application in the CAM is a subset according to the requirements for a particular CAS.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 257

M.1.4 Key Decisions (Informative)

The key decisions in defining the MHP application link are outlined below:

 SAS is selected for data transport over the Common Interface.

 The CA system link does not need to be encrypted.

 A common message format over SAS is required to map the CA system to the MHP API.

 The CICAM and Host manufacturers are to implement the message formatting. i.e. Host manufactures couple

to ita.dtt.ca, CICAM manufacturers couple to the CA system API.

 The messages shall encapsulate all of the requirements of ita.dtt.ca and do not require use of other CI

resources for information.

M.2 Message Format (Normative)

This section describes the MHP it.dtt.ca [35] message format. A MHP enabled CICAM and Host shall support all

messages.

M.2.1 Session Establishment

The application domain on the CICAM shall open a SAS session. The Host shall request a connection for the MHP

application using the SAS_connect_rqst() APDU to the CICAM establishing a connection between the

application and the CA system. The connection shall be established with a 64-bit

private_Host_application_ID of "itdttca\0" which has the hexadecimal value of

0x6974647474636100.

The CICAM shall respond with a SAS_connect_cnf() APDU and set the SAS_session_status field to

define the connection status.

M.2.2 Session Operation

The application API shall operate in asynchronous mode only to query and exchange data using the

SAS_async_msg() which is reproduced in Table M.1.

Table M.1: SAS_Async_Message APDU syntax

Syntax No. of bits Mnemonic
SAS_async_msg() {
 SAS_async_msg_tag 24 uimsbf
 length_field() *
 message_nb 8 uimsbf
 message_length 16 uimsbf
 message_byte() 8 * message_length
}

Semantics for the SAS_async_msg() APDU syntax are defined by the OpenCableTM Specifications, CableCardTM

Interface 2.0 [27, 9.17.8] with the following qualifications:

message_nb: The message number that is generated from a 8-bit cyclic counter, the Host and CICAM shall maintain

their own message counter numbers which shall be incremented by 1 on each message sent. The counter shall wrap

from 255 to 0.

The message_byte() field for each message shall take the general form specified in Table M.2 where the message

data may be broken into a number of records containing the same or different types of data identified by the

datatype_id.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 258

Table M.2: General message_byte() syntax

Syntax No. of bits Mnemonic
message_byte() {
 command_id 8 uimsbf
 ca_system_id 16 uimsbf
 transaction_id 32 uimsbf
 send_datatype_nbr 8 uimsbf
 for (i=0; i<send_datatype_nbr; i++) {
 datatype_id 8 uimsbf
 datatype_length 16 uimsbf
 data_type() 8 * datatype_length bslbf
 }
}

Semantics for the general message_byte() syntax:

command_id: This is a 8-bit value that identifies the message type and shall be either a command or a response. The

field values are defined in Table M.3. The command identity space is generally divided into two parts, a command is

even, while the response to a command is the even command identity plus 1.

Table M.3: Message Command Identities

Command_id Identity Direction Description

reserved 0x00 Reserved for future use.

reserved 0x01 Reserved for future use.

CMD_ATR_GET_REQUEST 0x02 H  M A request sent by the Host to query the
SmartCard ATR information.

CMD_ATR_GET_RESPONSE 0x03 H  M

A response to a ATR Get Request Message
by the CICAM detailing the ATR information of
the smart card in the given slot or with the
given identity.

CMD_CANCEL_REQUEST 0x04 H  M
H  M

A request sent by either the Host or the
CICAM to cancel a request with a specified
transaction identity, the command (if it exists)
will be cancelled and the command returns a
failed status.

CMD_CANCEL_RESPONSE 0x05 H  M
H  M

A response to a Cancel Request Message,
the cancel response is ONLY dispatched if no
transaction_id exists that needs to be
cancelled.

CMD_CAPABILITIES_REQUEST 0x06 H  M Queries the CICAM for information on the
CAS systems supported.

CMD_CAPABILITIES_RESPONSE 0x07 H  M Response from the CICAM to a
CMD_CAPABILITIES_REQUEST message
informing the Host of the CA system
information.

CMD_HISTORY_GET_REQUEST 0x08 H  M A request sent by the Host to get the history
information.

CMD_HISTORY_GET_RESPONSE 0x09 H  M A response to a History Get Request Message
by the CICAM detailing the product
information of the event.

CMD_HISTORY_SET_REQUEST 0x0a H  M A request sent by the Host to set the history
information.

CMD_HISTORY_SET_RESPONSE 0x0b H  M A response to a History Set Request Message
by the CICAM.

CMD_NOTIFICATION_DISABLE 0x0c H  M Disable asynchronous event notifications from
the CICAM.

CMD_NOTIFICATION_ENABLE 0x0d H  M Enable asynchronous event notifications from
the CICAM.

CMD_PARENTAL_LEVEL_GET_REQUEST 0x0e H  M A request from the Host to query the current
parental control level.

CMD_PARENTAL_LEVEL_GET_RESPONSE 0x0f H  M A response from the CICAM to retrieve the
current parental control level in response to a
CMD_PARENTAL_LEVEL_GET_REQUEST.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 259

Command_id Identity Direction Description

CMD_PARENTAL_LEVEL_SET_REQUEST 0x10 H  M A request from the Host to modify the current
parental control level.

CMD_PARENTAL_LEVEL_SET_RESPONSE 0x11 H  M A response from the CICAM to modify the
parental control level in response to a
CMD_SET_PARENTAL_LEVEL_REQUEST.

CMD_PIN_CHECK_REQUEST 0x12 H  M A request sent by the Host to check the Pin
information.

CMD_PIN_CHECK_RESPONSE 0x13 H  M A response to a Set PIN Request Message by
the CICAM confirming the correct PIN code.

CMD_PIN_GET_REQUEST 0x14 H  M Queries the CICAM for status information on
the Personal Identification Numbers (PIN).

CMD_PIN_GET_RESPONSE 0x15 H  M A response message from the CICAM to a
CMD_PIN_STATUS_REQUEST message
conveying the status information of the PINs.

CMD_PIN_SET_REQUEST 0x16 H  M A request sent by the Host to change the
current Pin information.

CMD_PIN_SET_RESPONSE 0x17 H  M A response to a PIN Set Request Message by
the CICAM detailing the PIN information held
by the CA system.

CMD_PRIVATE_DATA_REQUEST 0x18 H  M
H  M

A request sent by either the Host or the
CICAM to exchange private information.

CMD_PRIVATE_DATA_RESPONSE 0x19 H  M
H  M

A response to a Private Data Request
Message.

CMD_PRODUCT_GET_REQUEST 0x1a H  M A request sent by the Host to query the
current product information.

CMD_PRODUCT_GET_RESPONSE 0x1b H  M A response to a Product Get Request
Message by the CICAM detailing the product
information of the event.

CMD_PURCHASE_CANCEL_REQUEST 0x1c H  M A request sent by the Host to cancel a
purchase an event.

CMD_PURCHASE_CANCEL_RESPONSE 0x1d H  M A response to a Purchase Get Request
Message by the CICAM detailing the product
information of the event.

CMD_PURCHASE_SET_REQUEST 0x1e H  M A request sent by the Host to purchase an
event.

CMD_PURCHASE_SET_RESPONSE 0x1f H  M A response to a Purchase Set Request
Message by the CICAM detailing the product
information of the event.

CMD_RECHARGE_REQUEST 0x20 H  M A request sent by the Host to recharge the
wallet with monies.

CMD_RECHARGE_RESPONSE 0x21 H  M A response to a Recharge Request Message
by the CICAM detailing the outcome of the
recharge event.

CMD_SLOT_GET_REQUEST 0x22 H  M A request sent by the Host to query the slot
information.

CMD_SLOT_GET_RESPONSE 0x23 H  M A response to a Slot Get Request Message by
the CICAM detailing the slot information of the
smart card in the given slot.

CMD_SMARTCARD_GET_REQUEST 0x24 H  M A request sent by the Host to query the
SmartCard information.

CMD_SMARTCARD_GET_RESPONSE 0x25 H  M A response to a SmartCard Get Request
Message by the CICAM detailing the smart
card information of the smart card in the given
slot or with the given identity.

CMD_SMARTCARD_SET_REQUEST 0x26 H  M A request sent by the Host to set the user data
information on the SmartCard.

CMD_SMARTCARD_SET_RESPONSE 0x27 H  M A response to a SmartCard Set Request
Message by the CICAM detailing the smart
card information of the smart card in the given
slot or with the given identity.

CMD_WALLET_GET_REQUEST 0x28 H  M A request sent by the Host to get the wallet
information.

CMD_WALLET_GET_RESPONSE 0x29 H  M A response to a Wallet Get Request Message
by the CICAM.

CMD_PRODUCT_INFO_GET_REQUEST 0x30 H  M A request sent by the Host to query the
current product status information.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 260

Command_id Identity Direction Description

CMD_PRODUCT_INFO_GET_RESPONSE 0x31 H  M A response to a Product Info Get Request
Message by the CICAM detailing the product
status information.

 0x32-
0x3f

 Reserved for future use.

CMD_ACCESS_EVENT 0x40 H  M An event message from the CICAM to notify a
listener about a CA module status changes
regarding the access, descrambling and
purchasing periods.

CMD_CREDIT_EVENT 0x42 H  M An event message from the CICAM on a
change of state of the wallet credit.

CMD_MESSAGE_EVENT 0x44 H  M An event message from the CICAM notifying a
new information message.

CMD_PIN_REQUEST_EVENT 0x46 H  M An event from the CICAM indicating that a PIN
entry is required.

CMD_PIN_RESPONSE_EVENT 0x47 H  M A response from the Host to the CICAM to a
Pin Request Event Message which includes
the requested PIN code

CMD_PRIVATE_DATA_EVENT 0x48 H  M
H  M

A request sent by either the Host or the
CICAM to exchange private information, no
acknowledgement is required.

CMD_PRODUCT_EVENT 0x4a H  M An event message from the CICAM on a
change of product status.

CMD_PURCHASE_HISTORY_EVENT 0x4c H  M An event message from the CICAM on a
change to the purchase history.

CMD_RECHARGE_EVENT 0x4e H  M An event message from the CICAM indicating
that a recharge event has completed.

CMD_SLOT_EVENT 0x50 H  M An event message from the CICAM on a
change of card status, this message shall be
sent asynchronously whenever the card status
changes.

CMD_SMARTCARD_EVENT 0x52 H  M An event message from the CICAM on a
change of card status.

 0x54-
0x7f

 Reserved for future use.

 0x80-0xff User defined.

ca_system_id: This is a 16-bit integer that identifies the CA system being queried, this may be 0 when querying the

CICAM or transmitting a non-CA specific message.

transaction_id: A 32-bit value, generated by the sender of a data request message, that is returned in any corresponding

reply (response) message to that request. The transaction_id allows any asynchronous request for information to be

paired with any response that returns information. There are no constraints on the value of this field.

send_datatype_nbr: The number of data type items included in the message.

datatype_id: The type of the data contained in the data type loop, the values are defined in Table M.4.

Table M.4: Data Type Identities

Datatype Identity datatype id Description
 0 Reserved.
dtid_access_event 31 Information about the access to services from the CA system.
dtid_byte_data() 1 Generic byte data.
dtid_cas_information() 2 Identifies the CA provider and information about the CA system.
dtid_cicam_information() 3 Identifies the CICAM supplier and information about the CICAM

system.
dtid_credit_event() 4 Notification status about the wallet and credit from the CA system.
dtid_error_status 5 Error status information.
dtid_history() 6 A history or message record.
dtid_history_event() 7 Notification status about a change in the purchase history status or

arrival of a new message from the CA system.
dtid_history_request() 8 A history information request.
dtid_numeric_index() 9 A numeric index or integer value.
dtid_object_identity() 10 A CA system assigned object identity or handle.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 261

Datatype Identity datatype id Description
dtid_parental_level() 11 A parental level.
dtid_pin_code() 12 A PIN code.
dtid_pin_event() 13 Notification status from the CA system requesting that the PIN code

should be entered.
dtid_pin_information() 14 Information about the PIN code.
dtid_product() 15 A product record.
dtid_product_event() 16 Notification status about the product from the CA system.
dtid_product_info() 30 Product status information record.
dtid_product_request() 17 A product information request.
dtid_purchase() 18 A purchase record.
dtid_recharge() 19 A recharge request.
dtid_recharge_event() 20 Notification status about a recharge from the CA system.
dtid_service_id() 21 A service identity, specified as a DVB locator.
dtid_slot() 22 Identifies the state of a smart card slot in the system.
dtid_slot_event() 23 Notification status about a card event from the CA system.
dtid_smartcard() 24 Smart card information.
dtid_smartcard_event() 25 Notification status about a smart card event from the CA system.
dtid_smartcard_request() 26 A smart card information request.
dtid_user_data() 27 User data.
dtid_wallet() 28 A wallet record.
dtid_wallet_id() 29 A wallet identity.
 32-127 Reserved for future use.
 128-255 User defined.

datatype_length: The value of the datatype field in bytes.

data_type(): The datum contents identified by the datatype_id of length datatype_length bytes. The data

type loop shall only contain the specified data type, but may contain multiple records of the same type, the number of

records may be determined by computation of the datatype_length field.

M.3 Message Components

This section describes the format of standard components that are used in the message definitions. These are fragments

of data described as byte sequences which are referenced by the communication messages themselves. The basic

constructs represent common constructs that are used in the CI messages. They are used as a short hand field definition

rather than repeating a definition of a common construct.

M.3.1 Money

Money represents a quantity of money and includes the currency type and amount. The general form of any monetary

value shall be conveyed in the form as show in Table M.5.

Table M.5: Money field syntax

Syntax No. of bits Mnemonic

money() {
 currency 24 bslbf
 num_of_decimals 3 uimsbf
 sign 1 bslbf
 decimals 20 uimsbf
}

Semantics for the money() syntax are:

currency: A string of 3 characters representing the currency as defined by ISO 4217. The currency is specified as three

upper case characters e.g. EUR, GBP, USD, etc.

num_of_decimals: The number of decimal places of this currency.

sign: The sign of the decimal value indicating a positive or negative value. "0" is positive, "1" is negative.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 262

decimals: The value of this currency specified as a unsigned 20-bit integer. Currency units may be determined by using

the num_of_decimals field.

When the field is undefined then all bits of the money() block shall be "1" (i.e. 0xffffffffffff).

M.3.2 Time

This 40-bit field contains the time in Universal Time, Coordinated (UTC) and Modified Julian Date (MJD) as defined in

EN 300 468 [10], Annex C. The general form of any time value shall be conveyed in the form show in Table M.6.

Table M.6: Time field syntax

Syntax No. of bits Mnemonic

time() {
 mjd 16 uimsbf
 utc 24 bslbf
}

 Semantics for the time() block are:

 mjd: 16-bit Modified Julian Date, refer to EN 300 468 [10], Annex C.

 utc: Universal Time, Coordinated (UTC) coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

If the time is undefined then all bits of the time block are set to "1" (i.e. 0xffffffffff).

M.3.3 Duration

This is a 24-bit field that contains a duration specified in hours, minutes and seconds. The general form of any duration

value shall be conveyed in the form show in Table M.7.

Table M.7: Duration field syntax

Syntax No. of bits Mnemonic

duration() {
 elapsed 24 bslbf
}

Semantics for the duration() block are:

elapsed: The elapsed time coded as 6 digits in 4-bit Binary Coded Decimal (BCD) - this is the same format as the utc

field in date().

If the duration is undefined then all bits of the duration field are set to "1" (i.e. 0xffffff).

M.3.4 String

A string field represents a variable length string up to 255 characters in length. The general form of any string shall be

conveyed in the form show in Table M.8.

Table M.8: String field syntax

Syntax No. of bits Mnemonic

string() {
 length 8 uimsbf
 for (i=0; i<length; i++) {
 char 8 bslbf
 }
}

Semantics for the string() block are:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 263

length: This 8-bit field specifies the length in bytes of the character forming the text string.

char: This is an 8-bit field. A string of char fields specify the string text. Text information is coded using the character

sets and methods described in EN 300 468 [10] Annex A.

M.3.5 Lstring

A long string field represents a variable length string which may exceed 255 characters and is typically used for a long

description or detailed information. The general form of any long string shall be conveyed in the form show in Table

M.9.

Table M.9: Long string field syntax

Syntax No. of bits Mnemonic

lstring() {
 length 16 uimsbf
 for (i=0; i<length; i++) {
 char 8 bslbf
 }
}

Semantics for the lstring() block are:

length: This 16-bit field specifies the length in bytes of the character forming the text string.

char: This is an 8-bit field. A string of char fields specify the string text. Text information is coded using the character

sets and methods described in EN 300 468 [10] Annex A.

M.3.6 Locator

A locator represents a DVB reference to a service or programme event. The general form of any locator shall be

conveyed in the form show in Table M.10.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 264

Table M.10: Locator field syntax

Syntax No. of bits Mnemonic

locator() {
 string_indicator 1 bslbf
 if (string_flag == 1) {
 length 7 uimsbf
 for (i=0; i<length; i++) {
 char 8 bslbf
 }
 }
 else {
 tsid_indicator 1 bslbf
 sid_indicator 1 bslbf
 event_indicator 1 bslbf
 reserved_zero 1 bslbf
 num_components 3 uimsbf
 original_network_id 16 uimsbf
 if (tsid_indicator == 1) {
 transport_stream_id 16 uimsbf
 }
 if (sid_indicator == 1) {
 service_id 16 uimsbf
 }
 for (i=0; i<num_components; i++) {
 component_tag 8 uimsbf
 }
 if (event_indicator == 1) {
 event_id 16 uimsbf
 }
 path_segments * string()
 }
}

Semantics for the locator() block are:

string_indicator: This 1-bit flag indicates the use of a DVB locator string format when set to "1" and indicates a binary

field format when set to "0". In CI Plus then the binary format is the preferred transmission format and this field should

always be "0", the string format shall only be used where the locator cannot be represented in a binary format.

length: This 7-bit field specifies the length in bytes of the DVB locator string.

char: This is an 8-bit field. A string of char fields specify the string text. Text information is coded using the character

sets and methods described in EN 300 468 [10] Annex.

tsid_indicator: This 1-bit flag indicates that the locator includes the transport_stream_id when set to "1". If the

field is "0" then the transport stream identity is not specified.

sid_indicator: This 1-bit flag indicates that the locator includes a service_id when set to "1". If the field is "0" then

the service identity is not specified.

event_indicator: This 1-bit flag indicates that the locator includes a event_id when set to "1". If the field is "0" then

the event identity is not specified.

num_components: This 3-bit flag identifies the number of component tags that are specified in the locator, this may be

0 when no components are present.

original_network_id: This 16-bit field specifies the label identifying the network_id of the originating delivery

system of the information service indicated.

transport_stream_id: This is a 16-bit field that defines the transport stream containing the service indicated. This field

may be optionally omitted.

service_id: This is a 16-bit field which uniquely identifies an information service within a transport stream. The

service_id is the same as the program_number in the corresponding PMT. This field may be optionally omitted.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 265

component_tag: This 8-bit field identifies an elementary stream component, the component_tag's have no specific

order. This field may be optionally omitted.

event_id: This 16-bit field contains the identification number of the described programme event in the EIT. This field

may be optionally omitted.

path_segments: The text path segments of the DVB locator as defined in IETF RFC 2396.

M.3.7 Pin Code

A Personal Identification Number, or PIN, is a 4 digit access code which enables access to some services of the CA

system and/or programme content. The general form of the pin code shall be conveyed in the form show in Table M.11.

Table M.11: PIN code syntax

Syntax No. of bits Mnemonic

pin_code() 16 uimsbf

Semantics for the pin_code() block are:

pin_code: This is a 16-bit field containing a 4-digit, 4-bit BCD, PIN code. When the value is undefined (i.e. not set)

then the value of the field bits shall be all "1"s i.e. 0xffff. When the PIN code is secret and not available then the

value of the field shall be 0xfffe.

EXAMPLE: A pin-code of 1234 is coded as 0x1234.

EXAMPLE: A pin-code that is not defined or active shall be coded as 0xffff.

EXAMPLE: A pin-code that is set and is secret shall be coded as 0xfffe.

M.3.8 Parental Control Level

The parental control level describes the level of access available to the content. The general form of the field shall be

conveyed in the form show in Table M.12.

Table M.12: Parental Control Level syntax

Syntax No. of bits Mnemonic

parental_level() 8 uimsbf

Semantics for the parental_level() are:

parental_level: The parental control level setting of the CA system. The values are shown in Table M.13.

Table M.13: Parental Control Values

Value Mnemonic Description

0x00 n/a Reserved for future use.
0x01 PARENTAL_CONTROL_STRICT_MODE Strict mode requires an extra PIN input for

viewing all PPV events except those rated for any
audience.

0x02 PARENTAL_CONTROL_INTERMEDIATE_MODE Intermediate mode an extra PIN input for viewing
PPV events rated restricted and adult only content
with no PIN for all other types of event.

0x03 PARENTAL_CONTROL_PERMISSIVE_MODE An extra PIN input for viewing PPV events rated
adults only and no PIN for all other events.

0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 266

M.3.9 Properties

The Properties conveys generic information comprising a loop of names each with an associated data string. The

general form of the properties shall be conveyed in the form show in Table M.14.

Table M.14: Properties field syntax

Syntax No. of bits Mnemonic

properties() {
 num_properties 8 uimsbf
 for (i=0; i<num_properties; i++) {
 name * string()
 data * lstring()
 }
}

Semantics for the properties() block are:

num_properties: The number of properties described by the properties loop.

name: The name of the property.

data: The data associated with the property. The string content shall be interpreted in the context of name.

M.4 Message Types

The different message types are identified in the following sections:

M.4.1 ATR Get Request Message

A request sent by the Host to query the SmartCard ATR information. The Semantics for the CAS_request_message()

syntax are:

command_id: CMD_ATR_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.15.

Table M.15: ATR Get Request Message Data Types

Data Type Identity Description

dtid_smartcard_request() The card or slot to query.

M.4.2 ATR Get Response Message

A response to a ATR Get Request Message by the CICAM detailing the ATR information of the smart card in the given

slot or with the given identity. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_ATR_GET_RESPONSE

ca_system_id: The ca_system_id received in a atr_get_request_message().

data_type(): The data type fields associated with this response are shown in Table M.16.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 267

Table M.16: ATR Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_data_byte() The data associated with the ATR.

M.4.3 Cancel Request Message

A request sent by either the Host or the CICAM to cancel a request with a specified transaction identity, the command

(if it exists) shall be cancelled and the command returns a failed status. If there is no such request then a

CMD_CANCEL_RESPONSE shall be sent. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_CANCEL_REQUEST

ca_system_id: The identity of the CA system.

transaction_id: The request/response command to cancel.

data_type(): The data type fields associated with this request are shown in Table M.17.

Table M.17: Cancel Request Message Data Types

Data Type Identity Description

dtid_user_data() One or more private data fields.

M.4.4 Cancel Response Message

A response to a Cancel Request Message, the cancel response is ONLY dispatched if no transaction_id exists that

needs to be cancelled. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_CANCEL_RESPONSE

ca_system_id: The ca_system_id received in a cancel_request_message().

data_type(): The data type fields associated with this request are shown in Table M.18.

Table M.18: Cancel Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in
the response and success shall be assumed.

M.4.5 Capabilities Request Message

A Host request for general information about the CA provider(s) and CA version numbers for all CA systems supported

by the CICAM in addition to information about the CICAM itself. The CICAM shall respond with a

CAS_Response_Message(). The Semantics for the CAS_request_message() syntax are:

command_id: CMD_CAPABILITIES_REQUEST

ca_system_id: The CA system to query, a value 0x0000 shall return all CA systems supported by the CICAM, a non-

zero value queries information for a specific CA provider only.

data_type(): The data is ignored and shall be zero.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 268

M.4.6 Capabilities Response Message

A response to a CAS_request_message() by the CICAM detailing the CA provider(s) and CA version numbers

for all CA system supported by the CICAM. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_CAPABILITIES_RESPONSE

ca_system_id: The ca_system_id received in a CAS_request_message().

data_type(): The data type fields associated with this response are shown in Table M.19.

Table M.19: Capabilities Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in
the response and success shall be assumed.

dtid_cas_information() One or more data blocks providing general information about the CA system(s)
available on the CICAM. A single block shall be used for each CA system supported
by the device.

dtid_cicam_information() A single data block that provides information about the CICAM itself.

M.4.7 History Get Request Message

A request sent by the Host to get the history information. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_HISTORY_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.20.

Table M.20: History Get Request Message Data Types

Data Type Identity Description

dtid_history_request() One or more items specifying the history required.

M.4.8 History Get Response Message

A response to a History Get Request Message by the CICAM detailing the product information of the event. The

Semantics for the CAS_response_message() syntax are:

command_id: CMD_HISTORY_GET_RESPONSE

ca_system_id: The ca_system_id received in a history_get_request_message().

data_type(): The data type fields associated with this response are shown in Table M.21.

Table M.21: History Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_history() The history information, there may be multiple history items. Multiple history items shall be
delivered in list order whereby the first item of any list shall be index 0. The history items
shall be delivered in a order that matches the original request.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 269

M.4.9 History Set Request Message

A request sent by the Host to set the history information. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_HISTORY_SET_REQUEST

ca_system_id: The identity of the CA system to modify.

data_type(): The data type fields associated with this request are shown in Table M.22.

Table M.22: History Set Request Message Data Types

Data Type Identity Description

dtid_history () One or more items specifying the updated history, the first item shall represent index
0 when a list is being replaced. If the history status is delete then the history is
deleted.

M.4.10 History Set Response Message

A response to a History Set Request Message by the CICAM. The Semantics for the CAS_response_message() syntax

are:

command_id: CMD_HISTORY_SET_RESPONSE

ca_system_id: The ca_system_id received in a history_get_request_message().

data_type(): The data type fields associated with this response are shown in Table M.23.

Table M.23: History Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_history() The revised history information, there may be multiple history items. Multiple history items
shall be delivered in list order whereby the first item of any list shall be index 0.

M.4.11 Notification Enable/Disable Request Message

A request from the Host to CICAM to enable or disable asynchronous event notification on the change of state of the

CA system and its associated environment. No response shall be returned to this command. On enabling notifications

then the CICAM shall immediately notify the Host of the current status by sending event messages reflecting the

current state of CA system, thereafter event messages shall only be dispatched on a change of state until such time that

the notifier is disabled or the SAS session is closed.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_NOTIFICATION_ENABLE_REQUEST, CMD_NOTIFICATION_DISABLE_REQUEST

ca_system_id: The identity of the CA system for which events are required.

data_type(): None.

M.4.12 Parental Level Get Request Message

A request from the Host to query the current parental control level.

command_id: CMD_PARENTAL_LEVEL_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): None.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 270

M.4.13 Parental Level Get Response Message

A response from the CICAM to retrieve the current parental control level.

command_id: CMD_PARENTAL_LEVEL_GET_RESPONSE

ca_system_id: The ca_system_id received in a Parental Level Get Request Message.

data_type(): The data type fields associated with this response are shown in Table M.24.

Table M.24: Parental Level Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid_parental_level() The current parental level information assigned to the system.

M.4.14 Parental Level Set Request Message

A request from the Host to modify the current parental control level.

command_id: CMD_PARENTAL_LEVEL_SET_REQUEST

ca_system_id: The identity of the CA system to modify.

data_type(): The data type fields associated with this request are shown in Table M.25.

Table M.25: Parental Level Set Request Message Data Types

Data Type Identity Description

dtid_parental_level() The new parental to assigned to the CA system.

dtid_pin_code() The optional PIN code required by the CA system to authorise the change in parental
level when required.

M.4.15 Parental Level Set Response Message

A response from the CICAM to modify the parental control level.

command_id: CMD_PARENTAL_LEVEL_SET_RESPONSE

ca_system_id: The ca_system_id received in the Parental Level Set Request Message.

data_type(): The data type fields associated with this response are shown in Table M.26.

Table M.26: Parental Level Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid_parental_level() The new parental level information assigned to the system.

M.4.16 Pin Check Request Message

A request sent by the Host to check the Pin information. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_PIN_CHECK_REQUEST

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 271

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.27.

Table M.27: Pin Check Request Message Data Types

Data Type Identity Description

dtid_pin_information() The PIN information to check, the pin_code field shall contain the password to check.
No PIN information shall be changed in the CA System as a result of this message.

M.4.17 Pin Check Response Message

A response to a Set PIN Request Message by the CICAM detailing the PIN information held by the CA system. The

Semantics for the CAS_response_message() syntax are:

command_id: CMD_PIN_CHECK_RESPONSE

ca_system_id: The ca_system_id received in the Pin Check Request Message.

data_type(): The data type fields associated with this response are shown in Table M.28.

Table M.28: PIN Check Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

M.4.18 Pin Get Request Message

A pin_request_message() sent by the Host to enquire about the current PINs held by the CA system. The

CICAM responds with the pin_response_message() containing PIN information. The Semantics for the

CAS_response_message() syntax are:

command_id: CMD_PIN_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data is ignored and shall be zero.

M.4.19 Pin Get Response Message

A response to a PIN_request_message() by the CICAM detailing the PIN information held by the CA system.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_PIN_GET_RESPONSE

ca_system_id: The ca_system_id received in the Pin Get Request Message.

data_type(): The data type fields associated with this response are shown in Table M.29.

Table M.29: Pin Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid_pin_information() The PIN code information. One or more PIN codes may be returned.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 272

M.4.20 Pin Set Request Message

A request sent by the Host to change the current Pin information. The CAS may not allow all fields of the PIN

information to be modified under application control and shall apply the changes to those fields that are permitted by

the CAS. i.e. The CAS may ignore field settings that it is not prepared to change under application control. The

application may determine the changed state in any PIN response message. The Semantics for the

CAS_request_message() syntax are:

command_id: CMD_PIN_SET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.30.

Table M.30: Pin Set Request Message Data Types

Data Type Identity Description

dtid_pin_information() The updated PIN information and shall contain the existing PIN code.

dtid_pin_code() If the PIN is being changed then an authorisation PIN may be required to enable the
change of PIN code and shall be transmitted as a separate block.

M.4.21 Pin Set Response Message

A response to a PIN Set Request Message by the CICAM detailing the PIN information held by the CA system. The

Semantics for the CAS_response_message() syntax are:

command_id: CMD_PIN_SET_RESPONSE

ca_system_id: The ca_system_id received in a Pin Set Request Message.

data_type(): The data type fields associated with this response are shown in Table M.31.

Table M.31: PIN Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in the
response and success shall be assumed.

dtid_pin_information() Contains the updated PIN information. The returned information reflects the current PIN
information and the field settings may not exactly match the original request if the CA
system does not allow update of some of the fields.

M.4.22 Private Data Request Message

A request sent by either the Host or the CICAM to exchange private information. The Semantics for the

CAS_request_message() syntax are:

command_id: CMD_PRIVATE_DATA_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.32.

Table M.32: Private Data Request Message Data Types

Data Type Identity Description

dtid_user_data() One or more private data fields.

M.4.23 Private Data Response Message

A response to a Private Data Request Message. The Semantics for the CAS_response_message() syntax are:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 273

command_id: CMD_PRIVATE_DATA_RESPONSE

ca_system_id: The ca_system_id received in a Private Data Request Message.

data_type(): The data type fields associated with this request are shown in Table M.33.

Table M.33: Private Data Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the
status information may be optionally included with an OK status or may be omitted in
the response and success shall be assumed.

dtid_user_data() One or more private data fields.

M.4.24 Product Get Request Message

A request sent by the Host to query the current product information. The Semantics for the CAS_request_message()

syntax are:

command_id: CMD_PRODUCT_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.34.

Table M.34: Product Get Request Message Data Types

Data Type Identity Description

dtid_product_request() The product to query.

M.4.25 Product Get Response Message

A response to a Product Get Request Message by the CICAM detailing the product information of the event. The

Semantics for the CAS_response_message() syntax are:

command_id: CMD_PRODUCT_GET_RESPONSE

ca_system_id: The ca_system_id received in a Product Get Request Message.

data_type(): The data type fields associated with this response are shown in Table M.35.

Table M.35: Product Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_product() The product data, multiple products maybe returned in a single or multiple datatype blocks.

M.4.26 Product Info Get Request Message

A request sent by the Host to query the current product status information. The Semantics for the

CAS_request_message() syntax are:

command_id: CMD_PRODUCT_INFO_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.36.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 274

Table M.36: Product Get Request Message Data Types

Data Type Identity Description

dtid_object_identity() The product identifier to query, multiple product identifiers may be included in a single
info request.

M.4.27 Product Info Get Response Message

A response to a Product Info Get Request Message by the CICAM detailing the product status information of the event.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_INFO_PRODUCT_GET_RESPONSE

ca_system_id: The ca_system_id received in a Product Get Request Message.

data_type(): The data type fields associated with this response are shown in Table M.37.

Table M.37: Product Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_product_info() Current information about the product, multiple product information may be returned.
Information is only returned for products that exist.

M.4.28 Purchase Cancel Request Message

A request sent by the Host to cancel a purchase an event. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_PURCHASE_CANCEL_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.38.

Table M.38: Purchase Set Request Message Data Types

Data Type Identity Description

dtid_purchase () The identity of the item to cancel.

M.4.29 Purchase Cancel Response Message

A response to a Purchase Get Request Message by the CICAM detailing the product information of the event. The

Semantics for the CAS_response_message() syntax are:

command_id: CMD_PURCHASE_CANCEL_RESPONSE

ca_system_id: The ca_system_id received in a Purchase Cancel Request Message.

data_type(): The data type fields associated with this response are shown in Table M.39.

Table M.39: Purchase Cancel Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_purchase() The purchase information.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 275

M.4.30 Purchase Set Request Message

A request sent by the Host to purchase an event. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_PURCHASE_SET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.40.

Table M.40: Purchase Set Request Message Data Types

Data Type Identity Description

dtid_purchase () The identity of the item to purchase.

M.4.31 Purchase Set Response Message

A response to a Purchase Set Request Message by the CICAM detailing the product information of the event. The

Semantics for the CAS_response_message() syntax are:

command_id: CMD_PURCHASE_SET_RESPONSE

ca_system_id: The ca_system_id received in the Purchase Set Request Message.

data_type(): The data type fields associated with this response are shown in Table M.41.

Table M.41: Purchase Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_purchase() The purchase data.

dtid_product() The product data associated with the purchase.

M.4.32 Recharge Request Message

A request sent by the Host to recharge the wallet with monies. The Semantics for the CAS_request_message() syntax

are:

command_id: CMD_RECHARGE_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.42.

Table M.42: Recharge Request Message Data Types

Data Type Identity Description

dtid_recharge () The recharge request information.

M.4.33 Recharge Response Message

A response to a Recharge Request Message by the CICAM detailing the outcome of the recharge event. The Semantics

for the CAS_response_message() syntax are:

command_id: CMD_RECHARGE_RESPONSE

ca_system_id: The ca_system_id received in the Recharge Request Message.

data_type(): The data type fields associated with this response are shown in Table M.43.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 276

Table M.43: History Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_wallet() The updated wallet data.

dtid_recharge() Contains the original transaction information, including the recharge value.

M.4.34 Slot Get Request Message

A request sent by the Host to query the slot information. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_SLOT_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.44.

Table M.44: Slot Get Request Message Data Types

Data Type Identity Description

dtid_numeric_index() The identity number of the slot to query. If the numeric index is not present then all slots
shall be assumed.

M.4.35 Slot Get Response Message

A response to a Slot Get Request Message by the CICAM detailing the slot information of the smart card in the given

slot. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_SLOT_GET_RESPONSE

ca_system_id: The ca_system_id received in the Slot Get Request Message.

data_type(): The data type fields associated with this response are shown in Table M.45.

Table M.45: Slot Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_slot() The slot information, multiple blocks may be present if there are multiple slots in the CICAM.

M.4.36 SmartCard Get Request Message

A request sent by the Host to query the SmartCard information. The Semantics for the CAS_request_message() syntax

are:

command_id: CMD_SMARTCARD_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.46.

Table M.46: SmartCard Get Request Message Data Types

Data Type Identity Description

dtid_smartcard_request() The smart card to query.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 277

M.4.37 SmartCard Get Response Message

A response to a SmartCard Get Request Message by the CICAM detailing the smart card information of the smart card

in the given slot or with the given identity. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_SMARTCARD_GET_RESPONSE

ca_system_id: The ca_system_id received in the Smart Card Request Message.

data_type(): The data type fields associated with this response are shown in Table M.47.

Table M.47: Smartcard Get Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_smartcard() One or more data blocks containing the smart card information.

M.4.38 SmartCard Set Request Message

A request sent by the Host to set the user data information on the SmartCard. The Semantics for the

CAS_request_message() syntax are:

command_id: CMD_SMARTCARD_SET_REQUEST

ca_system_id: The identity of the CA system to modify.

data_type(): The data type fields associated with this request are shown in Table M.48.

Table M.48: SmartCard Set Request Message Data Types

Data Type Identity Description

dtid_smartcard_request() The smart card to query.

dtid_wallet_id() The identity of the new wallet to set as current. If this block is omitted then the current
wallet shall remain unchanged.

dtid_user_data() the user data to write to the smart card if the user data is to be updated. If this block
is omitted then the user data shall remain unchanged.

M.4.39 SmartCard Set Response Message

A response to a SmartCard Get Request Message by the CICAM detailing the smart card information of the smart card

in the given slot or with the given identity. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_SMARTCARD_GET_RESPONSE

ca_system_id: The ca_system_id received in the SmartCard Set Request Message.

data_type(): The data type fields associated with this response are shown in Table M.49.

Table M.49: SmartCard Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 278

M.4.40 Wallet Get Request Message

A request sent by the Host to get the wallet information. The Semantics for the CAS_request_message() syntax are:

command_id: CMD_WALLET_GET_REQUEST

ca_system_id: The identity of the CA system to query.

data_type(): The data type fields associated with this request are shown in Table M.50.

Table M.50: Wallet Get Request Message Data Types

Data Type Identity Description

dtid_wallet_id() The wallet to query, multiple wallet identity data types may be present if information
on a number of different wallets is required in a single request.

M.4.41 Wallet Get Response Message

A response to a Wallet Get Request Message by the CICAM. The Semantics for the CAS_response_message() syntax

are:

command_id: CMD_WALLET_GET_RESPONSE

ca_system_id: The ca_system_id received in a Wallet Get Request Message.

data_type(): The data type fields associated with this response are shown in Table M.51.

Table M.51: History Set Response Message Data Types

Data Type Identity Description

dtid_error_status() The status of the request on a failure or when there is no information available, the status
information may be optionally included with an OK status or may be omitted in the response
and success shall be assumed.

dtid_wallet() The requested wallet data, multiple wallet data types may be present if multiple wallets were
originally requested. The wallets shall appear in the same order as they were requested.

M.5 Event Types

The different event message types are identified in the following sections, an event is generally distinguished from a

request / response message type as it is unsolicited and generally does not require a response.

M.5.1 Access Event Message

An event message from the CICAM on a change of access to the broadcast material, this message shall be sent

asynchronously whenever the access status changes. No response shall be returned. The message shall only be

transmitted when notifications are enabled.

The Access Event may be used to notify a listener about a CA module status changes regarding the access,

descrambling and purchasing periods. Under some circumstances, a single event in the CA system may result in

multiple CAAccessEvents being posted. For example, successful purchase of a current program could result in both

ACCESS_DESCRAMBLING_BEGIN and ACCESS_GRANTED.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_ACCESS_EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.52.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 279

Table M.52: Access Event Message Data Types

Data Type Identity Description

dtid_access_event() The access status. Multiple events may be included in a single or multiple data type
blocks.

M.5.2 Credit Event Message

An event message from the CICAM on a change in credit, this message shall be sent asynchronously whenever the

purchase credit state changes. No response shall be returned. The message shall only be transmitted when notifications

are enabled.

The credit event may be used to notify a listener about a credit status changes regarding wallet recharge etc.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_CREDIT_EVENT

ca_system_id: The identity of the CA system performing the credit charge.

data_type(): The data type fields associated with this request are shown in Table M.53.

Table M.53: Credit Event Message Data Types

Data Type Identity Description

dtid_credit_event() The credit status. Multiple events may be included in a single or multiple data type
blocks. This data type block shall appear before any associated datatype information
associated with the event.

dtid_wallet() The wallet associated with the credit change.

dtid_smartcard() The Smart Card associated with the credit change.

M.5.3 Message Event Message

An event message from the CICAM on a new message from the service operator, this message shall be sent

asynchronously. No response shall be returned. The message shall only be transmitted when notifications are enabled.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_MESSAGE_EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.54.

Table M.54: Message Event Message Data Types

Data Type Identity Description

dtid_history_event() The new message status. This data type block shall appear before any
associated datatype information associated with the event.

dtid_history() The message information.

dtid_smartcard() The Smart Card associated with the message event.

M.5.4 Pin Request Event Message

An event from the CICAM indicating that a PIN entry is required, this message shall be sent asynchronously. A pin

code response may be optionally returned to the Smart Card. The message shall only be transmitted when notifications

are enabled.

The Semantics for the CAS_response_message() syntax are:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 280

command_id: CMD_PIN_REQUEST_EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.55.

Table M.55: PIN Request Event Message Data Types

Data Type Identity Description

dtid_pin_event() The PIN code request. This data type block shall appear before any
associated datatype information associated with the event.

dtid_pin_information() The PIN information.

M.5.5 Pin Request Response Message

A response from the Host to the CICAM to a Pin Request Event Message which includes the requested PIN code. The

response may be optionally sent by the Host and shall use the same transaction_id to return the PIN code. This is the

only event message for which a response may be returned.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_PIN_RESPONSE_EVENT

ca_system_id: The identity of the CA system as defined in the Pin Request Event Message requesting a PIN.

data_type(): The data type fields associated with this request are shown in Table M.56.

Table M.56: PIN Response Event Message Data Types

Data Type Identity Description

dtid_pin_information() The PIN information. A valid PIN code shall be included in the pin_code field.

M.5.6 Private Data Event Message

An event sent by either the Host or the CICAM to exchange private information, no acknowledgement is required. The

Semantics for the CAS_request_message() syntax are:

command_id: CMD_PRIVATE_DATA_EVENT

ca_system_id: The identity of the recipient CA system.

data_type(): The data type fields associated with this request are shown in Table M.57.

Table M.57: Private Data Event Message Data Types

Data Type Identity Description

dtid_user_data() One or more private data fields.

M.5.7 Product Event Message

An event message from the CICAM on a change of product status, this message shall be sent asynchronously whenever

the product state changes. No response shall be returned. The message shall only be transmitted when notifications are

enabled.

The product Event may be used to notify a listener about a CA programme status changes regarding the Pay-per-View

start, stop and product list changes.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_PRODUCT_EVENT

ca_system_id: The identity of the CA system generating the event.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 281

data_type(): The data type fields associated with this request are shown in Table M.58.

Table M.58: Product Event Message Data Types

Data Type Identity Description

dtid_product_event() The product status. Multiple events may be included in a single or multiple data type
blocks. This data type block shall appear before any dtid_product() associated with
the event.

dtid_product() The product associated with the event. Multiple products may be included in a single
or multiple data type blocks. The programmes relate to the last dtid_product_event()
included in the data type field.

M.5.8 Purchase History Event Message

An event message from the CICAM on a change to the purchase history, this message shall be sent asynchronously

whenever the history state changes. No response shall be returned. The message shall only be transmitted when

notifications are enabled.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_PURCHASE_HISTORY_EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.59.

Table M.59: Purchase History Event Message Data Types

Data Type Identity Description

dtid__history_event() The purchase history status. This data type block shall appear before any
associated datatype information associated with the event.

dtid_history() The history associated with the purchase history change.

dtid_smartcard() The Smart Card associated with the purchase history event.

M.5.9 Recharge Event Message

An event message from the CICAM indicating that a recharge event has completed, this message shall be sent

asynchronously. No response shall be returned. The message shall only be transmitted when notifications are enabled.

The CA product Event may be used to notify a listener about recharge transactions.

The Semantics for the CAS_response_message() syntax are:

command_id: CMD_RECHARGE_EVENT

ca_system_id: Th identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.60.

Table M.60: Recharge Event Message Data Types

Data Type Identity Description

dtid_recharge_event() The recharge status. This data type block shall appear before any associated
datatype information associated with the event.

M.5.10 Slot Event Message

An event message from the CICAM on a change of slot status, this message shall be sent asynchronously whenever the

slot status changes. No response shall be returned. The message shall only be transmitted when notifications are

enabled. The Semantics for the CAS_response_message() syntax are:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 282

command_id: CMD_SLOT_EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.61.

Table M.61: Slot Event Message Data Types

Data Type Identity Description

dtid_slot_event() The state of the slot.

M.5.11 Smart Card Event Message

An event message from the CICAM on a change of card status, this message shall be sent asynchronously whenever the

card status changes. No response shall be returned. The message shall only be transmitted when notifications are

enabled. The Semantics for the CAS_response_message() syntax are:

command_id: CMD_SMARTCARD_EVENT

ca_system_id: The identity of the CA system generating the event.

data_type(): The data type fields associated with this request are shown in Table M.62.

Table M.62: Slot Event Message Data Types

Data Type Identity Description

dtid_smartcard_event() The state of the smartcard.

dtid_smartcard() The Smart Card associated with the event.

M.6 Data Type Id Components

The datatype_id structures are identified in the following sections:

M.6.1 Access Event

Status information about the access to the services from the CA system. The general form of the access status data shall

be conveyed in the form show in Table M.63.

Table M.63: Access Event syntax

Syntax No. of bits Mnemonic
dtid_access_event() {
 access_status 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_access_event() event data type syntax:

access_status: The access state to the current material The values are shown in Table M.64.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 283

Table M.64: Access Status Values

Value Mnemonic Description

0x00 n/a Reserved for future use.
0x01 ACCESS_GENERIC_EVENT An unknown or unspecified event.
0x02 ACCESS_DESCRAMBLING_BEGIN The current service has started descrambling.
0x03 ACCESS_DESCRAMBLING_END The descrambling process has been stopped for

the current service.
0x04 ACCESS_FREE_WINDOW_BEGIN The free window period for current PPV event

has started.
0x05 ACCESS_FREE_WINDOW_END The free window period for current PPV event

has ended.
0x06 ACCESS_PURCHASE_PERIOD_BEGIN The purchase period for current PPV event has

started.
0x07 ACCESS_PURCHASE_PERIOD_END The purchase period for current PPV event has

ended.
0x08 ACCESS_GRANTED The CA is entitled to descramble the current

PPV event.
0x09 ACCESS_DENIED The CA is not entitled to descramble the current

PPV event.
0x0a ACCESS_DENIED_FOR_PARENTAL_RATING The CA is not entitled to descramble the current

PPV event due to parental rating.
0x0b ACCESS_CARD_NEEDED A card is required.
0x0c ACCESS_DENIED_FOR_SMART_CARD_ERROR The CA is not entitled to descramble the current

PPV event due to a smart card issue. The smart
card status may be retrieved using other
smartcard specific methods.

0x0d ACCESS_CLEAR The signal is not scrambled.
0x0e ACCESS_FREE The signal is scrambled in a free mode.

0x0e-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.2 Byte Data

The Byte Data includes an arbitrary string of data bytes. The datatype is formatted as shown in Table M.65.

Table M.65: Byte Data data type syntax

Syntax No. of bits Mnemonic

dtid_byte_data() {
 byte_data * lstring()
}

Semantics for the dtid_byte_data() data type syntax:

byte_data: An arbitrary block of data.

M.6.3 CAS Information

The dtid_cas_information() conveys the CA System information. The general form shall be conveyed in the form

shown in Table M.66 .

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 284

Table M.66: CA System Information data type syntax

Syntax No. of bits Mnemonic

dtid_cas_information() {
 ca_system_id 16 uimsbf
 name * string()
 revision * string()
 version * string()
}

Semantics for the dtid_cas_infomation() data type syntax:

ca_system_id: The DVB CA system identity as defined by ETSI TS 101 162 [32] or 0x0000 indicating that the record

identifies the CICAM.

name: The name of the CA provider coded using the character sets and methods described in EN 300 468 [10].

revision: The revision of the CA kernel, in a CA system provider form, coded using the character sets and methods

described in EN 300 468 [10].

version: The version of the CA kernel, in a CA system provider form, coded using the character sets and methods

described in EN 300 468 [10].

M.6.4 CICAM Information

The dtid_cicam_information() conveys the CICAM information. The general form is show in Table M.67.

Table M.67: CICAM information data type syntax

Syntax No. of bits Mnemonic

dtid_cicam_information() {
 slot_count 4 uimsbf
 reserved 4 bslbf
 name * string()
 revision * string()
 version * string()
 serial_number * string()
}

Semantics for the dtid_cicam_infomation() data type syntax:

slot_count: The number of smart card slots supported by the CICAM.

reserved: Reserved for future use.

name: The name of the CICAM supplier coded using the character sets and methods described in EN 300 468 [10].

revision: The revision of the CICAM, in a CICAM determined form, coded using the character sets and methods

described in EN 300 468 [10].

version: The version of the CICAM, in a CICAM form, coded using the character sets and methods described in EN

300 468 [10].

serial_number: The serial number of the CICAM, in a CICAM form, coded using the character sets and methods

described in EN 300 468 [10].

M.6.5 Credit Status Event

Notification status about the wallet and credit from the CA system. The general form of the wallet and credit status data

shall be conveyed in the form show in Table M.68.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 285

Table M.68: Credit Status Event syntax

Syntax No. of bits Mnemonic

dtid_credit_event() {
 credit_status 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_credit_event() data type syntax:

credit_status: The status of the credit as defined in Table M.69:

 Table M.69: Credit Status Values

Value Mnemonic Description

0x00 CREDIT_CHANGED The credit on the card is changed.
0x01-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined

description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.6 Error Status

The dtid_error_status data type conveys information about a failure of a request. The general form shall be

conveyed in the form show in Table M.70.

Table M.70: Error Status field syntax

Syntax No. of bits Mnemonic

dtid_error_status() {
 error_code 8 uimsbf
 message * string()
}

Semantics for the dtid_error_status() block are:

error_code: An error code associated with the original request that failed, the error code shall be interpreted in the

context of the original request. The error codes are shown in Table M.71.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 286

Table M.71: Error code values

Value Mnemonic Description

0 OK No error.
1 PIN_REQUIRED A PIN code is required (or NULL PIN has been passed).
2 PIN_ERROR The entered PIN code was incorrect.
3 CARD_BLOCKED The smart card is blocked.
4 CARD_EXPIRED The card has expired.
5 CREDIT_LACK There is insufficient credit to purchase the PPV event.
6 CARD_REMOVED The card was removed during the process.
7 CARD_ERROR Generic communication error with the smart card.
8 PURCHASE_TIME_ENDED The purchase period ended while proceeding with a purchase.
9 ALREADY_PURCHASED It is not possible to buy the even because it has already been

purchased.
10 CARD_MUTED The card is muted.

11-21 n/a Reserved for future use.
22 CARD_DAMAGED No smart card is inserted.
23 UNSUPPORTED_FEATURE Feature is not supported.
24 NO_OFFERS No events are offered currently.

25-50 n/a Reserved for future use.
51 SMS_DENIAL SMS denied the recharge to success.
52 CONNECTION_ERROR The recharge ended with a failure due to a connection problem.
53 INVALID_SCRATCH Recharge event ended with a failure due to incorrect scratch card

number.
54 MAXIMUM_CREDIT Recharge event ended with a failure because the user reached the

maximum credit.
55 PARAMETER_ERROR Recharge event ended with a failure because parameters used in

the transaction were incorrect.
56-99 n/a Reserved for future use.
100 GENERIC_ERROR Unspecified generic error.

101-124 n/a Reserved for future use.
125 BUSY The system is busy and cannot service the request.
126 SYSTEM_ERROR The system has suffered a fatal error and cannot service the

request.
127 BAD_COMMAND An unrecognised command has been received.

128-255 n/a User defined.

message: An optional string message associated with the error code.

M.6.7 History

A History item represents a previous purchase of a pay event, be it a subscription or PPV event. The general form of the

history request shall be conveyed in the form show in Table M.72.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 287

Table M.72: History field syntax

Syntax No. of bits Mnemonic

dtid_history() {
 type 8 uimsbf
 id * string()
 nid 32 uimsbf
 cancelled 1 bslbf
 status 7 uimsbf
 history_date * time()
 private_data * lstring()
 if (type == HISTORY_TYPE_PPV) {
 ppv_product_id * string()
 ppv_order_date * time()
 ppv_item_status 8 uimsbf
 }
 else if (type == HISTORY_TYPE_RECHARGE) {
 recharge_value * money()
 recharge_source 8
 recharge_transaction_id * string()
 }
 else if (type == HISTORY_TYPE_MESSAGE) {
 message_subject * string()
 message_body * lstring()
 message_priority 8 uimsbf
 message_date * time()
 }
 else {
 properties * properties()
 }
}

Semantics for the dtid_history() data type syntax:

type: The type of history, as defined in Table M.73.

Table M.73: History Type Values

Value Mnemonic Description

0x00 HISTORY_TYPE_RESERVED Reserved for future use.
0x01 HISTORY_TYPE_PPV Pay per view item.
0x02 HISTORY_TYPE_RECHARGE Recharge item.
0x03 HISTORY_TYPE_MESSAGE A message from the broadcaster.

0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

id: The CA system string identity assigned to the history item, this field is opaque and private to the CA system. This is

a variable length text string.

nid: The CA system numeric identity assigned to the history item that uniquely identifies it.

cancelled: The purchase cancel state, zero "0" indicates that the order has not been cancelled, "1" indicates that the

order has been cancelled.

status: The status of the history item, defined as Table M.74:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 288

Table M.74: History Status Values

Value Mnemonic Description

0x00 HISTORY_STATUS_RESERVED Reserved for future use.
0x01 HISTORY_STATUS_UNREAD The history item is un-read.
0x02 HISTORY_STATUS_READ The history item has been read.
0x03 HISTORY_STATUS_DISPOSED The history item has been disposed.

0x04-0x3e n/a Reserved for future use.
0x3f HISTORY_STATUS_DELETE Delete the history item.

0x40-0x7f n/a User defined.

history_date: The date when the item was added to the history list. This may be undefined if the CA system does not

associate a date with the history.

private_data: Private data associated with the purchase.

ppv_product_id: The CA system assigned product identity that was purchased. This is a variable length string.

ppv_order_date: The date when the order was made.

ppv_item_status: The current status of the history item, as defined in Table M.75.

Table M.75: History Event Item Status Values

Value Mnemonic Description

0x00 ITEM_STATUS_ EVENT_SEEN The event has already been seen.
0x01 ITEM_STATUS_ EVENT_UPCOMING The event has been purchased and it is upcoming.
0x02 ITEM_STATUS_EVENT_LOST The event has been purchased and not viewed. The event

has been lost and credit deducted.
0x03 ITEM_STATUS_ EVENT_REFUNDED The event has been refunded by broadcaster.

0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

recharge_value: The value recharged for this history item.

recharge_source: The source of the re-charge, defined as Table M.76:

Table M.76: Recharge Source Values

Value Mnemonic Description

0x00 RECHARGE_SOURCE_RESERVED Reserved for future use.
0x01 RECHARGE_PROMOTIONAL The recharge has been performed by the broadcaster for

free for promotional purpose.
0x02 RECHARGE_DEBIT_CANCELLATION The recharge has been performed by the broadcaster to

cancel a debit.
0x03 RECHARGE_REQUESTED The recharge has arrived after a request performed by the

user (both via OTA and via RC).
0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

recharge_transaction_id: A unique identifier of the recharge transaction.

message_subject: Optional string with the subject of the message, this shall be empty if there is no subject.

message_body: The message text.

message_priority: The priority of the message, defined as Table M.77.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 289

Table M.77: Message Priority Values

Value Mnemonic Description

0x00 PRIORITY_LOW A low priority message.
0x01 PRIORITY_NORMAL A normal priority message.
0x02 PRIORITY_HIGH A high priority message.

0x03-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

message_date: The date when the message was originally stored.

M.6.8 History Event

Notification status about a change in the purchase history status or arrival of a new message from the CA system. The

general form of the history status data shall be conveyed in the form show in Table M.78.

Table M.78: History Event syntax

Syntax No. of bits Mnemonic

dtid_history_event() {
 history_status 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_history_event() data type syntax:

history_status: The status of the history as defined in Table M.79.

 Table M.79: History Change Status Values

Value Mnemonic Description

0x00 PURCHASE_HISTORY_CHANGE The purchase list stored on the card has been changed.
0x01 RECHARGE_HISTORY_CHANGED The recharge list stored on the card has been changed.
0x02 MESSAGE_HISTORY_CHANGED The message list stored on the card has been changed.

0x03-0x0f n/a Reserved for future use.
0x10 NEW_MESSAGE A new message has arrived.

0x01-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

description: A text description of the event.

object_id: The CA object string identity associated with this event.

private_data: Private data associated with the event.

M.6.9 History Request

A History Request requests the history information from the CA system. The general form of the purchase request shall

be conveyed in the form show in Table M.80.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 290

Table M.80: History Request field syntax

Syntax No. of bits Mnemonic

dtid_history_request() {
 reserved 4 bslbf
 request_type 4 uimsbf
 if (request_type == ID_HISTORY) {
 history_id * string()
 else if (request_type == NID_HISTORY) {
 history_nid 32 uimsbf
 }
 private_data * string()
}

Semantics for the dtid_history_request() data type syntax:

request_type: The type of history requested as defined in Table M.81.

Table M.81: History Request Type Values

Value Mnemonic Description

0x0 ALL_HISTORY All of the history information.
0x1 PPV_HISTORY The history of PPV events
0x2 RECHARGE_HISTORY The history of recharge events.
0x3 MESSAGE_HISTORY The history of messages.
0x4 ID_HISTORY The history item with specified CA system assigned string identity.
0x5 NID_HISTORY The history item with specified CA system assigned numeric identity.

0x6-0xf n/a Reserved for future use.

history_id: The CA system string identity assigned to the history item, this field is opaque and private to the CA

system. This is a variable length text string. Note that a history item is generally expected to use a CA numeric identity

rather than a CA string identity.

history_nid: The CA system numeric identity to the history item, this field is opaque and private to the CA system.

private_data: Optional private data associated with the request.

M.6.10 Numeric Index

The numeric index identifies a numerically defined item in the CASystem. The datatype is formatted as shown in Table

M.82.

Table M.82: Numeric Index data type syntax

Syntax No. of bits Mnemonic

dtid_numeric_index() {
 numeric_index 32 uimsbf
}

Semantics for the dtid_numeric_index() data type syntax:

identity: A numeric value interpreted in the context of the message type.

M.6.11 Object Identity

The Object identifies the CASystem returned object identification. The datatype is formatted as shown in Table M.83.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 291

Table M.83: Object Identity data type syntax

Syntax No. of bits Mnemonic

dtid_object_identity() {
 identity * lstring()
}

Semantics for the dtid_object_identity() data type syntax:

identity: The identification string obtained from a CA object interpreted in the context of the message type.

M.6.12 Parental Level

The Parental Level conveys information about the current parental control level. The datatype is formatted as shown in

Table M.84.

Table M.84: Parental Level data type syntax

Syntax No. of bits Mnemonic

dtid_parental_level() {
 parental_level * parental_level()
}

Semantics for the dtid_parental_level() data type syntax:

parental_level: The parental level.

M.6.13 PIN Code

The Pin Code conveys the pin-code required to perform some operation. Information is formatted as shown in Table

M.85.

Table M.85: PIN code data type syntax

Syntax No. of bits Mnemonic

dtid_pin_code() {
 pin_code * pin_code()
}

Semantics for the dtid_pin_code() data type syntax:

new_parental_level: The requested parental level.

pin_code: The PIN code required to modify the parental level setting , enable a data update or unblock an event etc.

M.6.14 PIN Request Event

Notification status from the CA system requesting that the PIN code should be entered. The general form of the pin

entry notification shall be conveyed in the form show in Table M.86.

Table M.86: PIN Request Event syntax

Syntax No. of bits Mnemonic

dtid_pin_event() {
 pin_type 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_pin_event() data type syntax:

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 292

pin_type: The type of PIN code required, the types are the same as those defined in dtid_pin_information() for the type

field defined in Table M.87.

description: A text description of the event.

object_id: The CA object identity associated with this event.

private_data: Private data associated with the event.

M.6.15 PIN Information

The PIN conveys information associated with the Personal Identification Number associated with the CA system or

SmartCard. The PIN Information conveys information formatted as shown in Table M.87.

Table M.87: PIN information data type syntax

Syntax No. of bits Mnemonic

dtid_pin_information() {
 id * string()
 type 6 uimsbf
 is_required 2 bslbf
 is_validated 1 bslbf
 reserved 3 bslbf
 retries_remaining 4 uimsbf
 pin_code * pin_code()
}

Semantics for the dtid_pin_infomation() data type syntax:

id: The CA system identity assigned to the smart card, this field is opaque and private to the CA system and uniquely

identifies the pin. This is a variable length text string.

type: The type of PIN code. The values are shown in Table M.88.

Table M.88: Pin Type Values

Value Description

0x00 Reserved.
0x01 Parental control PIN that protects parental control

modes.
0x02 SmartCard PIN that protects the CA system functions

of the smart card.
0x03 History PIN that protects history data.

0x04-0x0f Reserved for future use.
0x10-0x1f User defined.

is_required: A 2-bit field that designates whether PIN code use is required, the top bit is effectively a lock and

determines if the access may be changed, the lower bit is the state of the PIN requirement, as defined in Table M.89.

Table M.89: Pin Required Values

Value Description

0x0 The PIN code is not required.
0x1 The PIN code is required.
0x2 The PIN code is not required and cannot be enabled.
0x3 The PIN code is required and cannot be disabled.

is_validated: This single bit indicates if the current PIN has been validated since the last reset. "1" indicates that the

PIN has been validated, otherwise "0".

retries_remaining: The number of tries of the PIN before the PIN is blocked from further use. A value of 0xf indicates

that there is no blocking in effect, a value of 0x0 indicates that the PIN is currently blocked and there are no more re-

tries outstanding.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 293

M.6.16 Product

The product identifies information about a specified product. The datatype is formatted as shown in Table M.30

The product details a pay item. The general form of any product shall be conveyed in the form as show in Table M.90.

Table M.90: Product data type syntax

Syntax No. of bits Mnemonic

dtid_product() {
 product_type 8 uimsbf
 id * string()
 name * string()
 description * string()
 xdescription * lstring()
 pw_start_time * time()
 pw_end_time * time()
 preview * duration()
 cost * money()
 num_contained_products 8 uimsbf
 for (i=0; i<num_products; i++) {
 contained_product_id * string()
 }
 if (product_type == PPT) {
 ppt_locator * locator()
 ppt_rating 8 uimsbf
 ppt_slice_price * money()
 ppt_slice_duration * duration()
 }
 else if (product_type == PPE) {
 ppv_locator * locator()
 ppv_rating 8 uimsbf
 ppv_start_time * time()
 ppv_end_time * time()
 ppv_num_packages 8 uimsbf
 for (i=0; i<ppv_num_packages; i++) {
 ppv_package * string()
 }
 }
 else if (product_type == SUB) {
 sub_start_time * time()
 sub_end_time * time()
 sub_num_services 16 uimsbf
 for (i=0; i<sub_num_services; i++) {
 sub_service * locator()
 }
 }
 private_data * lstring()
}

Semantics for the dtid_product() data type syntax:

product_type: The type of product. The product types are defined in Table M.91.

Table M.91: Product Type Values

Value Description

0x00 Reserved.
0x01 Generic Product.
0x02 Pay per Time (PPT) Event.
0x03 Pay per Event (PPE) Event.
0x04 Pay per View (PPV) Package.
0x05 Subscription (SUB) Package.

0x06-0x7f Reserved for future use.
0x80-0xff User defined.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 294

id: The CA system identity assigned to the product, this field is opaque and private to the CA system. This is a variable

length text string.

name: The name of the product item. This is a variable length text string.

description: A brief description of the product which may be up to 255 characters.

xdescription: An extended description of the product which may exceed 255 characters in length.

pw_start_time: The purchase window start time and date of the product item specified in UTC. If the pw_start_time is

not applicable to the product then the field may have a undefined value.

pw_end_time: The purchase window end time and date of the product item specified in UTC. If the pw_end_time is

not applicable to the product then the field may have an undefined value.

preview: The preview time associated with the product. If there is no preview period available then this field shall be

undefined.

cost: The cost of the product, if the product is free then the cost shall be assigned the value 0. If there is no cost

assigned then the field value shall be the undefined value.

num_contained_products: The number of products contained within this product.

contained_product_id: The contained product identity. These are the identities of products that are contained within

this product.

ppt_locator: The pay per time locator of the event of type locator().

ppt_rating: The pay per time rating of the event. This 8-bit field is coded as the rating field of the

parental_rating_descriptor as defined by EN 300 468 [10]. The value of "0" means that the rating of zero is

undefined.

ppt_slice_price: The pay per time price for a single slice of time of type money().

ppt_slice_duration: The pay per time duration for a single slice of time of type duration().

ppv_locator: The pay per view locator of the event of type locator().

ppv_rating: The pay per view rating of the event. This 8-bit field is coded as the rating field of the

parental_rating_descriptor as defined by EN 300 468 [10]. The value of "0" means that the rating of zero is

undefined.

ppv_start_time: The pay per view purchase window start time.

ppv_end_time: The pay per view purchase window end time.

ppv_num_packages: The number of packages associated with this pay per view event.

ppv_package: A package associated with the pay per view event. Each package is an CA system identity string which

references a product.

sub_start_time: The starting date of the subscription service.

sub_end_time: The ending date of the subscription service.

sub_num_service: The number of services that comprise the subscription package.

sub_service: A locator that describes the service reference.

private_data: A string of bytes which may be used for private data.

M.6.17 Product Event

Notification status about the product from the CA system. The general form of the product status data shall be conveyed

in the form show in Table M.92.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 295

Table M.92: Product Event syntax

Syntax No. of bits Mnemonic

dtid_product_event() {
 product_status 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_product_event() data type syntax:

product_status: The status of the current product as defined in Table M.93.

 Table M.93: Product Status Values

Value Mnemonic Description

0x00 EVENT_END The current PPV event reached the end.
0x01 EVENT_STOPPED The current PPV event has been stopped by the user (e.g.

by the remote control).
0x02 EVENT_BEGIN A new PPV event has just started.
0x03 PRODUCTS_OFFERS_LIST_CHANGE The offered products' list has changed.

0x04-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.18 Product Info

Status information about the product received from the CA system. The general form of the product info shall be

conveyed in the form show in Table M.94.

Table M.94: Product Info field syntax

Syntax No. of bits Mnemonic

dtid_product_info() {
 purchase_status 4 bslbf
 is_current_service 1 bslbf
 reserved 3 bslbf
 access_state 8 uimsbf
 product_id * string()
 private_data * lstring()
}

Semantics for the dtid_product_info() data type syntax:

purchase_status: The purchase status of the product as defined in Table M.95.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 296

Table M.95: Purchase Status Values

Value Mnemonic Description

0x0 PURCHASE_STATUS_ PURCHASABLE The product may be purchased.
0x1 PURCHASE_STATUS_ NOT_PURCHASABLE The product may not be purchased for CAS reasons

(i.e. no access rights on air)
0x2 PURCHASE_STATUS_ PURCHASED The product has already been purchased and specific

rights are on the smart card.
0x3 PURCHASE_STATUS_ LOW_CREDIT The inserted smart card has insufficient credit to buy

an associated event.
0x4 PURCHASE_STATUS_ NO_CREDIT The inserted smart card has no credit. If the event has

zero cost this cannot be stated as a purchase status.
0x5 PURCHASE_STATUS_ SMART_CARD_ISSUE The inserted smart card has some condition that

caused the event not to be purchasable. The reason
may be retrieved using the dedicated get status
method of the Smart Card.

0x6-0xf n/a Reserved for future use.

access_status: The access state of the current programme. The values are shown in Table M.64.

is_current_service: A 1-bit flag that indicates whether this is the service on air to which the receiver is tuned. The bit

field is "1" if this service is current and "0" when it is not the current service.

product_id: The CA system assigned product identity that was purchased. This is a variable length string.

private_data: Optional private data associated with the purchase status.

M.6.19 Product Request

A Product Request requests product information from the CA system. The general form of the product request shall be

conveyed in the form show in Table M.96.

Table M.96: Product Request field syntax

Syntax No. of bits Mnemonic

dtid_product_request() {
 reserved 3 bslbf
 request_qualifier 2 uimsbf
 type 3 uimsbf
 if (request_qualifier == PRODUCT_ID) {
 product_id * string()
 } else if (request_qualifier == PRODUCT_LOCATOR) {
 locator * locator()
 }
 private_data * lstring()
}

Semantics for the dtid_product_request() data type syntax:

request_qualifier: The qualification of the information requested as defined in Table M.97.

Table M.97: Product Request Qualifier Values

Value Mnemonic Description

0x0 PRODUCT_NONE No qualification is specified.
0x1 PRODUCT_ID The product(s) with given product_id are required.
0x2 PRODUCT_LOCATOR The product(s) with the given locator are required.
0x3 n/a Reserved for future use.

type: The type of product request as defined in Table M.98. When the request_qualifier is a identity then the type shall

be ALL_PRODUCT.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 297

 Table M.98: Product Request Type Values

Value Mnemonic Description

0x0 ALL_PRODUCT All products are required.
0x1 CURRENT_PRODUCT The current event product(s) are required
0x2 NEXT_PRODUCT The next event product(s) are required.
0x3 OFFERED_PRODUCT The offered product(s) are required.

0x4-0x7 n/a Reserved for future use.

product_id: The CA system identity assigned to the product, this field is opaque and private to the CA system. This is a

variable length text string.

locator: The DVB locator of the service to query.

private_data: The private data associated with the purchase.

M.6.20 Purchase

A Purchase represents a purchase of a pay event, be it a subscription or PPV event. The general form of the purchase

request shall be conveyed in the form show in Table M.99.

Table M.99: Purchase field syntax

Syntax No. of bits Mnemonic

dtid_purchase() {
 id * string()
 product_id * string()
 cancelled 1 bslbf
 reserved 7 bslbf
 private_data * lstring()
}

Semantics for the dtid_purchase() data type syntax:

id: The CA system identity assigned to the purchase, this field is opaque and private to the CA system. This is a

variable length text string. When a purchase request is made then this field may be the empty string until assigned by

the CA system.

product_id: The CA system assigned product identity that was purchased. This is a variable length string.

cancelled: The purchase has been cancelled.

private_data: The private data associated with the purchase.

M.6.21 Recharge

A Recharge requests a recharge of credit from the CA system. The general form of the recharge message shall be

conveyed in the form show in Table M.100.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 298

Table M.100: Recharge field syntax

Syntax No. of bits Mnemonic

dtid_recharge() {
 reserved 4 bslbf
 request_type 4 uimsbf
 phone * string()
 user * string()
 password * string()
 ip_address * string()
 port * string()
 if (request_type == CREDIT_CARD_MODE) {
 surname * string()
 name * string()
 card_number * string()
 start_date 16 bslbf
 expiry_date 16 bslbf
 value * money()
 }
 recharge_value * money()
 transaction * lstring()
 private_data * lstring()
}

Semantics for the dtid_recharge () data type syntax:

request_type: The type of history requested as defined in Table M.101.

Table M.101: Request Type Values

Value Mnemonic Description

0x0 n/a Reserved
0x1 CREDIT_CARD_MODE Recharge request using a credit card
0x2 SCRATCH_CARD_MODE Recharge request using a scratch card

0x3-0xf n/a Reserved for future use.

phone: The phone number to be called.

user: The name of the user for login.

password: The password supplied by the user for login.

ip_address: The IP address of the server, specified as a decimal character string with a period character delimiting the

address ranges.

port: The port number of the server, specified as a decimal character string.

surname: The credit card surname.

name: The credit card forename(s) or initials.

card_number: The credit card number, specified as a decimal character string with no spaces.

start_date: The start date of the credit card expressed as a MJD value, refer to the time() field definition.

expiry_date: The expiry date of the credit card expressed as a MJD value, refer to the time() field definition.

value: The recharge value requested.

recharge_value: The amount of monies recharged, this field shall be undefined when forming part of a request.

transaction: Additional transaction information which may be optionally populated with information.

private_data: Additional private data.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 299

M.6.22 Recharge Event

Notification status about a recharge from the CA system. The general form of the recharge event data shall be conveyed

in the form show in Table M.102.

Table M.102: Recharge Event syntax

Syntax No. of bits Mnemonic

dtid_recharge_event() {
 recharge_status 8 uimsbf
 description * string()
 object_id * string()
 value * money()
 private_data * string()
}

Semantics for the dtid_recharge_event() data type syntax:

recharge_status: The recharge status, the values are defined in Table M.76.

description: An optional text description of the event.

value: The value of the recharge event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.23 Service Id

The Service Id includes a locator that identifies the service. The datatype is formatted as shown in Table M.103.

Table M.103: Service Identity data type syntax

Syntax No. of bits Mnemonic

dtid_service_id() {
 service_locator * locator()
}

Semantics for the dtid_service_id() data type syntax:

service_locator: A locator that identifies the service.

M.6.24 Slot

The Slot identifies the state of a smart card slot in the system. The datatype is formatted as shown in Table M.104.

Table M.104: Slot data type syntax

Syntax No. of bits Mnemonic

dtid_slot() {
 slot_id 8 uimsbf
 slot_status 8 uimsbf
}

Semantics for the dtid_slot() data type syntax:

slot_id: The identity number of the slot commencing from 0.

slot_status: The status of a smart card slot. The values are shown in Table M.105.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 300

Table M.105: Slot Status Values

Value Mnemonic Description

0x00 SLOT_STATUS_RESERVED Reserved for future use.
0x01 SLOT_STATUS_CARD_IN A card is present in the slot.
0x02 SLOT_STATUS_CARD_OUT A card is not present in the slot.
0x03 SLOT_STATUS_CARD_ERROR a smart card is inserted into the reader but wrong ATR is

received (e.g. because of a damaged card).
0x04 SLOT_STATUS_CARD_MUTED A smart card is inserted into the reader but no ATR is retrieved

because no electrical communication is established with the
smart card (e.g. card upside-down).

0x05 SLOT_STATUS_ ACCESS_DENIED Access to the card currently inserted in the slot is denied; this
normally means that the card does not correspond to the
current active service and CAS.

0x06 SLOT_STATUS_ VERIFYING A smart card is in the slot and is being verified.
0x07 SLOT_STATUS_UNKNOWN Status is unknown, the status of the slot has not been retrieved

yet.
0x08-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

M.6.25 Slot Event

Notification status about a card event from the CA system. The general form of the slot event data shall be conveyed in

the form show in Table M.106.

Table M.106: Slot Event syntax

Syntax No. of bits Mnemonic

dtid_slot_event() {
 slot_status 8 uimsbf
 slot_id 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_slot_event() data type syntax:

slot_status: The slot status, the values are defined in Table M.105.

slot_id: The identity number of the slot commencing from 0.

description: An optional text description of the event.

value: The value of the recharge event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

M.6.26 SmartCard

The SmartCard conveys information associated with the smart card slot in the system. The datatype is formatted as

shown in Table M.107.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 301

Table M.107: Smart Card data type syntax

Syntax No. of bits Mnemonic

dtid_smartcard() {
 id * string()
 status 8 uimsbf
 slot_id 8 uimsbf
 expiry_date * time()
 id_number * string()
 version * string()
 provider_name * string()
 service_provider_name * string()
 user_data * string()
 num_pin_codes 8 uimsbf
 for (i=0; i<num_pin_codes; i++) {
 pin_id * string()
 }
 num_wallets 8 uimsbf
 for (i=0; i<num_wallets; i++) {
 wallet_id * string()
 }
 current_wallet * string()
 additional_info * properties()
 private_data * string()
}

Semantics for the dtid_smartcard() data type syntax:

id: The CA system identity assigned to the smart card, this field is opaque and private to the CA system and uniquely

identifies the smart card. This is a variable length text string.

status: This 8-bit value denotes the current status of the smart card. The values are shown in Table M.108.

Table M.108: SmartCard Status Values

Value Mnemonic Description

0x00 SCS_VALID Notifies that the smart card is valid. This value may also be
returned when a smart card check is performed.

0x01 SCS_INVALID Notifies that the smart cart is not valid. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x02 SCS_EXPIRED Notifies that the smart card is expired. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x03 SCS_BLACKLISTED Notifies that the smart card is blacklisted. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x04 SCS_SUSPENDED Notifies that the smart card is suspended. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x05 SCS_NEVER_PAIRED Notifies that the smart card has never been paired with box. When
in this state, the smart card cannot perform any further operation.
This value may also be returned when a smart card check is
performed.

0x06 SCS_NOT_PAIRED Notifies that the smart card is not actually paired with the box.
When in this state, the smart card cannot perform any further
operation. This value may also be returned when a smart card
check is performed.

0x07 SCS_NOT_CERTIFIED Notifies that the smart card is not certified. When in this state, the
smart card cannot perform any further operation. This value may
also be returned when a smart card check is performed.

0x08 SCS_MEMORY_FULL Notifies that the smart card has filled up memory. This value may
also be returned when a smart card check is performed.

0x09 SCS_GENERIC_CARD_ERROR Notifies that there is an unknown error with the smart card. When
in this state, the smart card cannot perform any further operation.
This value may also be returned when a smart card check is
performed.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 302

Value Mnemonic Description

0x0a SCS_PIN_CHANGED Notifies that the pin of the smart card is changed (i.e. to have
notification on reset by SMS).

0x0b-0x7f n/a Reserved for future use.
0x80-0xff n/a User defined.

slot_id: The identity of the slot in which the card is placed.

expiry_date: The date of expiry of the card, if there is no expiry date then this field may be the undefined value.

id_number: The smart card identification number for the card. This is a variable length string.

version: The version number of the smart card, returned as a CA system specific formatted string.

provider_name: The name of the smart card provider (normally the same as the CA provider name).

service_provider_name: The name of the service provider who delivered the card.

user_data: The user data field stored on the card. The format of the data is CA system specific.

num_pin_codes: This is an 8-bit number of Personal Identification Numbers (PIN) available on the card.

pin_id: The CA system identity of the PIN code.

num_wallets: This 8-bit field indicates the number of wallets available on the SmartCard. This may be zero if there are

no wallets.

wallet_id: The CA system identity of the wallets stored on the smart card.

current_wallet_id: The CA system identity of the wallet that is current. This may be a zero length string if there is no

current wallet.

additional_info: Additional information available on the smart card, this may include addition version numbers and

identification information.

private_data: Optional private data associated with the object.

M.6.27 SmartCard Event

Notification status about a smart card event from the CA system. The general form of the slot event data shall be

conveyed in the form show in Table M.109.

Table M.109: Smartcard Event syntax

Syntax No. of bits Mnemonic

dtid_smartcard_event() {
 smartcard_status 8 uimsbf
 description * string()
 object_id * string()
 private_data * string()
}

Semantics for the dtid_smartcard_event() data type syntax:

smartcard_status: The smart card status, the values are defined in Table M.108.

description: An optional text description of the event.

object_id: An optional CA object identity associated with this event.

private_data: Optional private data associated with the event.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 303

M.6.28 SmartCard Request

A SmartCard Request requests information about the smart card from the CA system. The general form of the smart

card request shall be conveyed in the form show in Table M.110.

Table M.110: Smart Card Request field syntax

Syntax No. of bits Mnemonic

dtid_smartcard_request() {
 reserved 6 bslbf
 request_qualifier 2 uimsbf
 if (request_qualifier == SMARTCARD_ID) {
 smartcard_id * string()
 } else if (request_qualifier == SMARTCARD_SLOT) {
 slot_id 8 uimsbf
 }
 private_data * string()
}

Semantics for the dtid_smartcard_request() data type syntax:

request_qualifier: The qualification of the information requested as defined in Table M.111.

Table M.111: Request Qualifier Values

Value Mnemonic Description

0x0 SMARTCARD_ALL All smart card information.
0x1 SMARTCARD_ID The smart card identified by the given CA identifier.
0x2 SMARTCARD_SLOT The smart card located in the given slot identity.
0x3 n/a Reserved for future use.

smartcard_id: The identity of the smart card assigned by the CA system.

slot_id: The identity of the slot containing a smart card starting from index 0.

private_data: Optional private data associated with the request.

M.6.29 User Data

The User Data includes an arbitrary string of data bytes. The datatype is formatted as shown in Table M.112.

Table M.112: User Data type syntax

Syntax No. of bits Mnemonic

dtid_user_data() {
 byte_data * lstring()
}

Semantics for the dtid_user_data() data type syntax:

byte_data: An arbitrary block of data.

M.6.30 Wallet

Wallet represents an account containing details of monies registered with the system (typically the SmartCard). The

general form of the wallet shall be conveyed in the form show in Table M.113.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 304

Table M.113: Wallet field syntax

Syntax No. of bits Mnemonic

dtid_wallet() {
 product_type 8 uimsbf
 id * string()
 name * string()
 balance * money()
 expiry_date * time()
 transaction_count 16 uimsbf
 transaction_remain 8 uimsbf
}

Semantics for the dtid_wallet() data type syntax:

id: The CA system identity assigned to the wallet, this field is opaque and private to the CA system. This is a variable

length text string.

name: The name associated with this wallet. This is a variable length string.

balance: The balance of monies in the wallet.

expiry_date: The expiry date of the wallet, where there is no expiry date then the data value shall be set to the

undefined value.

transaction_count: The number of transactions that have been made against this wallet. A value of 0xffff indicates

that the transaction count is unknown.

transaction_remain: An estimate of the number of remaining transactions that can be purchased. A value of 0xff

indicates that no estimate is available.

M.6.31 Wallet Identity

The Wallet Identity identifies the name of a wallet. The data type is formatted as shown in Table M.114.

Table M.114: Wallet Identity data type syntax

Syntax No. of bits Mnemonic

dtid_wallet_id() {
 wallet_id * string()
}

Semantics for the dtid_wallet_id() data type syntax:

wallet_id: The CA System id for the wallet.

M.7 MHP API Mapping

Table M.115 provides a list of the MHP API and the CI Plus commands that satisfy them.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 305

Table M.115: MHP API Message Mapping

Class Method Message Mapping

CAManagerFactory SessionOpener()
SessionCloser()
openSession()
closeSession()
AccessDeniedException

M.2.1 Session Establishment
APDU open_session_request()
APDU open_session_response()
APDU close_session_request()
APDU close_session_response()
APDU SAS_connect_rqst()
APDU SAS_connect_cnf()

CAManager getCAProvider()
getCARevision()
getCAVersion()
getSlots()

CMD_CAPABILITIES_REQUEST

CAManager getCurrentProducts()
getNextProducts()

CMD_PRODUCT_GET_REQUEST

CAManager getParentalControlLevel() CMD _PARENTAL_LEVEL_GET _REQUEST

CAManager setParentalControlLevel() CMD_ PARENTAL_LEVEL_ SET_REQUEST

CAManager getPins() CMD_PIN_GET_REQUEST

Pin setRequired()
reset()
change()

CMD_PIN_SET_REQUEST

Pin check() CMD_PIN_CHECK_REQUEST

Pin isRequired()
getRetriesRemaining()
isValidated()

See CAManager::getPins()

Slot getStatus() CMD_SLOT_GET_REQUEST

Slot getSmartCard() CMD_SMARTCARD_GET_REQUEST

SmartCard getATR() CMD_ATR_GET_REQUEST

SmartCard getExpiryDate()
getMoreInfo()
getNumber()
getPins()
getProvider()
getServiceProviderName()
getStatus()
getUsedWallet()
getUserData()
getVersion()
getWallets()

CMD_SMARTCARD_GET_REQUEST

SmartCard setUserData()
setUsedWallet()

CMD_SMARTCARD_SET_REQUEST

CAAcessEvent CAAdapter()
getType()

CMD_ACCESS_EVENT

CAProductEvent CAProductEvent CMD_PRODUCT_EVENT

CreditsEvent CMD_CREDIT_EVENT

NewMessageEvent CMD_MESSAGE_EVENT

HistoryUpdateEvent CMD_PURCHASE_HISTORY_EVENT

PinRequestEvent CMD_PIN_REQUEST_EVENT

RechargeEvent CMD_RECHARGE_EVENT

SlotEvent CMD_SLOT_EVENT

SmartCardEvent CMD_SMARTCARD_EVENT

ppv.Product getId()
getPrivateData()
getType()
getName()
getDescription()
getExtendedDescription()
etPurchaseWindowStartTime()
getPurchaseWindowEndTime()
getContainedProducts()
getPrice()
isFree()
getPreviewTime()

CMD__PRODUCT_GET_REQUEST

PPVEvent getRating()
getLocator()
getPackages()

CMD__PRODUCT_GET_REQUEST

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 306

Class Method Message Mapping

getStartTime()
getEndTime()
isFree()
getType()

PPTEvent getSlicePrice()
getSliceDuration()
getType()

CMD__PRODUCT_GET_REQUEST

PPVPackage isFree()
getType()

CMD__PRODUCT_GET_REQUEST

Subscription getSubscriptionStart()
getSubscriptionEnd()
getServices()
isFree()
getType()

CMD__PRODUCT_GET_REQUEST

request BuyRequest() CMD_PURCHASE_SET_REQUEST

request.CARequest cancel() CMD_PURCHASE_CANCEL_REQUEST

request.CARequest setPrivateData() CMD_PURCHASE_SET_REQUEST

request.CARequest isCancelled()
getPrivateDate()

CMD_PURCHASE_SET_REQUEST

HistoryRequest getHistoryLength()
getItem()
getItems()
getPrivateData()
isCancelled()

CMD_HISTORY_GET_REQUEST

HistoryRequest setItems()
setPrivateData()
cancel()

CMD_HISTORY_SET_REQUEST

BuyResponseEvent buyResponseEvent() CMD_PURCHASE_SET_RESPONSE

FailureResponseEvent FailureResponseEvent()
getErrorCode()

CMD_*_RESPONSE

HistoryResponseEvent HistoryResponseEvent()
getHistory()

CMD_HISTORY_GET_RESPONSE

HistoryUpdateRequest HistoryUpdateRequest()
getHistory()

CMD_HISTORY_SET_REQUEST

HistoryUpdateResponseEv HistoryUpdateResponseEvent() CMD_HISTORY_SET_RESPONSE

ProductInfoRequest ProductInfoRequest()
getProduct()

CMD_PRODUCT_INFO_GET_REQUEST
CMD_PRODUCT_INFO_GET_RESPONSE

RcRechargeRequest RcRechargeRequest()
getRcParameter()

CMD_RECHARGE_REQUEST

RcRechargeResponse RcRechargeResponse()
getRechargeValue()
getWallet

CMD_RECHARGE_RESPONSE

R.OfferedProducts RetrieveOfferedProductsRequest() CMP_PRODUCT_GET_REQUEST

OfferedProductsResponse OfferedProductsResponseEvent()
getProducts()

CMP_PRODUCT_GET_RESPONSE

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 307

Annex N (normative):
CICAM Broadcast Profile

This Annex describes the pseudo broadcast profile that is created with the Operator Profile resource that shall be

supported by a CI Plus Host and optionally supported by a CICAM. It is a mandatory for a CI Plus Host to support the

Operator Profile resource and to support the broadcast profile requirements set down in this Annex.

N.1 Service Information (Normative)

This section describes the Service Information (SI) that shall be minimally specified and interpreted by the Host.

N.1.1 CI Plus Private Descriptors

The private descriptors recognised by a CI Plus Host device are summarised in Table N.1. All CI Plus private

descriptors shall only be interpreted in the context of the CI Plus private data specifier value.

Table N.1: CI Plus private descriptors

Descriptor Tag Description
ci_protection_descriptor 0xce CI Plus Host shunning control.
ciplus_content_label_descriptor 0xcb Content descriptor text label applicable for the network.
ciplus_service_descriptor 0xcc Service name and type.

N.1.2 CICAM NIT

A single quasi-static CICAM NITactual shall be common to all multiplexes of the network. It shall detail the transmission

parameters of the multiplexes within the network and may be constructed by the CICAM using service operator specific

information. The CICAM NIT defined in this specification shall be in compliance with ISO/IEC 13818-1 [13] and ETSI

EN 300 468 [10]. A new version of the CICAM NIT shall be passed to the Host in one of the following circumstances:

 A new multiplex is added or removed to/from the network.

 When the transmission parameters are changed.

 When the service line up changes.

 When attributes of the network are changed (including text labels).

The NIT version number may not change without changes to the payload i.e. a CICAM constructing the NITactual from

various broadcast tables shall not update the NIT in response to a broadcast table version change if the change does not

result in any NIT payload change. The NIT version number shall always be updated following any change to the NIT

payload by incrementing the version_number field.

The CICAM NIT is a complete self contained definition of the operator profile service line up. The Host shall construct

the channel list from information entirely obtained from the CICAM NIT, there is no requirement for the Host to scan

or monitor any part of the broadcast SI in order to construct or maintain the profiled channel list.

The use of descriptors within the NIT shall be strictly according to Table N.2, other descriptors may be skipped if not

known to the Host. The scope of all private descriptors shall be honoured by the Host.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 308

Table N.2: CICAM NIT descriptors

NIT Descriptor Tag Value Loop Actual Other Notes
*_delivery_system_descriptor * 2

nd
 Mb/Mr N/A The delivery system descriptors supported by the Host

network interfaces shall be supported. Delivery system
descriptors not supported by the Host shall be ignored.

ciplus_content_label_descriptor 0xcb 1
st
 Ob/Or N/A Shall be preceded by a CI Plus private data specifier.

ciplus_service_descriptor 0xcc 2
nd

 Mb/Mr N/A Shall be preceded by a CI Plus private data specifier.
linkage_descriptor 0x4a 1

st
 Ob/Mr N/A The Host shall interpret and enact linkage_type 0x02

EPG service.
linkage_descriptor 0x4a 1

st
 Ob/Or N/A DVB-SSU information with linkage_type 0x09 and 0x0A.

network_name_descriptor 0x40 1
st
 Ob/Or N/A The profile_name of the operator_info() APDU shall be

used in preference to any network name appearing in the
NIT.

private_data_specifier_descriptor 0x5f 1
st
/2

nd
 Mb/Mr N/A The CI Plus private data specifier value shall be

recognised by all Hosts and shall precede any CI Plus
private descriptors.

image_icon_descriptor 0x7f/0x00 1
st
 Ob/Or N/A An in-line image icon of the service operator which may

be optionally used by the Host in any network selection,
channel banner and EPG.

Notes: Mb – Mandatory to broadcast; Ob – Optional to broadcast; Mr – Mandatory to receive; Or – Optional to receive; N/A – not applicable.

The CICAM shall propagate DVB-SSU linkage information in the CICAM NIT with the appropriate DVB-SSU

signalling using the linkage_descriptor with linkage_type’s 0x09 and 0x0A. This may require that the CICAM construct

the correct signalling from a broadcast NIT or BAT.

N.1.2.1 system_delivery_descriptor

The system_delivery_descriptor, defined by ETSI EN 300 468 [10], appropriate to the network shall be included in the

2
nd

 loop of the CICAM NIT and shall fully describe the location of the multiplex.

N.1.2.2 linkage_descriptor

The linkage_descriptor with tag 0x4a, defined by ETSI EN 300 468 [10], may optionally be present in the 1
st
 loop of

the NIT with linkage_type 0x02 (EPG Service). The linkage shall indicate the presence of any Electronic Programme

Guide (EPG) barker service and shall be interpreted by the Host when the EPG is invoked.

Other linkage descriptors may be present in the CICAM NIT. The CICAM is required to propagate all DVB-SSU

descriptors to the Host.

N.1.2.3 ciplus_service_descriptor

The CI Plus service descriptor provides the names of the service provider and the service in text form together with the

service_type and logical channel information. The descriptor shall be used in the 2
nd

 loop of the NIT, one descriptor

shall be present for each service to be included in the logical channel list. The descriptor shall only be interpreted in the

context of a CI Plus private data specifier.

The Host shall include all services in the logical channel list that are specified by this descriptor, irrespective of whether

the Host is able to display the service_type. The CICAM shall profile the services based on the service_type declaration

of the Host and the operational constraints defined by the Service Operator (which may require that unsupported service

types are included in the Host logical channel list).

Data in this descriptor shall be treated as quasi-static and shall be used to define services in the Host service list or

channel list. A service may be assigned more than one logical channel number i.e. the same service may be specified to

appear multiple times in a channel list with a different logical channel number assignment, different visibility status and

different name.

The CICAM shall ensure that all selectable services are assigned a unique logical channel number, this requires the

CICAM to select a numbered service ordering in the case where a logical channel numbering is not assigned by the

network. This may be based on an alphabetical sort of the channels etc. to determine the ordering and hence numbering.

There is no requirement for the Host to allocate a logical channel number for any services which are incorrectly labelled

and conflicting services shall be discarded.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 309

Table N.3: ciplus_service_descriptor syntax

Syntax No. of bits Mnemonic
ciplus_service_descriptor(){

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 service_id 16 uimsbf

 service_type 8 uimsbf

 visible_service_flag 1 bslbf

 selectable_service_flag 1 bslbf

 logical_channel_number 14 uimsbf

 service_provider_name_length 8 uimsbf

 for (i=0; i<N; i++) {

 char 8 uimsbf

 }

 service_name_length 8 uimsbf

 for (i=0; i<N; i++) {

 char 8 uimsbf

 }

}

Where the fields are defined as follows:

descriptor_tag: This 8-bit field shall be assigned the value 0xcc and shall only be interpreted in the context of a CI

Plus private data specifier descriptor.

service_id: This is a 16-bit field which identifies the service from any other service in the transport stream. The

service_id is the same as the program_number in the corresponding program_map_table.

service_type: This is an 8-bit field specifying the type of the service. It shall be coded in accordance to the service_type

field of the service_descriptor defined in ETSI EN 300 468 [10].

visible_service_flag: This 1-bit field when set to "1" indicates that the service is normally visible via the Host service

or channel list and EPG etc. When set to "0" this indicates that the receiver is not expected to offer the service to the

user in normal navigation modes but the receiver shall provide a mechanism to access these services by direct entry of

the logical channel number, depending on the setting of the selectable_service_flag field.

selectable_service_flag: This 1-bit field is only interpreted when the visible_service_flag field is set to "0". When set to

"1" indicates that the hidden service is selectable by direct entry of the logical channel number, when set to "0" then the

hidden service is not directly selectable by the user (but may be selectable by LCN from an application environment).

logical_channel_number: This 14-bit field indicates the logical channel number to be assigned to the service, however

only 4-digit channel numbers from 0 to 9999 are allowed. The value of all-ones (0x3fff) indicates that the service is not

available for selection and shall be hidden but retained in the Host channel list. The same service may be allocated more

than one logical channel number and shall appear at multiple locations in the service list. Logical channel numbers shall

be unique throughout the network i.e. the logical channel number shall be used once only (with the exception of all-

ones).

The Host behaviour with logical channel numbers > 9999 is unspecified and may be discarded. Where services are

assigned the same logical channel number then the Host shall retain one service and discard any others.

service_provider_name_length: This 8-bit field specifies the number of bytes that follow the

service_provider_name_length field for describing characters of the name of the service provider.

char: This is an 8-bit field. A string of char fields specify the name of the service provider or service. Text information

is coded using the character sets and methods described in ETSI EN 300 468 [10], Annex A in conjunction with the

operator_info() APDU.

service_name_length: This 8-bit field specifies the number of bytes that follow the service_name_length field for

describing characters of the name of the service.

N.1.2.4 ciplus_content_label_descriptor

The CI Plus content label descriptor is used in the 1
st
 descriptor loop of the NIT and provides a new text label for the

ETSI EN 300 468 [10] content_descriptor (0x54) content_byte field. The descriptor allows the default text labels

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 310

associated with the genre of the programme event to be modified in the context of the network. Multiple instances of the

descriptor are permitted in the loop and may appear in any content_byte order. Multiple instances of the same text label

for an identical range may exist with a different language assignment. The text labels bind a content_byte value range

with a text string.

When processing the content_descriptor then the content_byte is compared with the active range of the content label

descriptor, if the content_byte matches the range then the text label is used. Where multiple labels match the

content_byte then the content label with the smallest matching content range shall be selected in preference to any other

label that has a larger matching content range. If none of the labels of the CICAM NIT match a content_byte value then

the default assigned DVB content_descriptor text labels are used. i.e. a specific label is assigned a narrow range of

content_byte values whilst a generic genre category has a wider range of content_byte values.

Informative: The Host processing is equivalent to effectively re-ordering the text labels for evaluation with narrow

range labels appearing before any other labels with a wider range and the content label is searched from top to bottom

of the list until a match is found. e.g.

0x67-0x67 Dance music // Create a new label

0x65-0x65 Opera // Over-ride existing label

0x60-0x6f Music // Over-ride the generic category name must

 // appear after the specific labels in same range

Table N.4: ciplus_content_label_descriptor syntax

Syntax No. of bits Mnemonic
ciplus_content_label_descriptor(){

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 content_byte_min 8 uimsbf

 content_byte_max 8 uimsbf

 ISO_639_language_code 24 bslbf

 for (i=0; i<N; i++) {

 label_char 8 uimsbf

 }

}

Where the fields are defined as follows:

descriptor_tag: This 8-bit field shall be assigned the value 0xcb and shall only be interpreted in the context of a CI

Plus private data specified descriptor.

content_byte_min/max: These 8-bit fields identify the maximum and minimum range of the content_descriptor

content_byte field value which should be matched if this label should be used for the content_byte. The values are

inclusive values and are compared as follows:

if ((content_byte >= content_byte_min) && (content_byte <= content_byte_max))

then

 // Use this content label.

endif

ISO_639_language_code: This 24-bit field identifies the language code of the content label.

label_char: This is a 8-bit field, a string of "char" fields specifies the text label of the content_byte. Text information is

coded using the character sets and methods defined in ETSI EN 300 468[10], Annex A.

N.1.3 SDT

Within a profiled environment (profile_type=1) then all of the static service name and type information is obtained from

the CICAM NIT rather than the broadcast SDT, the service_descriptor() of the broadcast SDT shall be ignored.

The SDTactual is used by the Host Shunning mechanism, in addition SDTactual may be used for run-time service running

state information. The SDTother tables shall only be trusted when the operator_info() APDU sdt_other_trusted field is set

to "1".

The minimal interpretation of descriptors within the SDT handled by a CI Plus Host with a CICAM NIT shall be

according to Table N.5.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 311

Table N.5: Minimally interpreted CI Plus SDT descriptors

SDT Descriptor Tag Value Actual Other Quasi-static Notes

ci_protection_descriptor 0xce Ob/Mr Ob/Or yes Shall be preceded by a private data specifier.
Quasi-static for 7 days.

private_data_specifier_descriptor 0x5f Ob/Mr Ob/Or no Precedes the ci_protection_descriptor.

Notes: Mb – Mandatory to broadcast; Ob – Optional to broadcast; Mr – Mandatory to receive; Or – Optional to receive; N/A – not applicable.

The running_state in the SDT may be interpreted by the Host if the operator_info() APDU field

sdt_running_status_trusted is set to "1" and the Host may optionally indicate to the user that the service is not available

when the service is not running.

N.1.4 EIT

The EITp/f and EITsch may be present for each service providing information on the present, following and schedule

events. The Host shall be able to robustly handle the SDT::EIT_present_following_flag and SDT::EIT_schedule_flag

being miss-signalled. The availability of EIT information available to the Host may be determined from the

operator_info() APDU eit_present_following_usage and eit_schedule_usage fields.

Where a linkage_descriptor containing linkage_type 0x02 is present in the first loop of the CICAM NIT then the Host

shall acquire the EITsch information from the barker channel by tuning to the multiplex defined in the linkage_descriptor

when required in any Electronic Programme Guide (EPG).

The running_state of the EIT may be interpreted by the Host if the operator_info() APDU eit_running_status_usage

field is set to "1" and the Host may optionally indicate to the user that the service is not available when the service is

signalled as not running or paused.

N.1.4.1 EIT delivery

The Electronic Programme Guide (EPG) of a CI Plus Host is derived from the EITsch information broadcast on the

network, the network operation may be qualified with the ciplus operator_info() APDU EIT schedule hint information.

The EITsch may be protected in the broadcast network by scrambling the EIT table sections. EITp/f is not allowed to be

scrambled.

Where EITsch tables are scrambled on a barker channel then the guidelines of ETSI TR 101 211 shall be followed and

the service may use a PMT with service_id of 0xffff. The PMT shall contain an elementary stream of type private

sections with one or more CA_descriptors to identify the associated CAS. The Host shall pass the EIT service in the

ca_pmt() when descrambling is required. The location of the barker channel shall be identified with a

linkage_descriptor of linkage_type 0x02 and a tuning operation is required for the Host to move to the EPG service.

The network should contain a service describing the EPG service (which may be hidden).

Where the EITsch tables are scrambled and cross carried on the multiplexes of the network then the descrambling shall

operate as follows:

 The CICAM may optionally automatically descramble the EITsch tables for a CI Plus Authenticated Host, this

requires no additional signalling in the PMT.

 The PMT shall include a Elementary Stream of stream_type 0x05 containing ISO/IEC 13818-1 private

sections for elementary _PID=0x0012. The elementary_stream loop shall contain one or more CA_descriptors

to identify the associated CA streams and the Host shall pass this elementary stream to the CICAM in a

ca_pmt() request with any other elementary stream components that require descrambling.

N.2 Profile Behaviour

This section describes the behaviour of a profiled CICAM network (profile_type = 1)

N.2.1 Logical Channel List Organisation

The logical channel list for a profiled CICAM is organised as a separate channel list (sandbox) of channel numbers

identified by the profile_name of the operator_info() APDU. The logical channel list shall be strictly restricted to the

services specified by the service operator using the ciplus_service_descriptor() in the CICAM NIT 2
nd

 loop. Additional

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 312

services may not be added to the profile specific channel list. The Host receiver may construct other channel lists (i.e.

favourites) which are under user control.

N.2.2 Logical Channel Numbering

Services delivered with the CICAM NIT shall be labelled and numbered according to the ciplus_service_descriptor.

The CICAM shall ensure that a logical channel number is allocated only once to a service i.e. logical channel numbers

are unique. A service may be assigned multiple logical channel numbers and the assigned service shall appear multiple

times in the logical channel list with a different logical channel number.

Hidden selectable services shall not appear in the channel list but may be selected by direct entry of the logical channel

number and shall be presented.

Hidden non-selectable services shall not appear in the channel list and may only be selected by an application

environment (where supported by the Host).

In networks without any logical channel assignment then the CICAM shall determine the channel ordering i.e. network

order, alphabetic etc. and assign logical channel numbers. Special services which are not explicitly assigned a logical

channel assignment shall use a logical channel assignment value of all-ones (0x3fff) used to hide a service e.g. a special

software download service. Any special hidden services for S/W download and alike may be included in the logical

channel list so that their multiplex is accessible to the CICAM via the Host Control tune() with a DVB triplet.

Services assigned a logical channel number by the service operator, via the CICAM NIT, may not be re-numbered by

the user in the context of the service operator logical channel list.

The CICAM shall manage the logical channel number assignment through the CICAM NIT and shall take into account

the service_type’s supported by the Host (i.e. SD or HD) and regional services based on the receiver location. The

methods used by the CICAM to determine the regional location and regional service line up is outside the scope of this

specification and is operator specific.

N.2.3 Service Types

Services shall be added to the channel list according to the rules of the ciplus_service_descriptor; all services explicitly

required in the channel list shall be declared by this descriptor. The service shall be included irrespective of whether the

Host is able to decode that service type, the CICAM is notified of the service types known to the Host and is able to

tailor the service list according to this Host information and the requirements of the service operator.

The CICAM shall ensure that the service list is constructed based on the service operator rules and takes into

consideration the capabilities of the supported Host service_type’s.

A Host encountering a unknown service type shall remain robust and shall provide an indication to the user that the

service is not supported i.e. “This service is not supported please contact your Service Operator for more information”.

N.2.4 Network Updates

Changes in the network occurring in the CICAM NIT shall be handled by the Host within 24 hours of the change

notification whilst the Host is operating in the profile channel list. The Host may automatically update the channel list

or minimally inform the user that there has been a change in the network, providing a manual mechanism to update the

Host.

N.2.5 Text Strings

The CICAM shall monitor the host_language APDU to determine the Host language, a change in the Host language

may require the CICAM to update the CICAM NIT with new text strings that match the Host preferred language.

© 2008, 2009, 2011, 2015 CI Plus LLP

CI Plus Specification v1.3.2 (2015-03) 313

History

Document history

Version Date Description

1.3.2 03-Mar-2015 Section 5.7.5.3 rl_copy_control_info value 0xf0 is 238 days not 237.

Section 11.3.4.6 Record Stop Protocol request_datatype_nbr is 1 not 0.
Section 14.7.5.3 operator status nit_version when profile type 0.
Section 14.1.4 Corrected Fig 14.2, Step 5 return value 12 not 0.
Section N.1.2 CICAM NIT private data specifier descriptor is Mb/Mr.
Section 14.6.6 Corrected Figure 14.11 sequence numbering.
Section 14.6.5 Corrected sequence number steps to match Figure 14.10.
Nonexistent §5.7.5.4 referenced, should be §5.7.5.3 (from §5.4.1, §5.2).
Section 14.2 clarified the difference between v2 and v3 of LSC.
Section 14.1.1 Added Implementation Guidelines notes on timeout/retry.
Added section 14.2.1.3 and 14.2.1.4 from Implementation Guidelines.
Added SRM types in Annex H and srm_data renamed to HDCP.srm (31).

1.3.1 22-Sept-2011 Registered Service Mode clarification [5.4.2]
Clarification of Operator Profile including profile type 0 usage [14.7.2], Host
initiated cancel [14.7.5.9], operator_status [14.7.5.3] and operator_info
[14.7.5.7]
Clarifications to PIN [5.11,11.3.2] and license handling [5.10]
Security improvements to Host Control v2 [14.6.2.1]
Clarification of the SAS Resource [11.4.2]
Clarification to CICAM upgrade progress reporting [14.3.5.4]
Miscellaneous typographic corrections

1.3 14-Jan-2011 prng_seed per manufacturer [5.3]
URI version 2 [5.7.5.2]
Digital Only Token [5.7.5.3]
Content license [5.10]
Parental Control [5.11]
Recording and Storage [5.12]
Host Authentication [Table 6.3, step 13, item d]
Certificates, Service operator ID [9.3.6]
Host shunning, SDT absent [10.4]
Version 2 of CC resource [11.3]
SAS APDU clarifications [11.4, Annex M.2.1]
MHEG profile extensions [12.8]
Low Speed Communications v3 [14.1]
IP connection by name [14.2.1.2]
Application MMI clarifications [14.4]
Application MMI File Caching [14.5]
Host Control v2 [14.6]
Operator Profile [14.7, Annex N]
APDU clarifications [Annex E]
CIS Feature Identification [G.3.1]
Removal of PVR Resource [v1.2, 15]

1.2 16-Apr-2009 Addition of module CI Plus compatibility identifier (Annex G.3)
Qualify all SHA algorithms as FIPS 180-3[3] and adhere to SHS validation
list[11]
Corrections to the resource summary (Annex L)
Miscellaneous typographic corrections.

1.1 28-Nov-2008 New release.

1.0 23-May-2008 Publication.

0.80 18-Dec-2007 Public Review.

	Contents
	Foreword
	1 Scope
	2 References
	2.1 Normative references

	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations
	3.4 Use of Words

	4 System Overview (informative)
	4.1 Introduction
	4.2 Content Control System Components
	4.2.1 Host
	4.2.2 CICAM
	4.2.3 Head-End

	4.3 Implementation Outline
	4.4 Device Authentication
	4.5 Key Exchange and Content Encryption
	4.6 Enhanced MMI
	4.7 CI Plus Extensions
	4.7.1 CI Plus 1.3 Extensions

	5 Content Control Overview (normative)
	5.1 End to End Architecture
	5.2 General Interface Behaviour
	5.3 Key Hierarchy
	5.3.1 Keys on the Credentials Layer
	5.3.2 Keys on the Authentication Layer
	5.3.3 Keys on the SAC Layer
	5.3.4 Keys on the Content Control Layer

	5.4 Module Deployment
	5.4.1 Deployment In Basic Service Mode
	5.4.2 Deployment in Registered Service Mode
	5.4.3 Generic Error Reporting

	5.5 Introduction to Revocation (informative)
	5.5.1 Host Revocation
	5.5.2 Revocation Granularity
	5.5.3 Revocation Signalling Data
	5.5.4 Transmission Timeout
	5.5.5 SOCRL and SOCWL Download Process
	5.5.6 Denial of Service

	5.6 (De)Scrambling of Content
	5.6.1 Transport Stream Level Scrambling
	5.6.1.1 PES Level Scrambling

	5.6.2 Scrambler/Descrambler Definition
	5.6.2.1 Scrambling rules
	5.6.2.2 Transport Stream Scrambling with DES
	5.6.2.3 Transport Stream Scrambling with AES
	5.6.2.3.1 Scrambling
	5.6.2.3.2 Terminating short block:
	5.6.2.3.3 Solitary Short Block:
	5.6.2.3.4 Descrambling

	5.7 Copy Control Exertion on Content
	5.7.1 URI Definition
	5.7.2 Associating URI with Content
	5.7.3 URI transfer – Head-End to CICAM
	5.7.4 URI transfer – CICAM to Host
	5.7.5 URI Refresh Protocol
	5.7.5.1 URI Version Negotiation Protocol
	5.7.5.2 Format of the URI message
	5.7.5.3 Coding And Semantics Of Fields

	5.8 Modes Of Operation
	5.8.1 Host Operation with Multiple CICAMs
	5.8.2 Single CICAM with Multiple CA System Support
	5.8.2.1 Introduction
	5.8.2.2 CICAM Device Certificates
	5.8.2.3 CCK Refresh
	5.8.2.4 Host revocation

	5.9 Authentication Overview
	5.10 Content License Exchanges
	5.10.1 Record Start Protocol
	5.10.2 Content License Exchange on Record
	5.10.3 Content License Exchange on Check
	5.10.4 Content License Exchange on Playback
	5.10.5 Content License and Timeshifting
	5.10.6 Record Stop Protocol

	5.11 Parental Control
	5.11.1 CICAM PIN Capabilities
	5.11.1.1 No CICAM PIN Capabilities
	5.11.1.2 CICAM PIN Capabilities for CA Services Only
	5.11.1.3 CICAM PIN Capabilities for CA and FTA Services
	5.11.1.4 CICAM PIN Capabilities for CA Services Only (cached PIN)
	5.11.1.5 CICAM PIN Capabilities for CA and FTA Services (cached PIN)

	5.11.2 CICAM PIN code
	5.11.3 Host PIN code
	5.11.4 Notification that a PIN is required
	5.11.5 Transfer of Parental Rating to CICAM
	5.11.6 PIN Code Caching

	5.12 Recording and Playback
	5.12.1 Playback Session

	5.13 SRM Delivery
	5.13.1 Data file transfer protocol
	5.13.1.1 Initialisation and message overview

	5.13.2 Data transfer conditions

	6 Authentication Mechanisms
	6.1 CICAM Binding and Registration
	6.1.1 Verification of Certificates & DH Key Exchange
	6.1.2 Verification of Authentication Key
	6.1.3 Report Back to Service Operator
	6.1.4 CC System Operation

	6.2 Authentication Protocol
	6.2.1 Initialisation and Message Overview
	6.2.2 Authentication Conditions
	6.2.3 Authentication Key Computations
	6.2.3.1 Diffie Hellman Parameters
	6.2.3.2 Calculate DH Public Keys (DHPH and DHPM)
	6.2.3.3 Calculate DH Keys (DHSK)
	6.2.3.4 Calculate Authentication Key (AKH and AKM)

	6.3 Power-Up Re-Authentication

	7 Secure Authenticated Channel
	7.1 SAC Operation
	7.1.1 SAC Initialisation
	7.1.2 SAC (re)keying Conditions
	7.1.3 SAC Key Computation
	7.1.4 SAC error codes and (re) set SAC state

	7.2 Format of the SAC Message
	7.2.1 Constants
	7.2.2 Coding and Semantics of Fields

	7.3 Transmitting SAC Messages
	7.3.1 Message Authentication
	7.3.2 Message Encryption

	7.4 Receiving SAC Messages
	7.4.1 Message Counter State
	7.4.2 Message Decryption
	7.4.3 Message Verification

	7.5 SAC Integration into CI Plus

	8 Content Key Calculations
	8.1 Content Control Key refresh protocol
	8.1.1 Initialization and message overview
	8.1.2 Content Control Key re-keying conditions
	8.1.3 Content Key Lifetime
	8.1.4 Content Control Key Computation (CCK)
	Step 1: Key precursor calculation.
	Step 2: Key Material computation.

	8.1.5 Content Key for DES-56-ECB Scrambler.
	8.1.6 Content Key and IV for AES-128-CBC Scrambler.

	9 PKI and Certificate Details
	9.1 Introduction
	9.2 Certificate Management Architecture
	9.3 Certificate Format
	9.3.1 version
	9.3.2 serialNumber
	9.3.3 signature
	9.3.4 issuer
	9.3.5 validity
	9.3.6 subject
	9.3.7 subjectPublicKeyInfo
	9.3.8 issuerUniqueID and subjectUniqueID
	9.3.9 extensions
	9.3.9.1 Subject Key Identifier
	9.3.9.2 Authority Key Identifier
	9.3.9.3 Key usage
	9.3.9.4 Basic constraints
	9.3.9.5 Scrambler capabilities
	9.3.9.6 CI Plus info
	9.3.9.7 CICAM brand identifier

	9.3.10 signatureAlgorithm
	9.3.11 signatureValue

	9.4 Certificate Verification
	9.4.1 Verification of the brand certificate
	9.4.2 Verification of the device certificate
	9.4.3 Verification of the service operator certificate

	10 Host Service Shunning
	10.1 CI Plus Protected Service Signalling
	10.1.1 CI Protection Descriptor
	10.1.1.1 CI Protection Descriptor
	10.1.1.2 Private Data Specifier Descriptor

	10.2 Trusted Reception
	10.3 CI Plus Protection Service Mode
	10.4 Service Shunning
	10.4.1 Service Shunning In-active
	10.4.2 Service Shunning Active

	11 Command Interface
	11.1 Application Information resource
	11.1.1 Application Information Version 3
	11.1.2 Request CICAM Reset
	11.1.2.1 request_cicam_reset APDU
	11.1.2.2 Reset request using the IIR bit

	11.1.3 Data rate on the PCMCIA bus
	11.1.3.1 data_rate_info APDU

	11.2 Host Language and Country resource
	11.2.1 Host Language and Country resource APDUs
	11.2.1.1 Host_country_enq APDU
	11.2.1.2 Host_country APDU
	11.2.1.3 Host_language_enq APDU
	11.2.1.4 Host_language APDU

	11.3 Content Control resource
	11.3.1 Content Control resource APDUs
	11.3.1.1 cc_open_req APDU
	11.3.1.2 cc_open_cnf APDU
	11.3.1.3 cc_data_req APDU
	11.3.1.4 cc_data_cnf APDU
	11.3.1.5 cc_sync_req APDU
	11.3.1.6 cc_sync_cnf APDU
	11.3.1.7 cc_sac_data_req APDU
	11.3.1.8 cc_sac_data_cnf APDU
	11.3.1.9 cc_sac_sync_req APDU
	11.3.1.10 cc_sac_sync_cnf APDU

	11.3.2 Content Control Resource PIN APDUs
	11.3.2.1 cc_PIN_capabilities APDUs
	11.3.2.2 cc_PIN_cmd APDU
	11.3.2.3 cc_PIN_reply APDU
	11.3.2.4 cc_PIN_event APDU
	11.3.2.5 cc_PIN_playback APDU
	11.3.2.6 cc_PIN_MMI_req APDU

	11.3.3 Content Control Protocols
	11.3.3.1 Host Capability Evaluation
	11.3.3.2 Authentication
	11.3.3.3 Authentication Key verification
	11.3.3.4 CC key calculation
	11.3.3.5 SAC key calculation
	11.3.3.6 URI transmission and acknowledgement
	11.3.3.7 URI version negotiation

	11.3.4 Content License Exchange
	11.3.4.1 CICAM to Host License Exchange Protocol
	11.3.4.2 Playback License Exchange Protocol
	11.3.4.3 License Check Exchange Protocol
	11.3.4.4 Record Start Protocol
	11.3.4.5 Change Operating Mode Protocol
	11.3.4.6 Record Stop Protocol

	11.3.5 SRM file transmission and acknowledgement

	11.4 Specific Application Support
	11.4.1 Application Life-cycle
	11.4.2 Data Transfer

	12 CI Plus Application Level MMI
	12.1 Scope
	12.2 Application MMI Profile
	12.2.1 Application Domain
	12.2.2 Set of Classes
	12.2.3 Set of Features
	12.2.3.1 CI Plus Engine Profile
	12.2.3.2 Not required features
	12.2.3.3 Stream Objects
	12.2.3.4 RTGraphics / Subtitles

	12.2.4 GetEngineSupport

	12.3 Content Data Encoding
	12.3.1 Content Table
	12.3.2 Stream "memory" formats
	12.3.3 User Input
	12.3.4 Engine Events
	12.3.5 Protocol Mapping and External Connection
	12.3.6 Resident Programs
	12.3.6.1 RequestMPEGDecoder

	12.4 Engine Graphics Model
	12.4.1 LineArt and Dynamic LineArt
	12.4.2 PNG Bitmaps
	12.4.3 MPEG Stills
	12.4.4 User Input
	12.4.5 High definition graphics model.
	12.4.5.1 Discovery

	12.5 Engine Text
	12.5.1 Downloadable Fonts
	12.5.1.1 OpenType Fonts
	12.5.1.2 Presentation
	12.5.1.3 Defensive Response

	12.6 CI Application Life Cycle
	12.6.1 Application Life Cycle
	12.6.1.1 Launching and Terminating the CI Plus Application

	12.6.2 Interaction with DVB Common Interface Module
	12.6.2.1 MHEG Broadcast Profile
	12.6.2.2 MHP Broadcast Profile
	12.6.2.3 File Request and Acknowledge
	12.6.2.4 Persistent Storage

	12.6.3 Host Resource Model
	12.6.3.1 Memory Resource
	12.6.3.2 Link Recursion Behaviour
	12.6.3.3 Timer Count and Granularity
	12.6.3.4 Application Stacking

	12.7 Name Mapping
	12.7.1 Names within the Host
	12.7.2 Name Space Mapping
	12.7.3 MHEG-5 Object References
	12.7.4 Mapping Rules for GroupIdentifier and ContentReference
	12.7.4.1 Case sensitivity
	12.7.4.2 Structure of file references
	12.7.4.3 Caching

	12.8 VOD extensions
	12.8.1 Resident Programs
	12.8.1.1 Test Input Mask
	12.8.1.2 Suppress MHEG Graphics

	12.9 MHEG-5 Authoring Rules & Guidelines

	13 CI Plus Man-Machine Interface Resource
	13.1 Low Level MMI
	13.2 High Level MMI
	13.3 MMI Resources Association
	13.4 CICAM Menu

	14 Other CI Extensions
	14.1 Low Speed Communication Resource Version 3
	14.1.1 comms_cmd Modification
	14.1.2 comms_reply Modification
	14.1.3 CICAM Flow Control
	14.1.4 Host Flow Control
	14.1.5 Requirement for Buffers
	14.1.6 Disconnection Behaviour
	14.1.7 Data transfer

	14.2 Low Speed Communication IP Extension
	14.2.1 Comms Cmd Modification
	14.2.1.1 Comms Cmd IP_descriptor
	14.2.1.2 Comms Cmd Hostname_descriptor
	14.2.1.3 Maximum Number of Concurrent Connections
	14.2.1.4 Set_Params behaviour

	14.2.2 Low-Speed Communications Resource Types Modification

	14.3 CAM Upgrade Resource and Software Download
	14.3.1 Introduction
	14.3.2 Principles
	14.3.3 CAM Upgrade Process
	14.3.3.1 Delayed Process
	14.3.3.2 Immediate Process

	14.3.4 CAM Upgrade Protocol
	14.3.4.1 Delayed mode
	14.3.4.2 Immediate mode
	14.3.4.3 Upgrade Interruption
	14.3.4.4 Reset Implementation
	14.3.4.5 Host Operation
	14.3.4.6 Upgrade Cancellation

	14.3.5 CAM_Upgrade Resource
	14.3.5.1 CAM_Upgrade Resource APDUs
	14.3.5.2 cam_firmware_upgrade APDU
	14.3.5.3 cam_firmware_upgrade_reply APDU
	14.3.5.4 cam_firmware_upgrade_progress APDU
	14.3.5.5 cam_firmware_upgrade_complete APDU

	14.4 Application MMI Resource
	14.4.1 File Naming Convention
	14.4.2 FileRequest
	14.4.3 FileAcknowledge
	14.4.4 AppAbortRequest

	14.5 Application MMI Resource v2
	14.5.1 FileRequest v2
	14.5.2 FileAcknowledge v2
	14.5.3 RequestType Discovery v2

	14.6 DVB Host Control resource
	14.6.1 DVB Host Control Version 2
	14.6.2 DVB Host Control Version 2 APDUs
	14.6.2.1 tune_broadcast_req APDU
	14.6.2.2 tune_reply APDU
	14.6.2.3 ask_release APDU
	14.6.2.4 ask_release_reply APDU

	14.6.3 PMT Management
	14.6.4 Descriptors
	14.6.5 Host Tuning protocol
	14.6.6 Host Control release requests

	14.7 Operator Profile
	14.7.1 Introduction
	14.7.2 Operational Overview
	14.7.3 Host Operator Profile Handling
	14.7.4 Operator Profile Resource exchange
	14.7.4.1 Initialisation
	14.7.4.1.1 Non-profile CICAM
	14.7.4.1.2 Profiled CICAM
	14.7.4.1.3 Profile Discovery
	14.7.4.1.4 Start-up Considerations

	14.7.4.2 Moving between profiles
	14.7.4.3 Entitlement Change
	14.7.4.3.1 Simple entitlement change
	14.7.4.3.2 Entitlement change where a search is required

	14.7.4.4 Tuning and Scanning
	14.7.4.4.1 Profile Search
	14.7.4.4.2 Tuning Requests
	14.7.4.4.3 CAM Upgrade Consideration

	14.7.5 Operator Profile Resource
	14.7.5.1 Operator Profile Resource APDUs
	14.7.5.2 operator_status_req APDU
	14.7.5.3 operator_status APDU
	14.7.5.4 operator_nit_req APDU
	14.7.5.5 operator_nit APDU
	14.7.5.6 operator_info_req APDU
	14.7.5.7 operator_info APDU
	14.7.5.8 operator_search_start APDU
	14.7.5.9 operator_search_cancel APDU
	14.7.5.10 operator_search_status APDU
	14.7.5.11 operator_tune APDU
	14.7.5.12 operator_tune_status APDU
	14.7.5.13 operator_entitlement_ack APDU
	14.7.5.14 operator_exit APDU
	Annex A (normative): Random Number Generator

	A.1 Random Number Generator Definition
	Annex B (normative): Device ID Protocol

	B.1 Device ID Specification
	Annex C (normative): Checksum Algorithms

	C.1 Checksum Algorithms
	Annex D (normative): SD and HD capabilities

	D.1 SD and HD Definitions
	Annex E (normative): Clarification of DVB-CI Use Cases

	E.1 Initialisation
	E.1.1 Specification
	E.1.2 Requirement

	E.2 CA_PMT in Clear
	E.2.1 Specification
	E.2.2 Requirement

	E.3 CA_PMT Clear to Scrambled / Scrambled to Clear
	E.3.1 Specification
	E.3.2 Recommendation

	E.4 PMT Update and New CA_PMT
	E.4.1 Specification
	E.4.2 Recommendation

	E.5 Spontaneous MMI
	E.5.1 Specification
	E.5.2 Resolution

	E.6 Transport Stream to CICAM
	E.6.1 Specification
	E.6.2 Resolution

	E.7 Profile Reply
	E.7.1 Specification
	E.7.2 Recommendation

	E.8 Operation on a Shared Bus
	E.8.1 Background
	E.8.2 Recommendation

	E.9 Maximum APDU Size
	E.10 Host Control resource
	E.10.1 Specification
	E.10.2 Recommendation

	E.11 CA-PMT Reply
	E.11.1 Specification
	E.11.2 Recommendation

	E.12 CC and CP Resource
	E.12.1 Specification
	E.12.2 Recommendation

	E.13 Physical Requirements
	E.13.1 Data Interface
	E.13.2 Command Interface

	E.14 Low-Speed Communication comms reply object
	E.14.1 Specification
	E.14.2 Recommendation

	E.15 High-Level MMI Text Object Coding
	E.15.1 Specification
	E.15.2 Recommendation

	E.16 DVB Host Control Tune Object
	E.16.1 Specification
	E.16.2 Recommendation

	E.17 Conditional Access Support
	E.17.1 Specification
	E.17.2 Host Requirement
	E.17.3 CICAM Requirement

	E.18 Resource Version Handling
	E.18.1 Specification
	E.18.2 Requirement

	E.19 Open Session Request
	E.19.1 Specification
	E.19.2 Specification Correction
	E.19.3 Recommendation

	E.20 CA PMT Provision
	E.20.1 Background
	E.20.2 Specification
	E.20.3 Host Recommendation

	E.21 CICAM evaluation of CA_descriptors
	E.21.1 Specification
	E.21.2 CICAM Requirement

	E.22 CA Support session closing behaviour
	E.22.1 Specification
	E.22.2 Host Requirement
	E.22.3 CICAM Requirement

	E.23 ca_pmt commands
	E.23.1 Specification
	E.23.2 CICAM Requirement

	E.24 Open Session Response
	E.24.1 Specification
	E.24.2 CICAM Requirement

	E.25 Character Coding
	E.25.1 Specification
	E.25.2 Host Requirement
	E.25.3 Host Recommendation
	Annex F (normative) Error Code Definition and Handling

	F.1 Error Codes
	Annex G (normative): PCMCIA Optimizations

	G.1 Buffer Size
	G.2 Interrupt Mode
	G.3 CI Plus Compatibility Identification
	G.3.1 CI Plus Identification
	G.3.2 Additional CI Plus Feature Identification
	G.3.2.1 Operator Profile Resource (Bit 0 – 0x00000001)
	Annex H (normative): Credential Specification

	H.1 Parameters Exchanged in APDUs
	Annex I (normative): Use of PKCS#1

	I.1 RSA Signatures under PKCS#1
	Annex J (normative): Tag Length Format

	J.1 Tag Length Format
	Annex K (normative): Electrical Specification

	K.1 Electrical Specification
	K.1.1 General Information
	K.1.2 Connector Layout
	K.1.3 Configuration Pins
	K.1.3.1 Card Detection Pins
	K.1.3.2 Voltage Sense Pins And Socket Key
	K.1.3.3 Function Of VPP1 And VPP2

	K.1.4 Power Supply Specifications
	K.1.4.1 5V DC Supply Specification
	K.1.4.2 Host Supply Power Up Timing Diagram
	K.1.4.3 Host Supply Power Down Timing Diagram

	K.1.5 Signal Level Specifications
	K.1.5.1 Pull Up/Pull Down And Capacitive Load Requirements
	K.1.5.2 DC Specification For Signals With 5V Supply

	K.1.6 Common Interface Signal Description
	K.1.6.1 Common Interface CPU Related Signals
	K.1.6.2 MPEG Transport Stream Related Signals
	K.1.6.3 MPEG Clock Timing Considerations.

	K.1.7 Timing Specifications
	K.1.7.1 Common Interface Attribute Memory Read Diagram
	K.1.7.2 Common Interface Attribute Memory Write Diagram
	K.1.7.3 Common Interface I/O Read Timing
	K.1.7.4 Common Interface I/O Write Timing
	K.1.7.5 Common Interface MPEG Signal Timing
	Annex L (normative): Resource Summary

	L.1 Resource IDs
	L.2 Resource Summary
	Annex M (normative): MHP Application Message Format

	M.1 Background (Informative)
	M.1.1 Embedded CAS Environment (Informative)
	M.1.2 CI CAS Environment (Informative)
	M.1.3 Use of SAS for MHP Support (Informative)
	M.1.4 Key Decisions (Informative)

	M.2 Message Format (Normative)
	M.2.1 Session Establishment
	M.2.2 Session Operation

	M.3 Message Components
	M.3.1 Money
	M.3.2 Time
	M.3.3 Duration
	M.3.4 String
	M.3.5 Lstring
	M.3.6 Locator
	M.3.7 Pin Code
	M.3.8 Parental Control Level
	M.3.9 Properties

	M.4 Message Types
	M.4.1 ATR Get Request Message
	M.4.2 ATR Get Response Message
	M.4.3 Cancel Request Message
	M.4.4 Cancel Response Message
	M.4.5 Capabilities Request Message
	M.4.6 Capabilities Response Message
	M.4.7 History Get Request Message
	M.4.8 History Get Response Message
	M.4.9 History Set Request Message
	M.4.10 History Set Response Message
	M.4.11 Notification Enable/Disable Request Message
	M.4.12 Parental Level Get Request Message
	M.4.13 Parental Level Get Response Message
	M.4.14 Parental Level Set Request Message
	M.4.15 Parental Level Set Response Message
	M.4.16 Pin Check Request Message
	M.4.17 Pin Check Response Message
	M.4.18 Pin Get Request Message
	M.4.19 Pin Get Response Message
	M.4.20 Pin Set Request Message
	M.4.21 Pin Set Response Message
	M.4.22 Private Data Request Message
	M.4.23 Private Data Response Message
	M.4.24 Product Get Request Message
	M.4.25 Product Get Response Message
	M.4.26 Product Info Get Request Message
	M.4.27 Product Info Get Response Message
	M.4.28 Purchase Cancel Request Message
	M.4.29 Purchase Cancel Response Message
	M.4.30 Purchase Set Request Message
	M.4.31 Purchase Set Response Message
	M.4.32 Recharge Request Message
	M.4.33 Recharge Response Message
	M.4.34 Slot Get Request Message
	M.4.35 Slot Get Response Message
	M.4.36 SmartCard Get Request Message
	M.4.37 SmartCard Get Response Message
	M.4.38 SmartCard Set Request Message
	M.4.39 SmartCard Set Response Message
	M.4.40 Wallet Get Request Message
	M.4.41 Wallet Get Response Message

	M.5 Event Types
	M.5.1 Access Event Message
	M.5.2 Credit Event Message
	M.5.3 Message Event Message
	M.5.4 Pin Request Event Message
	M.5.5 Pin Request Response Message
	M.5.6 Private Data Event Message
	M.5.7 Product Event Message
	M.5.8 Purchase History Event Message
	M.5.9 Recharge Event Message
	M.5.10 Slot Event Message
	M.5.11 Smart Card Event Message

	M.6 Data Type Id Components
	M.6.1 Access Event
	M.6.2 Byte Data
	M.6.3 CAS Information
	M.6.4 CICAM Information
	M.6.5 Credit Status Event
	M.6.6 Error Status
	M.6.7 History
	M.6.8 History Event
	M.6.9 History Request
	M.6.10 Numeric Index
	M.6.11 Object Identity
	M.6.12 Parental Level
	M.6.13 PIN Code
	M.6.14 PIN Request Event
	M.6.15 PIN Information
	M.6.16 Product
	M.6.17 Product Event
	M.6.18 Product Info
	M.6.19 Product Request
	M.6.20 Purchase
	M.6.21 Recharge
	M.6.22 Recharge Event
	M.6.23 Service Id
	M.6.24 Slot
	M.6.25 Slot Event
	M.6.26 SmartCard
	M.6.27 SmartCard Event
	M.6.28 SmartCard Request
	M.6.29 User Data
	M.6.30 Wallet
	M.6.31 Wallet Identity

	M.7 MHP API Mapping
	Annex N (normative): CICAM Broadcast Profile

	N.1 Service Information (Normative)
	N.1.1 CI Plus Private Descriptors
	N.1.2 CICAM NIT
	N.1.2.1 system_delivery_descriptor
	N.1.2.2 linkage_descriptor
	N.1.2.3 ciplus_service_descriptor
	N.1.2.4 ciplus_content_label_descriptor

	N.1.3 SDT
	N.1.4 EIT
	N.1.4.1 EIT delivery

	N.2 Profile Behaviour
	N.2.1 Logical Channel List Organisation
	N.2.2 Logical Channel Numbering
	N.2.3 Service Types
	N.2.4 Network Updates
	N.2.5 Text Strings

	History

